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Two-dimensional scaling properties of experimental fracture surfaces

L. Ponson,1 D. Bonamy,1 and E. Bouchaud1
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DSM/DRECAM/SPCSI, CEA Saclay, F-91191 Gif sur Yvette, France

(Dated: January 5, 2006)

The self-affine properties of post-mortem fracture surfaces in silica glass and aluminum alloy
were investigated through the 2D height-height correlation function. They are observed to exhibit
anisotropy. The roughness, dynamic and growth exponents are determined and shown to be the
same for the two materials, irrespective of the crack velocity. These exponents are conjectured to be
universal.

PACS numbers: 62.20.Mk, 46.50.+a, 68.35.Ct

Understanding the physical aspects of fracture in het-
erogeneous materials still presents a major challenge.
Since the pioneering work of Mandelbrot [1], a large
amount of studies have shown that crack surface rough-
ening exhibits some universal scaling features although
it results from a broad variety of material specific pro-
cesses occurring at the microstructure scale (see Ref. [2]
for a review). Fracture surfaces were found to be self-
affine over a wide range of length scales. In other words,
the height-height correlation function ∆h(∆r) =< [h(r+

∆r) − h(r)]2 >
1/2
r computed along a given direction is

found to scale as ∆h ∼ (∆r)H where H refers to the
Hurst exponent. The roughness exponent was found to
be H ≈ 0.8, weakly dependent on the nature of the ma-
terial and on the failure mode [3]. This quantity was then
conjectured to be universal.

Since the early 90s, a large amount of theoretical stud-
ies suggested scenarios to explain these experimental ob-
servations. They can be classified into two main cat-
egories: (i) percolation-based models where the crack
propagation is assumed to result from a damage coales-
cence process [4, 5]; (ii) elastic string models that consider
the crack front as an elastic line propagating through ran-
domly distributed microstructural obstacles [6, 7]. The
fracture surface corresponds then to the trace left behind
this crack front.

All these models lead to self affine fracture surfaces
with various exponents. However, none of them has been
able to predict the measured value of the roughness ex-
ponent. The main difference between the predictions of
these two categories of theoretical descriptions is that
models (i) lead to isotropic fracture surfaces while models
(ii), where the direction of front propagation clearly plays
a specific role, predict anisotropic surfaces. The analysis
of such anisotropy on experimental examples is the cen-
tral point of this paper.

We investigate the 2D scaling properties of fracture
surfaces in silica glass and metallic alloy, representative
of brittle and ductile materials respectively. Those were
broken using various fracture tests (stress-corrosion and
dynamic loading). Fracture surfaces observed for all these
materials/failure modes are shown to be self-affine, in
agreement with results reported in the literature. How-
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FIG. 1: Topographic image of fracture surface of pure silica
glass (a) and aluminum alloy (b). x is the direction of crack
propagation. z is parallel to the initial crack front.

ever, their scaling properties are not isotropic as usually
believed but require the use of a two-dimensional (2D)

height-height correlation function ∆h( ~∆r) =< [h(~r +
~∆r) − h(~r)]2 >

1/2

~r for a complete description. This 2D
description involves two independent scaling exponents
which correspond to the Hurst exponents measured along
the crack propagation direction and the perpendicular
one, the crack front direction. They are found to vary in-
significantly for the two materials and from slow to rapid
crack growth. Such observations are interpreted within
the framework of elastic line models driven in a random
medium.

Experimental setup. - Silica glass and a metallic al-
loy are chosen as the archetypes of brittle and ductile
materials respectively.

Fracture of silica is performed on DCDC (double cleav-
age drilled compression) parallelepipedic (5×5×25 mm3)
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samples under stress corrosion in mode I (see ref. [8]
for details). After a transient dynamic regime, the crack
propagates at slow velocity through the specimen under
stress corrosion. This velocity is measured by imaging in
real time the crack tip propagation with an Atomic Force
Microscope (AFM). In the stress corrosion regime, the
crack growth velocity can be varied by adjusting prop-
erly the compressive load applied to the DCDC specimen
[8]. The protocol is then the following: (i) a large load is
applied to reach a high velocity; (ii) the load is decreased
to a value lower than the prescribed one; (iii) the load
is increased again up to the value that corresponds to
the prescribed velocity and maintained constant. This
procedure allows us to get various crack velocities rang-
ing from 10−6 to 10−11 m.s−1 corresponding to zones on
the post-mortem fracture surfaces which are clearly sep-
arated by visible arrest marks. The topography of these
fracture surfaces is then measured through AFM with an
in-plane and out-of-plane resolutions estimated of the or-
der of 5 nm and 0.1 nm respectively. To ensure that there
is no bias due to the scanning direction of the AFM tip,
each image is scanned in two perpendicular directions
and the analyses presented hereafter are performed on
both images. These images represent a square field of
1 × 1 µm (1024 by 1024 pixels).

Fracture surfaces of the commercial 7475 aluminum
alloy were obtained from CT (compact tension) spec-
imens which were first precracked in fatigue and then
broken through uniaxial mode I tension. The crack veloc-
ity varies during the fracture process, but has not been
measured. In the tensile zone, the fracture surface has
been observed with a scanning electron microscope at
two tilt angles. A high resolution elevation map has been
produced from the stereo pair using the cross-correlation
based surface reconstruction technique described in [9].
The reconstructed image of the topography represents a
rectangular field of 565×405 µm (512 by 512 pixels). The
in-plane and out-of-plane resolutions are of the order of
2 − 3 µm.

Experimental results. - A typical snapshot of silica
glass (resp. metallic alloy) fracture surface is presented
in Fig. 1a (resp. Fig.1b). In both cases, the reference
frame (x, y ,z) is chosen so that axis x and z are re-
spectively parallel to the direction of crack propagation
and to the crack front. The in-plane and out-of-plane
characteristic length scales are respectively of the order
of 50 nm and 1 nm for the silica glass, and of the order
of 100 µm and 30 µm for the aluminum alloy. In or-
der to investigate the scaling properties of these surfaces,
the 1D height-height correlation functions ∆h(∆z) =<

[h(z + ∆z, x) − h(z, x)]2 >
1/2
z,x along the z direction, and

∆h(∆x) =< [h(z, x + ∆x) − h(z, x)]2 >
1/2
z,x along the x

direction were computed. They are represented in Fig.2a
(resp. Fig.2b) for silica glass (resp. metallic alloy). For
both materials, the profiles were found to be self-affine
in both directions. Moreover, these curves indicate a clear
anisotropy of the fracture surfaces. This anisotropy is re-
flected not only in the correlation lengths and the ampli-

tudes but also in the Hurst exponents. Along the crack
front, the exponents are found to be 0.83± 0.05 for silica
and 0.75±0.03 for metallic alloy, i.e. fairly consistent with
the ”universal” value of the roughness exponent ζ ≃ 0.8
widely reported in the literature [3]. In the crack growth
direction, the Hurst exponent is found to be significantly
smaller, close to 0.63±0.04 and 0.58±0.03 for silica glass
and the aluminum alloy respectively. In all the following,
the Hurst exponent measured along the z-axis, the crack
front direction, and the x-axis, the crack propagation di-
rection, will be referred to as ζ and β respectively.
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FIG. 2: Height-height correlation function calculated along
the propagation direction and the crack front direction on a
fracture surface of silica glass obtained with a crack velocity
of 10−11 m.s−1 (a) and aluminum alloy (b). The straight lines
are power law fits (see text for details).

The observation of two different scaling behaviors in
two different directions of the studied fracture surfaces
suggests a new approach based on the analysis of the 2D
height-height correlation function defined as:

∆h(∆z, ∆x) =< [h(z + ∆z, x + ∆x) − h(x, z)]2 >
1/2
z,x .

This function contains informations on the scaling
properties of a surface in all directions. The variations
of the correlation functions ∆h∆x are plotted as a func-
tion of ∆z in the insets of Figure 3a and 3b for silica
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FIG. 3: The insets show the 2D height-height correlation func-
tions ∆h∆x(∆z) corresponding to different values of ∆x vs ∆z
for a fracture surface of silica glass obtained with a crack ve-
locity of 10−11 m.s−1 (a) and aluminum alloy (b). The data
collapse was obtained using Eq. 1 with exponents reported in
Tab. I.

glass and aluminum alloy fracture surfaces respectively.
For adequate values of β and z, it can be seen in the main
graphs of that same figure that a very good collapse of
the curves can be obtained by normalizing the abscissa
and the ordinate by ∆x1/z and ∆xβ respectively. The re-
sulting master curve is characterized by a plateau region
and followed by a power law variation with exponent ζ.
In other words:

∆h(∆z, ∆x) = ∆xβf(∆z/∆x1/z)

where f(u) ∼

{

1 if u≪ 1
uζ if u≫ 1

(1)

The exponents β and z which optimize the collapse,
and the ζ exponent determined by fitting the large scales
regime exhibited by the master curves are listed in Table
I. The three exponents are found to be ζ ≃ 0.75, β ≃ 0.6
and z ≃ 1.25, independent of the material and of the

crack growth velocity over the whole range from ultra-
slow stress corrosion fracture (picometer per second) to
rapid failure (some meters per second). The ratio of ζ to
β is given in the fourth column of Table I. It is worth
to note that the exponent z fulfills the relation z = ζ/β.
The same exponents have also been observed on fracture
surfaces of mortar and wood [10]. They are therefore con-
jectured to be universal.

ζ β z ζ/β

silica glass 0.77 ± 0.03 0.61 ± 0.04 1.30 ± 0.15 1.26
metallic alloy 0.75 ± 0.03 0.58 ± 0.03 1.26 ± 0.07 1.29

TABLE I: Scaling exponents measured on fracture surfaces of
silica glass and metallic alloy. ζ, β, z and ζ/β are respectively
interpreted as the roughness exponent, the growth exponent
and the dynamic exponent z while the fourth column con-
tains the ratio of ζ to β. Error bars represent an interval of
confidence of 95 %.

Discussion. - The experiments reported in this letter
explored the 2D scaling properties of fracture surfaces
of two different materials. Three main conclusions can
be drawn: (i) 1D profiles scanned parallel to the crack
front direction and to the direction of crack propagation
both exhibit self affine scaling properties, but those are
characterized by two different Hurst exponents referred
to as ζ and β respectively; (ii) the 2D height-height cor-
relation function is shown to collapse on a single curve
(Eq. 1) when appropriatly rescaled. This scaling involves
three exponents ζ, β and z; (iii) These three exponents
are independent of both the material considered and the
crack growth velocity over the explored range.

These conclusions enables a discussion on the vari-
ous competing models developed to capture the scal-
ing properties of fracture surfaces [4, 5, 6, 7]. The
anisotropy clearly evidenced in the scaling properties of
fracture surfaces cannot be captured by static models
like percolation-based models [5]. On the other hand,
these results are reminiscent to what is observed in ki-
netic roughening models [11]. These models consider the
time evolution of an elastic manifold driven in a random
medium. The roughness development of the line h(z, t)
starting from an initially straight line h(z, t = 0) = 0
is then characterized by a 1D height-height correlation
function ∆h(∆z, t) that scales as [11]:

∆h(∆z, t) = tβg(∆z/t1/z)

where g(u) ∼

{

uζ if u≪ 1
1 if u≫ 1

(2)

where ζ, β and z refer to the roughness, growth and dy-
namic exponents respectively. Signature of this rough-
nening scaling can also be found in the steady state
regime reached at long times when the roughness be-
comes time invariant. In this regime, the 2D height-height
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correlation function ∆h(∆z, t) is expected to scale as [12]:

∆h(∆z, ∆t) = ∆tβf(∆z/∆t1/z)

where f(u) ∼

{

1 if u≪ 1
uζ if u≫ 1

(3)

which is exactly the scaling (1) followed by the exper-
imental surfaces after time t has been replaced by co-
ordinate x measured along the crack propagation direc-
tion. This provides a rather strong argument in favour
of models like [6, 7] that describe the fracture surface as
the juxtaposition of the successive crack front positions -
modelled as a pseudo elastic line - moving through mate-
rials with randomly distributed local toughness. In this
scenario, the hurst exponents ζ ≃ 0.75 and β ≃ 0.6 mea-
sured along the crack front direction and the direction of
crack propagation respectively coincide with the rough-
ness exponent and the growth exponent as defined within
the framework of elastic string models [11]. Let us note
moreover that in such models, the dynamic exponent z is
expected to be related to ζ and β through z = ζ/β [13].
This leads to a value of z = 1.25 in perfect agreement
with the value measured experimentally.

In elastic line models, the set of exponents ζ, β and
z depends only on the dimensionality [11, 14], the range
of the elastic interaction [14, 15] and, to some extent, on
the line velocity [16]. It has been shown that for crack

propagating in a linear elastic solid, the restoring elastic
forces are long range rather than local [17]. Correspond-
ing elastic line models predict logarithmic correlations
[7], which is significantly different from ζ ≃ 0.75 as re-
ported in this paper. Let us note that the same model
applied to the interfacial crack problem leads to a rough-
ness exponent ζ ≃ 0.39 [18] and z ≃ 0.75 [15, 19], while
experiments [20] reported values ζ ≃ 0.6 and z ≃ 1.2.
These experimental values are much closer to the ones
expected in elastic line models with short range elastic
interactions, that predict roughness exponents ζ ≃ 0.63
[21]. Understanding the origin of the interaction screen-
ing in crack problems provides a significant challenge for
future investigation.

Finally, it is worth to mention that the scaling proper-
ties exhibited by fracture surfaces may have interesting
expertise applications. It allows indeed to determine the
direction of crack propagation from the analysis of post-
mortem fracture surfaces and, thus to reconstruct the
history of the processes that have lead to the failure of
the structure.
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