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A WAVELET WHITTLE ESTIMATOR OF THE MEMORY

PARAMETER OF A NON-STATIONARY GAUSSIAN TIME

SERIES

E. MOULINES, F. ROUEFF, AND M.S. TAQQU

Télécom Paris/CNRS LTCI and Boston University

Abstract. We consider a time series X = {Xk, k ∈ Z} with memory parameter

d0 ∈ R. This time series is either stationary or can be made stationary after

differencing a finite number of times. We study the “Local Whittle Wavelet

Estimator” of the memory parameter d0. This is a wavelet-based semiparametric

pseudo-likelihood maximum method estimator. The estimator may depend on a

given finite range of scales or on a range which becomes infinite with the sample

size. We show that the estimator is consistent and rate optimal if X is a linear

process and is asymptotically normal if X is Gaussian.

1. Introduction

Let X
def
= {Xk}k∈Z be a process, not necessarily stationary or invertible. Denote

by ∆X the first order difference, (∆X)ℓ = Xℓ −Xℓ−1, and by ∆kX the k-th order

difference. Following [9], the processX is said to have memory parameter d0, d0 ∈ R,

if for any integer k > d0 − 1/2, U
def
= ∆kX is covariance stationary with spectral

measure

νU(dλ) = |1 − e−iλ|2(k−d0) ν∗(dλ), λ ∈ [−π, π], (1)

where ν∗ is a non-negative symmetric measure on [−π, π] such that, in a neighbor-

hood of the origin, it admits a positive and bounded density. The process X is

covariance stationary if and only if d0 < 1/2. When d0 > 0, X is said to exhibit

long memory or long–range dependence. The generalized spectral measure of X is
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defined as

ν(dλ)
def
= |1 − e−iλ|−2d0 ν∗(dλ), λ ∈ [−π, π] (2)

We suppose that we observe X1, . . . ,Xn and want to estimate the exponent d0

under the following semiparametric setup introduced in [15]. Let β ∈ (0, 2], γ > 0,

and ε ∈ (0, π], and assume that

ν∗ ∈ H(β, γ, ε) ,

where H(β, γ, ε) is the class of finite non-negative symmetric measures on [−π, π]

whose restrictions on [−ε, ε] admits a density g, such that, for all λ ∈ (−ε, ε),

|g(λ) − g(0)| ≤ γ g(0) |λ|β . (3)

Since ε ≤ π, ν∗ ∈ H(β, γ, ε) is only a local condition for λ near 0. For instance

ν∗ may contain atoms at frequencies in (ε, π] or have an unbounded density on this

domain.

We shall estimate d0 using the semiparametric Local Whittle Wavelet Estimator

defined in Section 3. We will show that, under suitable conditions, this estimator

is consistent (Theorem 3), the convergence rate is optimal (Corollary 4), and it is

asymptotically normal (Theorem 5). We discuss how it compares to other estimators

in Section 4.

There are two popular semiparametric estimators for the memory parameter d0

in the frequency domain:

(1) The Geweke Porter-Hudak (GPH) estimator introduced in [6] and analyzed

by [16]. It involves a regression of the log-periodogram on the log of low

frequencies.

(2) The local Whittle (Fourier) estimator (or LWF) proposed in [11] and de-

veloped in [15]. It is based on the Whittle approximation of the Gaussian

likelihood, restricted to low frequencies.

Corresponding approaches may be considered in the wavelet domain. By far, the

most widely used wavelet estimator is based on the log-regression of the wavelet

coefficient variance on the scale index, which has been introduced in [1]; see also [14]

and [13] for recent developments. A wavelet analog of the LWF, referred to as

the Local Whittle Wavelet Estimator can also be defined. This estimator has been

proposed for analyzing noisy data in [23] in a parametric context, and was considered

by several authors, essentially in a parametric context, see e.g. [10] and [12]. To

our knowledge, its theoretical properties are not known (see the concluding remarks

in [22, p. 107]). The main goal of this paper is to fill this gap in a semiparametric

context. The paper is structured as follows. In Section 2, the wavelet analysis
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of a time series is presented and some results on the dependence structure of the

wavelet coefficients are given. The definition and the asymptotic properties of the

local Whittle wavelet estimator are given in Section 3: the estimator is shown to

be rate optimal under a general condition on the wavelet coefficients, which are

satisfied when X is a linear process with four finite moments and it is shown to be

asymptotically normal under the additional condition that X is Gaussian. These

results are discussed in Section 4. The proofs can be found in the remaining sections.

The linear case is considered in Section 5. The asymptotic behavior of the wavelet

Whittle likelihood is studied in Section 6, weak consistency in Section 7. The proofs

of the main results are gathered in Section 8.

2. The wavelet analysis

The functions φ(t), t ∈ R, and ψ(t), t ∈ R, will denote the father and mother

wavelets respectively, and φ̂(ξ)
def
=
∫

R
φ(t)e−iξt dt and ψ̂(ξ)

def
=
∫

R
ψ(t)e−iξt dt their

Fourier transforms. We suppose that φ and ψ satisfy the following assumptions :

(W-1) φ and ψ are integrable and have compact supports, φ̂(0) =
∫

R
φ(x)dx = 1

and
∫

R
ψ2(x)dx = 1.

(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1 + |ξ|)α <∞.

(W-3) The function ψ has M vanishing moments, i.e.
∫

R
tlψ(t) dt = 0 for all

l = 0, . . . ,M − 1

(W-4) The function
∑

k∈Z
klφ(· − k). is a polynomial of degree l for all l =

0, . . . ,M − 1.

(W-5) d0, M , α and β are such that (1 + β)/2 − α < d0 ≤M .

Assumption (W-1) implies that φ̂ and ψ̂ are everywhere infinitely differentiable.

Assumption (W-2) is regarded as a regularity condition and Assumptions (W-3)

and (W-4) are often referred to as admissibility conditions. When (W-1) holds, As-

sumptions (W-3) and (W-4) can be expressed in different ways. (W-3) is equivalent

to asserting that the first M − 1 derivative of ψ̂ vanish at the origin and hence

|ψ̂(λ)| = O(|λ|M ) as λ→ 0. (4)

And, by [3, Theorem 2.8.1, Page 90], (W-4) is equivalent to

sup
k 6=0

|φ̂(λ+ 2kπ)| = O(|λ|M ) as λ→ 0. (5)

Finally, (W-5) is the constraint on M and α that we will impose on the wavelet-

based estimator of the memory parameter d0 of a process having generalized spectral

measure (2) with ν∗ ∈ H(β, γ, ε) for some positive β, γ and ε. Remarks 1 and 7

below provide some insights on (W-5). We may consider non-stationary processes



4 E. MOULINES, F. ROUEFF, AND M.S. TAQQU

X because the wavelet analysis performs an implicit differentiation of order M . It is

perhaps less known that, in addition, wavelets can be used with noninvertible pro-

cesses (d0 ≤ −1/2) thanks to the regularity condition (W-2). These two properties

of the wavelet are, to some extent, similar to the properties of the tapers used in

the Fourier analysis, see e.g. [9, 22].

Adopting the engineering convention that large values of the scale index j corre-

spond to coarse scales (low frequencies), we define the family {ψj,k, j ∈ Z, k ∈ Z}

of translated and dilated functions, ψj,k(t) = 2−j/2 ψ(2−jt − k), j ∈ Z, k ∈ Z. If

φ and ψ are the scaling and the wavelet functions associated to a multiresolution

analysis (see [3]), then {ψj,k, j ∈ Z, k ∈ Z} forms an orthogonal basis in L2(R).

A standard choice are the Daubechies wavelets (DB-M) which are parameterized

by the number of their vanishing moments M . The associated scaling and wavelet

functions φ and ψ satisfy (W-1)–(W-4) where α in (W-2) is a function of M which

increases to infinity as M tends to infinity (see [3, Theorem 2.10.1]). In this work,

however, we neither assume that the pair {φ,ψ} is associated to a multiresolution

analysis (MRA), nor that the ψj,k’s form a Riesz basis. Other possible choices are

discussed in [14, Section 3].

The wavelet coefficients of the process X = {Xℓ, ℓ ∈ Z} are defined by

Wj,k
def
=

∫

R

X(t)ψj,k(t) dt j ≥ 0, k ∈ Z . (6)

where X(t)
def
=
∑

k∈Z
Xk φ(t− k). If (φ,ψ) define a MRA, then Xk is identified with

k-th approximations coefficients at scale j = 0 and Wj,k are the details coefficients

at scale j.

Because translating the functions φ or ψ by an integer amounts to translate the

sequence {Wj,k, k ∈ Z} by the same integer for all j, we can suppose without

loss of generality that the supports of φ and ψ are included in [−T, 0] and [0,T]

respectively, for some integer T ≥ 1. Using this convention, it is easily seen that the

wavelet coefficient Wj,k depends only on the available observations {X1, . . . ,Xn}

when j ≥ 0 and 0 ≤ k < nj, where, denoting the integer part of x by [x],

nj
def
= max([2−j(n− T + 1) − T + 1], 0) . (7)

Suppose that X is a (possibly non-stationary) process with memory parameter d0

and generalized spectral measure ν. If M > d0 − 1/2, then ∆MX is stationary and

hence by [14, Proposition 1], the sequence of wavelet coefficients Wj,� is a stationary

process and we define σ2
j (ν)

def
= Var(Wj,k). Our estimator takes advantage of the

scaling and weak dependence properties of the wavelet coefficients, as expressed in

the following condition, which will be shown to hold in many cases of interest.
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Condition 1. There exist β > 0 and σ2 > 0 such that

sup
j≥1

2βj

∣∣∣∣∣
σ2

j (ν)

σ2 22d0j
− 1

∣∣∣∣∣ <∞ (8)

and

sup
n≥1

sup
j=1,...,Jn

(1 + nj2
−2jβ)−1 n−1

j Var




nj−1∑

k=0

W 2
j,k

σ2
j (ν)


 <∞ . (9)

Eq. (8) states that, up to the multiplicative constant σ2, the variance σ2
j (ν) is

approximated by 22d0j and that the error goes to zero exponentially fast as a function

of j. It is a direct consequence of the approximation of the covariance of the wavelet

coefficients established in [14]. Eq. (9) imposes a bound on the variance of the

normalized partial sum of the stationary centered sequence {σ−2
j (ν)W 2

j,k} which,

provided that nj2
−2jβ = O(1), is equivalent to what happens when these variables

are independent. We stress that the wavelet coefficients Wj,k, however, are not

independent, nor can they be approximated by independent coefficients; see [14].

Establishing (9) requires additional assumptions on the process X that go beyond

its covariance structure since W 2
j,k is involved; see Theorem 1 where this property

is established for a general class of linear processes. We have isolated Relations (8)

and (9) because in our semiparametric context, these two relations are sufficient to

show that the wavelet Whittle estimator converges to d0 at the optimal rate (see

Theorem 3 below).

Let us recall some definitions and results from [14] which are used here. As noted

above, for a given scale j, the process {Wj,k}k∈Z is covariance stationary. It will be

called the within-scale process because all the Wj,k, k ∈ Z, share the same j. The

situation is more complicated when considering two different scales j > j′, because

the two-dimensional sequence {[Wj,k, Wj′,k]
T }k∈Z is not stationary, as a consequence

of the pyramidal wavelet scheme. A convenient way to define a joint spectral density

for wavelet coefficients is to consider the between-scale process.

Definition 1. The sequence {[Wj,k, Wj,k(j − j′)T ]T }k∈Z where

Wj,k(j − j′)
def
=
[
Wj′,2j−j′k, . . . ,Wj′,2j−j′k+2j−j′−1

]T

is called the between-scale process at scales 0 ≤ j′ ≤ j. Wj,k(j − j′) is a 2j−j′-

dimensional vector of wavelet coefficients at scale j′.

Assuming that the generalized spectral measure of X is given by (2) and provided

that M > d0 − 1/2, since ∆MX is stationary, both the within-scale process and the

between-scale process are covariance stationary; see [14]. Let us consider the case
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ν∗ ∈ H(β, γ, π), that is, ε = π, so that ν∗ admits a density f∗ in the space H(β, γ)

as defined in [14] and ν admits a density f(λ)
def
= |1 − e−iλ|−2d0f∗(λ). We denote

by Dj,0(·; f) the spectral density of the within-scale process at scale index j and by

Dj,j−j′(·; f) the cross spectral density between {Wj,k}k∈Z and {Wj,k(j− j
′)}k∈Z for

j′ < j. It will be convenient to set u = j − j′. Theorem 1 in [14] states that, under

(W-1)–(W-5), for all u ≥ 0, there exists C > 0 such that, for all λ ∈ (−π, π) and

j ≥ u ≥ 0,
∣∣∣Dj,u(λ; f) − f∗(0)D∞,u(λ; d0) 22jd0

∣∣∣ ≤ C f∗(0) 2(2d0−β)j (10)

where, for all u ≥ 0, d ∈ (1/2 − α,M ] and λ ∈ (−π, π),

D∞,u(λ; d)
def
=
∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)). (11)

with eu(ξ)
def
= 2−u/2[1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T .

Remark 1. The condition (W-5) involves an upper and lower bound. The lower

bound guarantees that the series defined by the right-hand side of (11) omitting the

term l = 0 converges uniformly for λ ∈ (π, π). The upper bound guarantees that the

term l = 0 is bounded at λ = 0. As a result, D∞,u(λ; d) is bounded on λ ∈ (π, π)

and, by (10), so is Dj,u(λ; f). In particular, the wavelet coefficients are short–range

dependant. For details, see the proof of Theorem 1 in [14].

Remark 2. We stress that (10) may no longer hold if we only assume ν∗ ∈ H(β, γ, ε)

with ε < π, since in this case, no condition is imposed on ν(dλ) for |λ| > ε and hence

Wj,� may not have a density for all j. However this difficulty can be circumvented

by decomposing ν∗ as

ν∗(dλ) = f∗(λ)dλ+ ν̃∗(dλ) , (12)

where f∗ has support in [−ε, ε] and ν̃∗([−ε, ε]) = 0; see the proof of Theorem 1.

Here is a simple interpretation of the bound (10). For any d ∈ R, 22jdD∞,u(·; d), is

the spectral density of the wavelet coefficient of the generalized fractional Brownian

motion (GFBM) {B(d)(θ)} defined as the Gaussian process indexed by test functions

θ ∈ Θ(d) =
{
θ :
∫

R
|ξ|−2d |θ̂(ξ)|2 dξ <∞

}
with zero-mean and covariance

Cov
(
B(d)(θ1), B(d)(θ2)

)
=

∫

R

|ξ|−2d θ̂1(ξ) θ̂2(ξ) dξ . (13)

When d > 1/2, the condition
∫
|ξ|−2d |θ̂(ξ)|2 dξ < ∞ requires that θ̂(ξ) decays

sufficiently quickly at the origin and, when d < 0, it requires that θ̂(ξ) decreases

sufficiently rapidly at infinity. Provided that d ∈ (1/2 − α,M + 1/2), the wavelet



A WAVELET WHITTLE ESTIMATOR 7

function ψ and its scaled and translated versions ψj,k all belong to Θ(d). Defining

the discrete wavelet transform of B(d) as W
(d)
j,k

def
= B(d)(ψj,k), j ∈ Z, k ∈ Z and

W
(d)
j,k (u)

def
=
[
W

(d)
j−u,2uk, . . . ,W

(d)
j−u,2uk+2u−1

]
, one obtains

Cov
(
W

(d)
j,k , W

(d)
j,k′(u)

)
= 22dj

∫ π

−π
D∞,u(λ; d) eiλ(k−k′) dλ , (14)

see [14, Remark 5] for more details. Eq. (10) shows that the within- and between-

scale spectral densities Dj,u(λ; ν) of the process X with memory parameter d may

be approximated by the corresponding densities of the wavelet coefficients of the

GFBM B(d), with an L∞ error bounded by O(2(2d0−β)j).

The approximation (10) is a crucial step for proving that Condition 1 holds for

linear processes. The following theorem is proved in Section 5.

Theorem 1. Let X be a process having generalized spectral measure (2) with d0 ∈ R

and ν∗ ∈ H(β, γ, ε) with f∗(0)
def
= dν∗/dλ|λ=0 > 0, where γ > 0, β ∈ (0, 2] and

ε ∈ (0, π]. Then, under (W-1)–(W-5), the bound (8) holds with σ2 = f∗(0)K(d0),

where

K(d)
def
=

∫ ∞

−∞
|ξ|−2d |ψ̂(ξ)|2 dξ, for any d ∈ (1/2 − α,M + 1/2) . (15)

Suppose in addition that there exist an integer k0 ≤ M and a real-valued sequence

{ak}k∈Z ∈ ℓ2(Z) such that

(∆k0X)k =
∑

t∈Z

ak−tZt, k ∈ Z , (16)

where {Zt}t∈Z is a weak white noise process such that E[Zt] = 0, E[Z2
t ] = 1, E[Z4

t ] =

E[Z4
1 ] <∞ for all t ∈ Z and

Cum(Zt1 , Zt2 , Zt3 , Zt4) =

{
E[Z4

1 ] − 3 if t1 = t2 = t3 = t4

0 otherwise.
(17)

Then, under (W-1)–(W-5), the bound (9) holds and Condition 1 is satisfied.

Remark 3. Relation (9) does not hold for all long memory process X, even with

arbitrary moment conditions, see [5].

Remark 4. Any martingale increment process with constant finite fourth moment,

as in the assumption A3’ considered in [15], satisfies (17). Another particular case

is given by the following corollary, proved in Section 5.

The following result specializes Theorem 1 to a Gaussian process X and shows

that at large scales the wavelet coefficients of X can be approximated by those of a

process X̄ whose spectral measure ν̄ satisfies the global condition ν̄ ∈ H(β, γ, π).
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Corollary 2. Let X be a Gaussian process having generalized spectral measure (2)

with d0 ∈ R and ν∗ ∈ H(β, γ, ε) with f∗(0)
def
= dν∗/dλ|λ=0 > 0, where γ > 0,

β ∈ (0, 2] and ε ∈ (0, π]. Then, under (W-1)–(W-5), Condition 1 is satisfied with

σ2 = f∗(0)K(d0).

There exists, moreover, a Gaussian process X defined on the same probability

space as X with generalized spectral mesure ν̄ ∈ H(β, γ, π) and wavelet coefficients

{W j,k} such that,

sup
n≥1,j≥0

{
nj2

j(1+2d0−2α) + n2
j2

2j(1−2α)
}−1

E



∣∣∣∣∣∣

nj−1∑

k=0

W 2
j,k −

nj−1∑

k=0

W
2
j,k

∣∣∣∣∣∣

2
 <∞ . (18)

3. Asymptotic behavior of the local Whittle wavelet estimator

We first define the estimator. Let {cj,k, (j, k) ∈ I} be an array of centered

independent Gaussian random variables with variance Var(cj,k) = σ2
j,k, where I is a

finite set. The negative of its log-likelihood is (1/2)
∑

(j,k)∈I

{
c2j,k/σ

2
j,k + log(σ2

j,k)
}

up to a constant additive term. Our local Whittle wavelet estimator (LWWE)

uses such a contrast process to estimate the memory parameter d0 by choosing

cj,k = Wj,k. The scaling and weak dependence in Condition 1 then suggest the

following pseudo negative log-likelihood

L̂I(σ2, d) = (1/2)
∑

(j,k)∈I

{
W 2

j,k/(σ
222dj) + log(σ2 22dj)

}

=
1

2σ2

∑

(j,k)∈I

2−2djW 2
j,k +

|I|

2
log(σ222〈I〉 d) ,

where |I| denotes the number of elements of the set I and 〈I〉 is defined as the

average scale,

〈I〉
def
=

1

|I|

∑

(j,k)∈I

j . (19)

Define σ̂2
I(d)

def
= Argminσ2>0 L̂I(σ2, d) = |I|−1

∑
(j,k)∈I 2−2djW 2

j,k. The maximum

pseudo–likelihood estimator of the memory parameter is then equal to the minimum

of the negative profile log-likelihood (see [21, p. 403]), d̂I
def
= Argmind∈R L̂I(σ̂2

I(d), d),

that is,

d̂I = Argmin
d∈R

L̃I(d) where L̃I(d)
def
= log

∑

(j,k)∈I

22d(〈I〉−j)W 2
j,k . (20)

If I contains at least two different scales, then L̃I(d) → ∞ as d → ±∞, and thus

d̂I is finite. The derivative of L̃I(d) vanishes at d = d̂I , i.e. ŜI(d̂I) = 0 where, for
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all d ∈ R,

ŜI(d)
def
=

∑

(j,k)∈I

[j − 〈I〉] 2−2jdW 2
j,k . (21)

We consider two specific choices for I. For any integers n, j0 and j1, j0 ≤ j1, the

set of all available wavelet coefficients from n observations X1, . . . ,Xn having scale

indices between j0 and j1 is

In(j0, j1)
def
= {(j, k) : j0 ≤ j ≤ j1, 0 ≤ k < nj} , (22)

where nj is given in (7). Consider two sequences {Ln} and {Un} satisfying, for all

n,

0 ≤ Ln < Un ≤ Jn, Jn
def
= max{j : nj ≥ 1} . (23)

The index Jn is the maximal available scale index for the sample size n; Ln and

Un will denote, respectively, the lower and upper scale indices used in the pseudo-

likelihood function. The estimator will then be denoted d̂In(Ln,Un). As shown below,

in the semiparametric framework, the lower scale Ln governs the rate of convergence

of d̂In(Ln,Un) towards the true memory parameter. There are two possible settings

as far as the upper scale Un is concerned:

(S-1) Un − Ln is fixed, equal to ℓ > 0

(S-2) Un ≤ Jn for all n and Un − Ln → ∞ as n→ ∞.

(S-1) corresponds to using a fixed number of scales, and (S-2) corresponds to using

a number of scales tending to infinity. We will establish the large sample properties

of d̂In(Ln,Un) for these two cases.

The following theorem, proved in Section 8, states that, under Condition 1, the

estimator d̂In(Ln,Un) is consistent.

Theorem 3 (Rate of Convergence). Assume Condition 1. Let {Ln} and {Un} be

two sequences satisfying (23) and suppose that, as n→ ∞,

L2
n(n2−Ln)−1/4 + L−1

n → 0 . (24)

Then the estimator d̂In(Ln,Un) defined by (20) and (22) is consistent with a rate

given by

d̂In(Ln,Un) = d0 +OP

{
(n2−Ln)−1/2 + 2−βLn

}
. (25)

By balancing the two terms in the bound (25), we obtain the optimal rate.

Corollary 4 (Optimal rate). When n ≍ 2(1+2β)Ln , we obtain the rate:

d̂In(Ln,Un) = d0 +OP

(
n−β/(1+2β)

)
. (26)
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Proof. By taking n ≍ 2(1+2β)Ln , the condition L−1
n +L2

n(n2−Ln)−1/4 → 0 is satisfied

and (nLn)−1/2 ≍ 2−βLn ≍ n
− β

1+2β . This is the minimax rate ([7]). �

Remark 5. Observe that the setting of Theorem 3 includes both cases (S-1) and (S-2).

The difference between these settings will appear when computing the limit variance

in the Gaussian case, see Theorem 5 below.

We shall now state a central limit theorem for the estimator d̂In(Ln,Un) of d0,

under the additional assumption that X is a Gaussian process. Extensions to non-

Gaussian linear processes will be considered in a future work. We denote by | · | the

Euclidean norm and define, for all d ∈ (1/2 − α,M ] and u ∈ N,

Iu(d)
def
=

∫ π

−π
|D∞,u(λ; d)|2 dλ = (2π)−1

∑

τ∈Z

Cov2
(
W

(d)
0,0 , W

(d)
−u,τ

)
, (27)

where we used (14). We denote, for all integer ℓ ≥ 1,

ηℓ
def
=

ℓ∑

j=0

j
2−j

2 − 2−ℓ
and κℓ

def
=

ℓ∑

j=0

(j − ηℓ)
2 2−j

2 − 2−ℓ
, (28)

V(d0, ℓ)
def
=

π

(2 − 2−ℓ)κℓ(log(2)K(d0))2
×

{
I0(d0) +

2

κℓ

ℓ∑

u=1

Iu(d0) 2(2d0−1)u
ℓ−u∑

i=0

2−i

2 − 2−ℓ
(i− ηℓ)(i+ u− ηℓ)

}
, (29)

V(d0,∞)
def
=

π

[2 log(2)K(d0)]2

{
I0(d0) + 2

∞∑

u=1

Iu(d0) 2(2d0−1)u

}
, (30)

where K(d) is defined in (15). The following theorem is proved in Section 8.

Theorem 5 (CLT). Let X be a Gaussian process having generalized spectral mea-

sure (2) with d0 ∈ R and ν∗ ∈ H(β, γ, ε) with ν∗(−ε, ε) > 0, where γ > 0, β ∈ (0, 2]

and ε ∈ (0, π]. Let {Ln} be a sequence such that

L2
n(n2−Ln)−1/4 + n2−(1+2β)Ln → 0 . (31)

and {Un} be a sequence such that either (S-1) or (S-2) holds. Then, under (W-1)–

(W-5), we have, as n→ ∞,

(n2−Ln)1/2 (d̂In(Ln,Un) − d0)
L

−→ N [0,V(d0, ℓ)] , (32)

where ℓ = limn→∞(Un − Ln) ∈ {1, 2, . . . ,∞}.

Remark 6. The condition (31) is similar to (24) but ensures, in addition, that the

bias in (25) is asymptotically negligible.
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Remark 7. The larger the value of β, the smaller the size of the allowed range for

d0 in (W-5) for a given decay exponent α and number M of vanishing moments.

Indeed the range in (W-5) has been chosen so as to obtain a bound on the bias which

corresponds to the best possible rate under the condition ν∗ ∈ H(β, γ, ε). If (W-5)

is replaced by the weakest condition d0 ∈ (1/2 − α,M ], which does not depend on

β, the same CLT (32) holds but β in Condition (31) must be replaced by β′ ∈ (0, β].

This β′ must satisfy 1/2 − α < (1 + β′)/2 − α < d0, that is 0 < β′ < 2(d0 + α) − 1.

When β′ < β one gets a slower rate in (32).

Remark 8. Relation (32) holds under (S-1) where ℓ < ∞ and (S-2) where ℓ = ∞.

It follows from (72) and (74) that V(d0, ℓ) → V(d0,∞) < ∞ as ℓ → ∞. Our

numerical experiments suggest that in some cases one may have V(d0, ℓ) ≤ V(d0, ℓ
′)

with ℓ ≤ ℓ′, see the bottom left panel of Figure 1. In that figure, one indeed notices

a bending of the curves for large d, which is more pronounced for small values of M

and may be due to a correlation between the wavelet coefficients across scales.

Remark 9. The most natural choice is Un = Jn, which amounts to use all the

available wavelet coefficients with scale index larger than Ln. The case (S-1) is

nevertheless of interest. In practice, the number of observations n is finite and

the number of available scales Jn − Ln can be small. Since, when n is finite, it

is always possible to interpret the estimator d̂In(Ln,Jn) as d̂In(Ln,Ln+ℓ), with ℓ =

Jn−Ln, one may approximate the distribution of (n2−Ln)1/2 (d̂In(Ln,Jn)−d0) either

by N (0,V(d0, ℓ)) of by N (0,V(d0,∞)). Since the first one involves only a single

limit, it is likely to provide a better approximation for finite n. Another interesting

application consists in considering online estimators of d0: online computation of

wavelet coefficients is easier when the number of scales is fixed, see [19].

4. Discussion

The asymptotic variance V(d, ℓ) is defined for all ℓ ∈ {1, 2, . . . ,∞} and all 1/2 +

α < d ≤ M by (29) and (30). Its expression involves the range of scales ℓ and the

L2–norm Iu(d0) of the asymptotic spectral density D∞,u(λ; d) of the wavelet coeffi-

cients, both for the within scales (u = 0) and the between scales (u > 0). The choice

of wavelets does not matter much as Figure 1 indicates. One can use Daubechies

wavelet or Coiflets (for which the scale function also has vanishing moments). What

matters is the number of vanishing moments M and the decay exponent α, which

both determine the frequency resolution of ψ. For wavelets derived from a mul-

tiresolution analysis, M is always known and [3, Remark 2.7.1, Page 86] provides a

sequence of lower bounds tending to α (we used such lower bounds for the Coiflets
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used below). For the Daubechies wavelet with M vanishing moments, an analytic

formula giving α is available, see [4, Eq (7.1.23), Page 225 and the table on Page 226]

and note that our α equals the α of [4] plus 1.

4.1. The ideal Shannon wavelet case. The so-called Shannon wavelet ψS is

such that its Fourier transform ψ̂S satisfies |ψ̂S(ξ)|2 = 1 for |ξ| ∈ [π, 2π] and is

zero otherwise. This wavelet satisfies (W-2)–(W-4) for arbitrary large M and α but

does not have compact support, hence it does not satisfy (W-1). We may therefore

not choose this wavelet in our analysis. It is of interest, however, because it gives a

rough idea of what happens when α and M are large since one can always construct a

wavelet ψ satisfying (W-1)–(W-4) which is arbitrarily close to the Shannon wavelet.

Using the Shannon wavelet in (11), we get, for all λ ∈ (−π, π), D∞,u(λ; d) = 0 for

u ≥ 1 and D∞,0(λ; d) = (2π − |λ|)−2d so that, for all d ∈ R, (29) becomes

V(d, ℓ) =
π g(−4d)

2(2 − 2−ℓ)κℓ log2(2) g2(−2d)
where g(x) =

∫ 2π

π
λx dλ . (33)

This V(d, ℓ) is displayed in Figure 1.

4.2. Universal lower bound for I0(d). For ℓ = ∞, using that I0(d) ≥ 0 for

u ≥ 1, and that, by the Jensen inequality in (27), I0(d) ≥ K2(d)/(2π), we have, for

all 1/2 + α < d ≤M ,

V(d,∞) ≥
(
8 log2(2)

)−1
≃ 0.2602 . (34)

This inequality is sharp when d = 0 and the wavelet family {ψj,k}j,k forms an

orthonormal basis. This is because in this case the lower bound (8 log2(2))−1 in

(34) equals V(0,∞). Indeed, by (13) and Parseval Theorem, the wavelet coefficients

{B(0)(ψj,k)}j,k are a centered white noise with variance 2π and, by (15) and (27),

K(0) = 2π and Iu(0) = 2π1(u = 0). Then, V(0, ℓ) =
(
2(2 − 2−ℓ)κℓ log2(2)

)−1
.

Since κℓ is increasing with ℓ and tends to 2 as ℓ → ∞ (see Lemma 13), V(0, ℓ) ≥(
8 log2(2)

)−1
= V(0,∞). Hence the lower bound (34) is reached at d0 = 0 if {ψj,k}j,k

is an orthonormal basis.

4.3. Numerical computations. For a given wavelet ψ, we can compute the vari-

ances V(d, ℓ) numerically, for any ℓ = 1, 2, . . . ,∞ and 1/2 + α < d ≤ M . It is

easily shown that d 7→ V(d, ℓ) is infinitely differentiable on 1/2+α < d ≤M so that

interpolation can be used between two different values of d. We compared numerical

values of V(d, ℓ) for 4 different wavelets, with ℓ = 4, 6, 8, 10 and compared them with

the Shannon approximation (33), see Figure 1. We used as wavelets two Daubechies

wavelets which have M = 2 and M = 4 vanishing moments, and α = 1.3390 and

α = 1.9125 decay exponents respectively, and two so-called Coiflets with the same
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number of vanishing moments, and α > 1.6196 and α > 1.9834 decay exponents

respectively. For a given number M of vanishing moments, the Coiflet has a larger

support than the Daubechies wavelet, resulting in a better decay exponent. The

asymptotic variances are different for M = 2, in particular for negative d’s, the

Coiflet asymptotic variance is closer to that of Shannon wavelet. The asymptotic

variances are very close for M = 4.

4.4. Comparison with Fourier estimators. Semi-parametric Fourier estimators

are based on the periodogram. To allow comparison with Fourier estimators, we

must first link the normalization factor n2−Ln with the bandwidth parameter mn

(the index of the largest normalized frequency) used by semiparametric Fourier

estimators. A Fourier estimator with bandwidth mn projects the observations

[X1 . . . Xn]T on the space generated by the vectors {cos(2πk · /n), sin(2πk · /n)},

k = 1, . . . ,mn, whose dimension is 2mn; on the other hand, the wavelet coefficients

{Wj,k, j ≥ L, k = 0, . . . , nj − 1} used in the wavelet estimator correspond to a

projection on a space whose dimension is at most
∑Jn

j=Ln
nj ∼ 2n2−Ln where the

equivalence holds as n → ∞ and n2−Ln → ∞, by applying (75) with j0 = Ln,

j1 = Jn and p = 1. Hence, for mn or n2−Ln large, it makes sense to consider

n2−Ln as an analog of the bandwidth parameter mn. The maximal scale index Un

is similarly related to the trimming number (the index of the smallest normalized

frequency), often denoted by ln, see [16], i.e. ln ∼ n2−Un . We stress that, in absence

of trends, there is no need to trim coarsest scales.

With the above notation, the assumption (24) in Theorem 3 becomes mn/n +

(log n/mn)8m−1
n → 0 and the conclusion (25) is expressed as d̂ = d0 +OP

(
m

−1/2
n +

(mn/n)β
)
. The assumption (31) becomes (log n/mn)8m−1

n +m1+2β
n /n2β → 0, and

the rate of convergence in (32) is m
1/2
n .

The most efficient Fourier estimator is the local Whittle (Fourier) estimator stud-

ied in [15]; provided that:

(1) the process {Xk} is stationary and has spectral f(λ) = |1 − e−iλ|−2d0f⋆(λ)

with d0 ∈ (−1/2, 1/2) and f∗(λ) = f∗(0) +O(|λ|β) as λ→ 0,

(2) the process {Xk} is linear and causal, Xk =
∑∞

j=0 ajZk−j, where {Zk} is a

martingale increment sequence satisfying E[Z2
k | Fk−1] = 1 a.s., E[Z3

k |Fk−1] =

µ3 a.s. and E[Z4
k ] = E[Z4

1 ] where Fk = σ(Zk−l, l ≥ 0) and a(λ)
def
=∑∞

k=0 ake
−ikλ is differentiable in a neighborhood (0, δ) of the origin and

|da/dλ(λ)| = O(|a(λ)|/λ) as λ→ 0+ (see A2’)

(3) m−1
n + (logmn)2m1+2β

n /n2β → 0 (see A4’) ,
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Figure 1. Numerical computations of the asymptotic variance

V(d, ℓ) for the Coiflets and Daubechies Wavelets for different values

of the number of scales ℓ = 4, 6, 8, 10 and of the number of vanish-

ing moments M = 2, 4. Top row: Coiflets; Bottom row: Daubechies

Wavelets; Left column: M = 2; Right column: M = 4. The dash-dot

lines are the asymptotic variances for the Shannon wavelet, see (33),

with ℓ = 4, 6, 8, 10. For a given ℓ, the variances for different orthog-

onal wavelets coincide at d = 0, see the comment following (34).

The right and left columns have different horizontal scales because

different values of M yield different ranges for d.

then m
1/2
n (d̂mn − d0) is asymptotically zero-mean Gaussian with variance 1/4. This

asymptotic variance is smaller than (but very close to) our lower bound in (34) and

comparable to the asymptotic variance obtained numerically for the Daubechies

wavelet with two vanishing moments, see the left-hand panel in Figure 1. Note

also that while the asymptotic variance of the Fourier estimators is a constant,
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the asymptotic variances of the wavelet estimators depend on d0 (see Figure 1). In

practice, one estimates the limiting variance V(d0, ℓ) by V(d̂, ℓ) in order to construct

asymptotic confidence intervals. The continuity of V(·, ℓ) and the consistency of d̂

justify this procedure.

We would like to stress, however, that the wavelet estimator has some distinctive

advantages. From a theoretical standpoint, for a given β, the wavelet estimator is

rate optimal, i.e. for β ∈ (0, 2], the rate is nβ/1+2β (see corollary 4) and the CLT is

obtained for any rate o(nβ/1+2β). For the local Whittle Fourier estimator, the best

rate of convergence is O((n/ log2(n))β/1+2β) and the CLT is obtained for any rate

o((n/ log2(n))β/1+2β). This means that for any given β, the wavelet estimator has

a faster rate of convergence, and therefore can yield, for an appropriate admissible

choice of the finest scale, to shorter confidence intervals. Another advantage of the

wavelet Whittle estimator over this estimator is that the optimal rate of convergence

is shown to hold for ν⋆ ∈ H(β, γ, ε), without any further regularity assumption

such as having the density f∗ of ν∗ to be differentiable in a neighborhood of zero,

with a given growth of the logarithmic derivative. To our best knowledge, the GPH

estimator is the only Fourier estimator which has been shown, in a Gaussian context,

to achieve the rate O(nβ/(1+2β)), see [7]; its asymptotic variance is π2/24 ≃ 0.4112.

It is larger than the lower bound (34) or than the asymptotic variance obtained

by using standard Daubechies wavelets with ℓ ≥ 6 on the range (−1/2, 1/2) of

d0 allowed for the GPH estimator (see Figure 1). When pooling frequencies, the

asymptotic variance of the GPH estimator improves and tends to 1/4 (the local

Whittle Fourier asymptotic variance) as the number of pooled frequencies tends to

infinity, see [16].

So far we have compared our local Whittle wavelet estimator with the local Whit-

tle Fourier (LWF) and GPH estimators in the context of a stationary and invertible

process X, that is, for d0 ∈ (−1/2, 1/2). As we already mentioned, the wavelet esti-

mators can be used for arbitrary large ranges of the parameter d0 by appropriately

choosing the wavelet so that (W-5) holds. There are two main ways of adapting the

LWF estimator to larger ranges for d: differentiating and tapering the data, see [22],

or, as promoted by [20], modifying the local Whittle likelihood, yielding to the so-

called exact local Whittle Fourier (ELWF) estimator. The theoretical analysis of

these methods is performed under the same set of assumptions as in [15], so that

the same comments on the non-optimality of the rate and on the restriction on f⋆

apply. Note also that the model considered by [20] for X differs from the model of

integrated processes defined by (16) and is not time-shift invariant, see their Eq. (1).

In addition, their estimator is not invariant upon addition of a constant in the data,



16 E. MOULINES, F. ROUEFF, AND M.S. TAQQU

a drawback which is not easily dealt with, see their Remark 2. The asymptotic

variance of the ELWF estimator has been shown to be 1/4, the same as the LFW

estimator, provided that the range (∆1,∆2) for d0 is of width ∆2 − ∆1 ≤ 9/2.

The asymptotic variance of our local Whittle wavelet estimator with 8 scales using

the Daubechies wavelet with M = 4 zero moments is at most 0.6 on a range of

same width, see the left-hand panel in Figure 1. Again this comparison does not

take into account the logarithmic factor in the rate of convergence imposed by the

conditions on the bandwidth mn. Concerning the asymptotic variances of tapered

Fourier estimators, increasing the allowed range for d0 means increasing the taper

order (see [8] and [17]), which, as reported so far, inflates the asymptotic variance

of the estimates. In contrast, for the wavelet methods, by increasing the number

of vanishing moments M , say of a Daubechies wavelet, the allowed range for d0

is arbitrarily large while the asymptotic variance converges the the ideal Shannon

wavelet case, derived in (33); the numerical values are reported in Figure 1 for dif-

ferent values of the number of scales ℓ. The figure shows that larger values of ℓ tend

to yield a smaller asymptotic variance. Thus one should choose the largest possible

M and the maximal number of scales. This prescription cannot be applied to a

small sample, because increasing the support of the wavelet, decreases the number

of available scales. The Daubechies wavelets with M = 2 to M = 4 are commonly

used in practice.

From a practical standpoint, the wavelet estimator is computationally more ef-

ficient than the above mentioned Fourier estimators. Using the fast pyramidal al-

gorithm, the wavelet transform coefficients are computed in O(n) operations. The

function is d 7→ L̃I(d) can be minimized using the Newton algorithm [2, chapter

9.5], whose convergence is guaranteed because L̃I(d) is convex in d. The complexity

of the minimization procedure is related to the computational cost of evaluation of

the function L̃I and its two first derivatives. Assume that these functions need to

be evaluated at p distinct values d1, . . . , dp. We first compute the empirical variance

of the wavelet coefficients n−1
j

∑nj−1
k=0 W 2

j,k for the scales j ∈ {Ln, . . . , Un}, which

does not depend on d and requires O(n) operations. For I = In(Ln, Un), L̃I (and

all its derivatives) is a linear combination of these Un − Ln + 1 = O(log(n)) em-

pirical variances with weights depending on d. The total complexity for computing

the wavelet Whittle estimator in a p iterations algorithm is thus O(n + p log(n)).

The local Whittle Fourier (LWF) contrast being convex, the same Newton algo-

rithm converges but the complexity is slightly higher. The computation of the

Fourier coefficients requires O(n log(n)) operations. The number of terms the LWF

contrast function (see [15, p. 1633]) is of order mn (which is typically of order
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O(nγ), where γ ∈ (0, 1/1 + 2β)), so the evaluation of the LWF contrast function

(and its derivatives) for p distinct values of the memory parameter d1, . . . , dp re-

quires O(pmn) operations. The overall complexity for for computing the LWF

estimator in a p steps Newton algorithm is therefore O(n log(n) + pmn). Dif-

ferentiating and tapering the data only adds O(n) operations so that the same

complexity applies in this case. The ELWF estimator is much more computa-

tionally demanding and is impractical for large data sets: for each value of the

memory coefficient d at which the pseudo-likelihood function is evaluated, the al-

gorithm calls for the fractional integration or differentiation of the observations,

namely, (∆dX)k, k = 1, . . . , n, and the computation of the Fourier transform of

{(∆dX)1, . . . , (∆
dX)n}. In this context, (∆dX)k

def
=
∑k

l=0
(−d)l

l! Xk−l, k = 1, . . . , n,

where (x)0 = 1 and (x)k = x(x+1) . . . (x+k−1) for k ≥ 1 denote the Pochhammer

symbols. The complexity of this procedure is thus O(n2+n log(n)). The complexity

for p function evaluations therefore, is O(p(n2 + n log(n))). The convexity of the

criterion is not assured so that a minimization algorithm can possibly be trapped in

a local minima. These drawbacks make the ELWF estimator impractical for large

data sets, say of size 106−107, as encountered in teletrafic analysis or high frequency

financial data.

5. Condition 1 holds for linear and Gaussian processes

Proof of Theorem 1. For any scale index j ∈ N, define by {hj,l}l∈Z the sequence

hj,l
def
= 2−j/2

∫∞
−∞ φ(t + l)ψ(2−jt) dt and Hj(λ)

def
=
∑

l∈Z
hj,le

−iλl its associated

discrete time Fourier transform. Since φ and ψ are compactly supported, {hj,l}

has a finite number of non zero coefficients. As shown by [14, Relation 13], for

any sequence {xl}l∈Z, the discrete wavelet transform coefficients at scale j are

given by W x
j,k =

∑
l∈Z

xl hj,2jk−l. In addition, it follows from [14, Relation 16]

that Hj(λ) = (1 − e−iλ)MH̃j(λ) where H̃j(λ) is a trigonometric polynomial, i.e.

H̃j(λ) =
∑

l∈Z
h̃j,le

−iλl where {h̃j,l} has a finite number of non zero coefficients.

Define ν and ν̃ as the restrictions of ν on [−ε, ε] and on its complementary set,

respectively. These definitions imply

σ2
j (ν) = σ2

j (ν) + σ2
j (ν̃) (35)

Since ν∗ ∈ H(β, γ, ε), the corresponding decomposition for ν∗ reads as in (12), so

that ν admits a density f(λ) = |1− e−iλ|−2d0f∗(λ) on λ ∈ [−π, π], where f∗(λ) = 0

for λ /∈ [−ε, ε] and |f∗(λ)−f∗(0)| ≤ γf∗(0)|λ|β on λ ∈ [−ε, ε]. Hence (10) holds: by
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[14, Theorem 1], there exists a constant C such that, for all j ≥ 0 and λ ∈ (−π, π),
∣∣∣Dj,u(λ; f) − f∗(0)D∞,u(λ; d0) 22jd0

∣∣∣ ≤ C f∗(0) γ̄ 2(2d0−β)j . (36)

Recall that Dj,0(λ; f) is the spectral density of a stationary series with variance

σ2
j (ν) =

∫ π
−π Dj,0(λ; f) dλ. Similarly, by (14) and (15), D∞,0(λ; d0) is the spectral

density of a stationary series with variance K(d0). Thus after integration on λ ∈

(−π, π), (36) with u = 0 yields
∣∣∣σ2

j (ν) − f∗(0)K(d0) 22jd0

∣∣∣ ≤ 2π C f∗(0) γ̄ 2(2d0−β)j . (37)

By [14, Proposition 9], there exists a constant C such that |Hj(λ)| ≤ C2j(M+1/2)|λ|M (1+

2j |λ|)−α−M for any λ ∈ [−π,+π], which implies

σ2
j (ν̃) = 2

∫ π

ε
|Hj(λ)|2 ν(dλ) ≤ C2(1+2M)j

∫ π

ε
λ2M (1 + 2jλ)−2α−2M ν(dλ)

≤ Cπ2M 2(1+2M)j (1 + ε2j)−2α−2Mν([ε, π]) = O
(
2j(1−2α)

)
= o(2j(2d0−β)) , (38)

since, by (W-5), 1 − 2α− 2d0 + β < 0. Relations (35), (37), and (38) prove (8).

We now consider (9). We have, for all j ≥ 0 and n ≥ 1, (see [18, Theorem 2,

Page 34]),

Var




nj−1∑

k=0

W 2
j,k


 =

nj−1∑

τ=−nj+1

(nj − |τ |) Cov(W 2
j,0,W

2
j,τ )

=

nj−1∑

τ=−nj+1

(nj − |τ |)
[
2Cov2(Wj,0,Wj,τ ) + Cum(Wj,0,Wj,0,Wj,τ ,Wj,τ )

]
. (39)

Using (16), since M ≥ k0, we may write

Wj,k =
∑

t∈Z

h̃j,2jk−t(∆
MX)t =

∑

t∈Z

bj,2jk−tZt , (40)

where bj,·
def
= h̃j,· ⋆ (∆M−k0a) belongs to ℓ2(Z). By (17), we thus obtain

Cum(Wj,0,Wj,0,Wj,τ ,Wj,τ ) = (E[Z4
1 ] − 3)

∑

t∈Z

b2j,tb
2
j,2jτ−t ,

which in turns implies
∑

τ∈Z

|Cum(Wj,0,Wj,0,Wj,τ ,Wj,τ )| = |E[Z4
1 ] − 3|

∑

t,τ∈Z

b2j,tb
2
j,2jτ−t ≤ |E[Z4

1 ] − 3|σ4
j (ν) ,

(41)

since, by (40),
∑

t b
2
j,t = σ2

j (ν).
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We shall now bound
∑nj−1

τ=−nj+1 Cov2(Wj,0,Wj,τ ). One can define uncorrelated

wavelet coefficients {W j,k} and {W̃j,k}, associated with the generalized spectral

measures ν and ν̃ respectively and such that Wj,k = W j,k + W̃j,k for all j ≥ 0

and k ∈ Z. Therefore Cov2(Wj,0,Wj,τ ) = Cov2(W j,0,W j,0) + Cov2(W̃j,0, W̃j,τ ) +

2Cov(W j,0,W j,τ )Cov(W̃j,0, W̃j,τ ). By (8), σ2
j (ν) ≍ 22jd0 . Therefore, by (36) and

using [14][Proposition 3, Eq. (30)], for all j ≥ 0, {σ−1
j (ν)W j,k, k ∈ Z} is a stationary

process whose spectral density is bounded above by a constant independent of j. The

Parseval Theorem implies that supj≥1 σ
−4
j (ν)

∑
τ∈Z

Cov2(W j,0,W j,τ ) <∞, hence

sup
n≥1

sup
j=1,...,Jn

n−1
j σ−4

j (ν)

nj−1∑

τ=−nj+1

(nj − |τ |)Cov2
(
W j,0,W j,τ

)
<∞ . (42)

Consider now {W̃j,k}. The Cauchy-Schwarz inequality and the stationarity of the

within-scale process imply Cov2(W̃j,0, W̃j,τ ) ≤ Var2(W̃j,0) = σ4
j (ν̃) = O(22j(1−2α))

by (38), and since σ2
j (ν) ≍ 22jd0 , we get

sup
n≥1

sup
j=1,...,Jn

22j(2α+2d0−1)

n2
jσ

4
j (ν)

nj−1∑

τ=−nj+1

(nj − |τ |)Cov2(W̃j,0, W̃j,τ ) <∞ . (43)

Finally, using that, for any j ≥ 1, Dj,0(λ; f) is the spectral density of the process

{W j,k} and denoting by ν̃j the spectral measure of {W̃j,k}k∈Z, it is straightforward

to show that

A(n, j)
def
=

nj−1∑

τ=−nj+1

(nj − |τ |) Cov(W j,0,W j,τ )Cov(W̃j,0, W̃j,τ )

=

∫ π

−π

∫ π

−π
Dj,0(λ

′; f)

∣∣∣∣∣∣

nj−1∑

k=0

eik(λ+λ′)

∣∣∣∣∣∣

2

ν̃j(dλ) dλ′ ≤ 2π njσ
2
j (ν̃) ‖Dj,0(·; f)‖∞ .

This implies A(n, j) ≥ 0 and, using (38), (36) and σ2
j (ν) ≍ 22jd0 , we get

sup
n≥1

sup
j=1,...,Jn

2j(2α+2d0−1)

njσ4
j (ν)

|A(n, j)| <∞ . (44)

Using that Wj,k = W j,k + W̃j,k and that W j,k and W̃j,k are uncorrelated, (39), (41),

(42), (43), (44) and 1 − 2α− 2d0 < −β < 0 yield (9). �
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Remark 10. If ε = π in the assumptions of Theorem 1, then, in the above proof,

W̃j,k = 0 for all (j, k) so that not only (9) holds but also the stronger relation

sup
n≥1

sup
j=1,...,Jn

n−1
j Var




nj−1∑

k=0

W 2
j,k

σ2
j (ν)


 <∞ . (45)

Proof of Corollary 2. Condition 1 holds because Theorem 1 applies to a Gaussian

process. Since, moreover, its fourth-order cumulants are zero, the relation W 2
j,k =

W
2
j,k + W̃ 2

j,k + 2W j,kW̃j,k, (43) and (44) yield

Var




nj−1∑

k=0

(W 2
j,k −W

2
j,k)


 ≤ C

[
n2

jσ
4
j (ν)

22j(2α+2d0−1)
+

njσ
4
j (ν)

2j(2α+2d0−1)

]
,

where C is a positive constant. Since W j,k and W̃j,k are uncorrelated, E[W 2
j,k −

W
2
j,k] = σ2

j (ν̃), hence the last display, σ2
j (ν) ≍ 22jd0 and (38) yield (18). �

6. Asymptotic behavior of the contrast process

We decompose the contrast (20) into a sum of a (deterministic) function of d and

a random process indexed by d,

L̃I(d)
def
= LI(d) + EI(d) + log

(
|I|σ222d0〈I〉

)
, (46)

where the log term does not depend on d (and thus may be discarded) and

LI(d)
def
= log


 1

|I|

∑

(j,k)∈I

22(d0−d)j


−

1

|I|

∑

(j,k)∈I

log(22(d0−d)j) , (47)

EI(d)
def
= log


1 +

∑

(j,k)∈I

22(d0−d)j

∑
I 22(d0−d)j

(
W 2

j,k

σ2 22d0j
− 1

)
 (48)

with σ2 defined in (8).

Proposition 6. For any finite and non-empty set I ⊂ N×Z, the function d→ LI(d)

is non-negative, convex and vanishes at d = d0. Moreover, for any sequence {Ln}

such that n2−Ln → ∞ as n → ∞, and, for any constants dmin and dmax in R

satisfying d0 − 1/2 < dmin ≤ dmax,

lim inf
n→∞

inf
d∈[dmin,dmax]

inf
j1=Ln+1,...,Jn

L̈In(Ln,j1)(d) > 0 , (49)

where In is defined in (22) and L̈I denotes the second derivative of LI .
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Proof. By concavity of the log function, LI(d) ≥ 0 and is zero if d = d0. If I =

In(Ln, j1) with j1 ≥ Ln+1, one can compute L̈I(d) and show that it can be expressed

as L̈I(d) = (2 log(2))2Var(N), where N is an integer valued random variable such

that P(N = j) = 22(d0−d)j nj/
∑j1

j=Ln
22(d0−d)jnj for j ≥ 0. Let d ≥ dmin > d0−1/2.

Then

P(N = Ln) ≥ (1 − 22(d0−dmin)−1)
{
1 − T 2Ln (n− T + 1)−1

}
.

Since n2−Ln → ∞, the term between the brackets tends to 1 as n→ ∞. Hence, for

n large enough, we have infd≥dmin
P(N = Ln) ≥ (1−22(d0−dmin)−1)/2. Similarly, one

finds, for n large enough, infd∈[dmin,dmax] P(N = Ln+1) ≥ (1−22(d0−dmin)−1)22(d0−dmax)−1/2.

Hence,

inf
d∈[dmin,dmax]

Var(N) ≥ {Ln − E(N)}2
P(N = Ln) + {Ln + 1 − E(N)}2

P(N = Ln + 1)

≥ (1 − 22(d0−dmin)−1)22(d0−dmax)−2({Ln − E(N)}2 + {Ln + 1 − E(N)}2)

≥ (1 − 22(d0−dmin)−1)22(d0−dmax)−4 ,

where the last inequality is obtained by observing that either E(N) − Ln ≥ 1/2 or

Ln + 1 − E(N) < 1/2. �

We now show that the random component EI(d) of the contrast (46) tends to

0 uniformly in d. For all ρ > 0, q ≥ 0 and δ ∈ R, define the set of real-valued

sequences

B(ρ, q, δ)
def
=
{
{µj}j≥0 : |µj| ≤ ρ (1 + jq) 2jδ for all j ≥ 0

}
. (50)

Define, for any n ≥ 1, any sequence µ
def
= {µj}j≥0 and 0 ≤ j0 ≤ j1 ≤ Jn,

S̃n,j0,j1(µ)
def
=

j1∑

j=j0

µj−j0

nj−1∑

k=0

[
W 2

j,k

σ2 22d0j
− 1

]
. (51)

Proposition 7. Under condition 1, for any q ≥ 0 and δ < 1, there exists C > 0

such that, for all ρ ≥ 0, n ≥ 1 and j0 = 1, . . . , Jn,

{
E sup

µ∈B(ρ,q,δ)
sup

j1=j0,...,Jn

∣∣∣S̃n,j0,j1(µ)
∣∣∣
2
}1/2

≤ C ρn2−j0
[
Hq,δ(n2−j0) + 2−βj0

]
, (52)

where, for all x ≥ 0, Hq,δ(x)
def
=





x−1/2 if δ < 1/2 ,

logq+1(2 + x)x−1/2 if δ = 1/2 ,

logq(2 + x)xδ−1 if δ > 1/2 .
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Proof. We set ρ = 1 without loss of generality. We write

S̃n,j0,j1(µ) =

j1∑

j=j0

σ2
j (ν)

σ2 22d0j
µj−j0

nj−1∑

k=0

[
W 2

j,k

σ2
j (ν)

− 1

]
+

j1∑

j=j0

nj µj−j0

[
σ2

j (ν)

σ2 22d0j
− 1

]

and denote the two terms of the right-hand side of this equality as S̃
(0)
n,j0,j1

(µ) and

S̃
(1)
n,j0,j1

(µ), respectively. By (8), C1
def
= supj≥0 2βj

∣∣∣σ2
j (ν)/(σ

2 22d0j) − 1
∣∣∣ <∞, which

implies supj≥0 |σ
2
j (ν)/(σ

2 22d0j)| ≤ 1 + C1. Hence, if µ ∈ B(1, q, δ),

∣∣∣S̃(0)
n,j0,j1

(µ)
∣∣∣ ≤ (1 + C1)

Jn∑

j=j0

(1 + (j − j0)
q) 2(j−j0)δ

∣∣∣∣∣∣

nj−1∑

k=0

(
W 2

j,k

σ2
j (ν)

− 1

)∣∣∣∣∣∣
.

Using the Minkowski Inequality and nj ≤ n2−j, (9) implies that there exists a

constant C2 such that

{
E

[
sup

µ∈B(1,q,δ)
sup

j1=j0,...,Jn

∣∣∣S̃(0)
n,j0,j1

(µ)
∣∣∣
2
]}1/2

≤ (1 + C1)C2

Jn∑

j=j0

(1 + (j − j0)
q) 2(j−j0)δ [(n2−j)1/2 + n2−(1+β)j ] . (53)

The sum over the first term is O
(
n2−j0Hq,δ(n2−j0)

)
since Jn − j0 ≍ log2 n +

log2 2−j0 = log2(n2−j0). The sum over the second term is O(n2−(1+β)j0) since δ < 1

and 1 + β > 1, so that (53) is O
(
(n2−j0){Hq,δ(n2−j0) + 2−βj0}

)
, since 2Jn ≍ n.

Now, by definition of C1 above and since nj ≤ n2−j , we get

sup
µ∈B(1,q,δ)

sup
j1=j0,...,Jn

∣∣∣S̃(1)
n,j0,j1

(µ)
∣∣∣ ≤ C1 n

Jn∑

j=j0

(1 + (j − j0)
q) 2(j−j0)δ2−j(1+β) ,

which is O
(
n2−(1+β)j0

)
. The two last displays yield (52). �

Corollary 8. Let {Ln} be a sequence such that L−1
n + (n2−Ln)−1 → 0 as n → ∞

and let EI(d) be defined as in (48). Then Condition 1 implies that, as n→ ∞,

(a) for any ℓ ≥ 0,

sup
d∈R

∣∣EIn(Ln,Ln+ℓ)(d)
∣∣ = OP

(
(n2−Ln)−1/2 + 2−βLn

)
;

(b) for all dmin > d0 − 1/2, setting δ = 2(d0 − dmin),

sup
d≥dmin

sup
j1=Ln,...,Jn

∣∣EIn(Ln,j1)(d)
∣∣ = OP

(
H0,δ(n2−Ln) + 2−βLn

)
.
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Proof. The definitions (48) and (51) imply that, for 0 ≤ j0 ≤ j1 ≤ Jn,

EIn(j0,j1)(d) = log
[
1 + (n2−j0)−1S̃n,j0,j1[µ(d, j0, j1)]

]

with µ(d, j0, j1) is the sequence {µj(d, j0, j1)}j≥0 defined by

µj(d, j0, j1)
def
= n2−j0 22(d0−d)(j+j0)

∑j1
j′=j0

22(d0−d)j′nj′
1(j ≤ j1 − j0) . (54)

The bounds (a) and (b) then follow from Proposition 7, the Markov inequality and

the following bounds.

Part (a) In this case we apply Proposition 7 with δ = 0. Indeed, using that

µj(d, Ln, Ln + ℓ)nLn+j ≤ n2−Ln for all j = 0, . . . , ℓ and is zero otherwise, we have

that µj ≤ n2−Ln/nLn+ℓ → 2ℓ as n→ ∞, since n2−Ln → ∞. Then, for large enough

n, µ(d, Ln, Ln + ℓ) ∈ B(2ℓ+1, 0, 0) for all d ∈ R.

Part (b) Here we still apply Proposition 7 but with δ = 2(d0 − dmin) < 1, implying

H0,δ(n2−Ln) → 0. Indeed, since the denominator of the ratio appearing in (54) is at

least 22(d0−d)LnnLn , we have supj1≥Ln
supd≥dmin

|µj(d, Ln, j1)| ≤ n2−Lnn−1
Ln

2δj . Since

n2−Ln ∼ nLn as n → ∞, we get that, for large enough n, µ(d, Ln, j1) ∈ B(2, 0, δ)

for all d ≥ dmin and j1 ≥ Ln. �

7. Weak consistency

We now establish a preliminary result on the consistency of d̂. It does not provide

an optimal rate but it will be used in the proof of Theorem 3, which provides the

optimal rate. By definition of d̂ and (46), we have

0 ≥ L̃I(d̂I) − L̃I(d0) = LI(d̂I) + EI(d̂I) − EI(d0) . (55)

The basic idea for proving consistency is to show that 1) the function d 7→ L̃(d)

behaves as (d − d0)
2 up to a multiplicative positive constant and 2) the function

d 7→ E(d) tends to zero in probability uniformly in d. Proposition 6 will prove 1)

and Corollary 8 will yield 2).

Proposition 9 (Weak Consistency). Let {Ln} be a sequence such that L−1
n +

(n2−Ln)−1 → 0 as n→ ∞. Condition 1 implies that, as n→ ∞,

sup
j1=Ln+1,...,Jn

∣∣∣d̂In(Ln,j1) − d0

∣∣∣ = OP

{
(n2−Ln)−1/4 + 2−βLn/2

}
. (56)

Proof. The proof proceeds in four steps, namely

Step 1 For any positive integer ℓ,
∣∣∣d̂In(Ln,Ln+ℓ) − d0

∣∣∣ = oP(1) .
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Step 2 There exists dmin ∈ (d0 − 1/2, d0) such that, as n→ ∞,

P

{
inf

j1=Ln+2,...,Jn

d̂In(Ln,j1) ≤ dmin

}
→ 0 .

Combining this with Step 1 yields P
{

inf
j1=Ln+1,...,Jn

d̂In(Ln,j1) ≤ dmin

}
→ 0.

Step 3 For any dmax > d0, as n→ ∞, P
{

sup
j1=Ln+1,...,Jn

d̂In(Ln,j1) ≥ dmax

}
→ 0.

Step 4 Define H0,δ as in Proposition 7. For all dmin ∈ (d0−1/2, d0) and dmax > d0,

setting δ = 2(d0 − dmin),

sup
j1=Ln+1,...,Jn

[1[dmin,dmax](d̂In(Ln,j1)) (d̂In(Ln,j1) − d0)
2
]

= OP

(
H0,δ(n2−Ln) + 2−βLn

)
.

Before proving these four steps, let us briefly explain how they yield (56). First

observe that they imply that supj1=Ln+1,...,Jn
|d̂In(Ln,j1) − d0| = oP(1). Then, ap-

plying Step 4 again with dmin ∈ (d0 − 1/4, d0), so that H0,δ(x) = x−1/2, we ob-

tain (56). �

Proof of Step 1. Using standard arguments for contrast estimation (similar to those

detailed is Step 3 and Step 4 below), this step is a direct consequence of Proposi-

tion 6 and Corollary 8 (a). �

Proof of Step 2. Using (20), we have, for all d ∈ R,

L̃I(d) − L̃I(d0) = log


 ∑

(j,k)∈I

22(d−d0)(〈I〉−j)
W 2

j,k

σ2 22d0j


− log


 ∑

(j,k)∈I

W 2
j,k

σ2 22d0j


 .

For some dmin ∈ (d0 − 1/2, d0) to be specified later, we set

wI,j(d)
def
= 22(j−〈I〉)(d0−d)1{j ≤ 〈I〉} + 22(j−〈I〉)(d0−dmin)1{j > 〈I〉} , (57)

so that, for all j and d ≤ dmin, wI,j(d) ≤ 22(d−d0)(〈I〉−j). We further obtain, for all

d ≤ dmin,

L̃I(d) − L̃I(d0) ≥ log
ΣI(d) +AI(d)

1 +BI
, (58)

where ΣI(d)
def
= |I|−1

∑
(j,k)∈I wI,j(d), AI(d)

def
= |I|−1

∑
(j,k)∈I wI,j(d)

(
W 2

j,k

σ2 22d0j − 1

)

and BI
def
= |I|−1

∑
(j,k)∈I

(
W 2

j,k

σ2 22d0j − 1

)
. We will show that dmin ∈ (d0 − 1/2, d0)

may be chosen in such a way that

lim inf
n→∞

inf
d≤dmin

inf
j1=Ln+2,...,Jn

ΣIn(Ln,j1)(d) > 1 , (59)

sup
j1=Ln+2,...,Jn

(
sup

d≤dmin

|AIn(Ln,j1)(d)| + |BIn(Ln,j1)|

)
= oP(1) . (60)
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By (55), L̃I(d̂I) ≤ L̃I(d0). Then infj1=Ln+2,...,Jn d̂In(Ln,j1) ≤ dmin would imply that

there exists j1 = Ln+2, . . . , Jn such that infd≤dmin
L̃In(Ln,j1)(d)−L̃(d0) ≤ 0, an event

whose probability tends to zero as a consequence of (58)–(60). Hence these equations

yield Step 2. It thus remains to show that (59) and (60) hold. By Lemma 13, since

n2−Ln → ∞, we have, for n large enough,

sup
j1=Ln,...,Jn

〈In(Ln, j1)〉 < Ln + 1 . (61)

UsingwIn(Ln,j1),Ln
(d) ≥ 0 and, for n large enough, wIn(Ln,j1),j(d) ≥ 22(j−(Ln+1))(d0−dmin)

for j ≥ Ln + 1, we get, for all d ≤ dmin < d0 and j1 = Ln + 2, . . . , Jn,

ΣIn(Ln,j1)(d) ≥
2−2(Ln+1) (d0−dmin)

|In(Ln, Jn)|

Ln+2∑

j=Ln+1

22j(d0−dmin)nj .

Since n2−Ln → ∞, using Lemma 13, n ≍ 2Jn and that 2(d0 − dmin) − 1 < 0,

straightforward computations give that the LHS in the previous display, is asymp-

totically equivalent to (1− 2{2(d0−dmin)−1}2)/(4− 22(d0−dmin)+1). There are values of

dmin ∈ (d0 − 1/2, d0) such that this ratio is strictly larger than 1. For such a choice

and for n large enough, (59) holds.

We now check (60). Observing that, for In
def
= In(Ln, j1) and using the nota-

tion (51), AIn(d) = |In|
−1|S̃n,Ln,j1({wIn,Ln+j(d)})| and BIn = |In|

−1S̃n,Ln,j1(1),

the bound (60) follows from |In| ≥ nLn ∼ n2−Ln and Proposition 7, since, for all

d ≤ dmin and j ≥ 0, wIn,Ln+j(d) ≤ 22(Ln+j−〈In〉)(d0−dmin) ≤ 22j(d0−dmin), which shows

that {wIn,Ln+j(d)}j≥0 belongs to B(1, 0, δ) with δ = 2(d0 − dmin)) < 1. �

Proof of Step 3. By (55), LI(d̂I) ≤ EI(d0)−EI(d̂I) so that, for any dmax ≥ d0, one

has infd≥dmax
LI(d) ≤ 2 supd≥d0

|EI(d)| on the event {d̂I ≥ dmax}. By Proposition 6,

there exists c > 0 such that, for n large enough, LIn(Ln,j1)(d) ≥ c uniformly for

d ≥ dmax and j1 = Ln + 1, . . . , Jn. Thus, for n large enough,

P

{
sup

j1=Ln+1,...,Jn

d̂In(Ln,j1) ≥ dmax

}
≤ P

{
2 sup

d≥d0

sup
j1=Ln+1,...,Jn

|EIn(Ln,j1)(d)| ≥ c

}
,

which tends to 0 as n→ ∞, by Corollary 8-(b). �

Proof of Step 4. Eq. (55) implies 1[dmin,dmax](d̂I)LI(d̂I) ≤ 2 supd≥dmin
|EI(d)|. Let c

denote the liminf in the left-hand side of (49) when dmin = dmin and dmax = dmax.

Proposition 6 and a second order Taylor expansion of LI around d0 give that, for

n large enough, for all j1 = Ln + 1, . . . , Jn and d ∈ [dmin, dmax], LIn(Ln,j1)(d) ≥
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(c/4) (d − d0)
2. Hence, for n large enough,

sup
j1=Ln+1,...,Jn

[1[dmin,dmax](d̂In(Ln,j1)) (d̂In(Ln,j1) − d0)
2
]
≤

8

c
sup

d≥dmin

∣∣EIn(Ln,j1)(d)
∣∣ .

Corollary 8 (b) then yields Step 4. �

Remark 11. Proposition 9 implies that, if Ln ≤ Un ≤ Jn with L−1
n +(n2−Ln)−1 → 0

as n → ∞, then d̂In(Ln,Un) is a consistent estimator of d0. While the rate provided

by (56) is not optimal, it will be used to derive the optimal rates of convergence

(Theorem 3).

8. Proofs of Theorem 3 and Theorem 5

Notational convention. In the following, {Ln} and {Un} are two sequences sat-

isfying (23). The only difference between the two following settings (S-1) (Un − Ln

is fixed) and (S-2) (where Un −Ln → ∞) lies in the computations of the asymptotic

variances in Theorem 5 (CLT). Hence, from now on, we shall write L, U , In, d̂n, Ŝn

and S̃n for Ln, Un, In(Ln, Un), d̂In(Ln,Un), ŜIn(Ln,Un), and S̃n,Ln,Un respectively.

We will use the explicit notation when the distinction between these two cases (S-1)

and (S-2) is necessary, namely when computing the limiting variances in the proof

of Theorem 5.

Proof of Theorem 3. Since Ŝn(d̂n) = 0, see (21), a Taylor expansion of Ŝn around

d = d̂n yields

Ŝn(d0) = 2 log(2) (d̂n − d0)
∑

(j,k)∈In

(j − 〈In〉) j 2−2jd̃nW 2
j,k , (62)

for some d̃n between d0 and d̂n. The proof of Theorem 3 now consists in bounding

Ŝn(d0) from above and in showing that
∑

In
(j − 〈In〉) j 2−2jd̃nW 2

j,k, appropriately

normalized, has a strictly positive limit.

By definitions of Ŝn (see (21)), S̃n (see (51)) and 〈In〉 (see (19)), we have Ŝn(d0) =

S̃n

(
σ2{j + L− 〈In〉}j≥0

)
. Since L ≤ 〈In〉 ≤ L+ 1 for n large enough, see (61), the

sequence σ2{j + L − 〈In〉}j≥0 belongs to B(σ2, 1, 0) (see (50)), and Proposition 7

with the Markov inequality yields, as n→ ∞,

Ŝn(d0) = n 2−LOP

(
H1,0(n 2−L) + 2−βL

)
= n 2−LOP

(
(n2−L)−1/2 + 2−βL

)
, (63)

which is the desired upper bound.

We shall now show that the sum in (62) multiplied by n 2−L has a strictly positive

lower bound. Applying Proposition 9, we have

|d̃n − d0| ≤ |d̂n − d0| = OP

(
(n2−L)−1/4 + 2−βL/2

)
.
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Using that |22j(d0−d̃n) − 1| ≤ 22j|d0−d̃n| − 1 ≤ 2 log(2)j|d0 − d̃n|2
2j|d0−d̃n|, we have

that, on the event {|d0 − d̃n| ≤ 1/4},
∣∣∣∣∣∣

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d̃nj
−

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d0j

∣∣∣∣∣∣

≤ 2 log(2)|d0 − d̃n| 2
2L|d0−d̃n|

∑

(j,k)∈In

|j − 〈In〉| j
2
W 2

j,k

22d0j
2(j−L)/2.

Using (8), (61), j2 = (j − L)2 + 2(j − L)L+ L2 and nj ≤ n2−j, there is a constant

C > 0 such that

E

∑

(j,k)∈In

|j−〈In〉| j
2
W 2

j,k

22d0j
2(j−L)/2 ≤ Cn2−L

U∑

j=L

|j−〈In〉| j
22−(j−L)/2 = O

(
L2n 2−L

)
.

Hence, since L2(n2−L)−1/4 → 0, the three last displays yield, as n→ ∞,
∣∣∣∣∣∣

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d̃nj
−

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d0j

∣∣∣∣∣∣
= oP

(
n 2−L

)
. (64)

Now we write

∑

(j,k)∈In

(j−〈In〉) j
W 2

j,k

22d0j
= σ2

∑

(j,k)∈In

(j−〈In〉) j

(
W 2

j,k

σ222d0j
− 1

)
+σ2

∑

(j,k)∈In

(j−〈In〉) j .

With the notation (51), the first term on the right-hand side is S̃n(µ), where µ is

the sequence σ2{(j +L− 〈In〉)(j +L)}j≥0. In view of (61), (j +L− 〈In〉)(j +L) ≤

j2 + jL so that the sequence µ is the sum of two sequences belonging to B(σ2, 2, 0)

and B(σ2L, 1, 0) respectively. Applying Proposition 7 with the Markov inequality,

we get that our S̃n(µ) = n2−LOP(H0,0(n2−L) + LH1,0(n2−L)) = n2−LoP(1) since

L(n2−L)−1/2 → 0. Moreover, by Lemma 13,
∑

(j,k)∈In
(j − 〈In〉) j ∼ (n2−L) (2 −

2−(U−L))κU−L as n→ ∞. Hence

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d0j
= (n2−L)

{
(2 − 2−(U−L))κU−L + oP(1)

}
,

and (64) and the previous display yield

∑

(j,k)∈In

(j − 〈In〉) j
W 2

j,k

22d̃nj
= (n2−L)

{
σ2 (2 − 2−(U−L))κU−L + oP(1)

}
. (65)

Since κℓ > 0 for all ℓ ≥ 1 and κℓ → 2 as ℓ → ∞ (see Lemma 13), and since we

assumed U −L ≥ 1, the sequence (2−2−(U−L))κU−L is lower bounded by a positive

constant, so that (62), (63) and (65) imply (25). �
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Proof of Theorem 5. Define f∗(0)
def
= dν∗/dλ|λ=0. Since ν∗ ∈ H(β, γ, ε) and ν∗(−ε, ε) >

0, we have f∗(0) > 0. Without loss of generality, we set f∗(0) = 1. By Corol-

lary 2, Conditions (8) and (9) hold with σ2 = K(d0). Moreover (31) implies

L−1 + L2(n2−L)−1/4 → 0, so that we may apply (65), which, with (62), gives

(n2−L)1/2 (d̂n − d0) =
(n2−L)−1/2 Ŝn(d0)

2 log(2)σ2 (2 − 2−(U−L))κU−L
(1 + oP(1)) . (66)

Define Sn as Ŝn in (21) but with the wavelet coefficients W j,k defined in Corollary 2

replacing the wavelet coefficients Wj,k. Let us write

Ŝn(d0) =
(
Ŝn(d0) − Sn(d0)

)
+ Ef

[
Sn(d0)

]
+
(
Sn(d0) − Ef

[
Sn(d0)

])
. (67)

By Corollary 2, using Minkowski’s and Markov’s inequalities, (61), nj ≤ n2−j and

d0 + α > (1 + β)/2, we obtain, as n→ ∞,

Ŝn(d0) − Sn(d0) = oP

(
(n2−L)1/2

)
.

Since
∑

(j,k)∈In
(j − 〈In〉) = 0 and Ef

[
W 2

j,k

]
= σ2

j (ν), we may write

Ef

[
Ŝn(d0)

]
=

∑

(j,k)∈In

(j−〈In〉)
(
2−2d0jσ2

j (ν) − σ2
)

= O(n2−(1+β)L) = o
(
(n2−L)1/2

)
,

where the O-term follows from (8), (61) and nj ≤ n2−j and the o-term follows

from (31). Using (66), (67) and the two last displays, we finally get that

(n2−L)1/2 (d̂n − d0) =
(n2−L)−1/2

(
Sn(d0) − Ef

[
Sn(d0)

])

2 log(2)σ2 (2 − 2−(U−L))κU−L
(1 + oP(1)) .

Because f(λ) = |1 − e−iλ|−2d0 [f∗1[−ǫ,ǫ]](λ) and f∗1[−ǫ,ǫ] ∈ H(β, γ′, π) for some γ′ >

0, we may apply Proposition 10 below to determine the asymptotic behavior of

Sn(d0)−Ef [Sn(d0)] as n→ ∞. Since σ2 = f∗(0)K(d0) (Theorem 1), this yields the

result and concludes the proof. �

The following proposition provides a CLT when the condition on ν∗ is global,

namely ν∗ ∈ H(β, γ, π). It covers the cases (S-1) where U − L → ℓ < ∞ and (S-2)

where U − L→ ∞.

Proposition 10. Let X be a Gaussian process having generalized spectral mea-

sure (2) with d0 ∈ R and ν∗ ∈ H(β, γ, π) with f∗(0)
def
= dν∗/dλ|λ=0 > 0, where

γ > 0 and β ∈ (0, 2]. Let L and U be two sequences satisfying (23) and suppose that

L−1 + (n2−L)−1 → 0 and U −L→ ℓ ∈ {1, 2, . . . ,∞} as n→ ∞. Then, as n→ ∞,

(n2−L)−1/2
{
ŜIn(L,U)(d0) − Ef [ŜIn(L,U)(d0)]

}

2 log(2) f∗(0)K(d0) (2 − 2−(U−L))κU−L

L
−→ N (0,V(d0, ℓ)) , (68)
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where κk is defined in (28) and V(d0, ℓ) in (29) for ℓ <∞ and V(d0,∞) in (30).

Proof. We take f∗(0) = 1 without loss of generality. As n → ∞, since, U − L → ℓ,

κU−L → κℓ, by setting, in the special case where ℓ = ∞, κ∞ = 2, see Lemma 13.

This gives the deterministic limit of the denominator in (68). The limit distribution

of the numerator is obtained by applying Lemma 12 below. Let An and Γn be the

square matrices indexed by the pairs (j, k), (j, k) ∈ In ×In (in lexicographic order)

and defined as follows.

(1) An is the diagonal matrix such that [An](j,k),(j,k) = (n2−L)−1/2sign(j−〈In〉)

for all (j, k) ∈ In,

(2) Γn is the covariance matrix of the vector
[
|j − 〈In〉|

1/2 2−d0j Wj,k

]
(j,k)∈In

.

Let ρ(A) denote the spectral radius of the square matrix A, that is, the maxi-

mum of the absolute value of its eigenvalues. Of course ρ[An] = (n2−L)−1/2.

Moreover, ρ[Γn] ≤
∑U

j=L ρ[Γn,j], where Γn,j is the covariance matrix of the vec-

tor
[
|j − 〈In〉|

1/2 2−d0j Wj,k

]
k=0,...,nj−1

. Since {Wj,k}k∈Z is a stationary time series,

by Lemma 11,

ρ[Γn,j] ≤ |j − 〈In〉| 2
−2d0j 2π sup

λ∈(−π,π)
Dj,0(λ; ν) .

From (10), since D∞,0(·; d0) is bounded on (−π, π), we then get, for a constant

C not depending on n, ρ[Γn] ≤ C
∑U

j=L |j − 〈In〉| . By (61), the latter sum is

O((U−L)2). Hence, as n→ ∞, since U−L ≤ Jn−L = O(log(n2−L)), ρ[An]ρ[Γn] =

O
(
(n2−L)−1/2(U − L)2

)
→ 0, so that the conditions of Lemma 12 are met, provided

that (n2−L)−1Var
(
Ŝn(d0)

)
has a finite limit.

To conclude the proof, we need to compute this limit. In [14, Proposition 2], it

is shown that, for all u = 0, 1, . . . , as j → ∞ and nj → ∞,

cn(j, u)
def
= 2−4d0jnj−uCov

(
σ̂2

j , σ̂
2
j−u

)
→ 4π Iu(d0) , (69)

where Iu(d) is defined in (27) and σ̂2
j

def
= 1

nj

∑nj−1
k=0 W 2

j,k. Since Ŝn(d0) =
∑U

j=L(j −

〈In〉)2
−2jd0njσ̂

2
j , we obtain

(n2−L)−1Var
(
Ŝn(d0)

)
=

U−L∑

i=0

(i+ L− 〈In〉)
22−i nL+i

n2−(L+i)
cn(L+ i, 0)

+ 2

U−L∑

i=1

i∑

u=1

(i+ L− 〈In〉)(i − u+ L− 〈In〉)2
2d0u−i nL+i

n2−(L+i)
cn(L+ i, u) (70)

By the Cauchy-Schwarz inequality, (45), (8) and nj−u ≍ nj2
−u implies |cn(j, u)| ≤

C2−2d0u+u/2 where C is a positive constant. Using this bound, (61) and nj ≤ n2−j
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for bounding the terms of the two series in the right-hand side of (70) yield the

following convergent series:
∑∞

i=0(i+1)22−i and
∑∞

i=1

∑i
u=1(i+1)(i−u+1)2−i+u/2.

Using the assumptions on U and L, we have nL+i ∼ n2−(L+i) for any i ≥ 0 and,

by Lemma 13, 〈In〉 − L → ηℓ as n → ∞. Hence, by dominated convergence, (70)

and (69) finally give that, as n→ ∞, (n2−L)−1Var
(
Ŝn(d0)

)
converges to

4π


I0(d0)κl(2 − 2−ℓ) + 2

∑

1≤u≤i≤ℓ

(i− ηℓ)(i − ηℓ − u)22d0u−i Iu(d0)


 , (71)

where in the case ℓ = ∞, we have set 2−∞ = 0, η∞ = 1 and κ∞ = 2. Note that the

above bound on |cn(j, u)| and (69) imply that, as u→ ∞,

Iu(d0) = O(2−2d0u+u/2) , (72)

which confirms that the series in (71) is convergent for ℓ = ∞. Finally dividing this

variance by the squared limit of the denominator in (68), we get the limit variance

in (68), namely (29) and (30). �

The following lemmas were used in the proof of Proposition 10.

Lemma 11. Let {ξℓ, ℓ ∈ Z} be a stationary process with spectral density g and let

Γn be the covariance matrix of [ξ1, . . . , ξn]. Then, ρ(Γn) ≤ 2π ‖g‖∞.

Lemma 12. Let {ξn, n ≥ 1} be a sequence of Gaussian vectors with zero mean and

covariance Γn. Let (An)n≥1 be a sequence of deterministic symmetric matrices such

that limn→∞ Var
(
ξT
nAnξn

)
= σ2 ∈ [0,∞). Assume that limn→∞ [ρ(An)ρ(Γn)] = 0 .

Then, ξT
nAnξn − E

[
ξT
nAnξn

] L
−→ N (0, σ2) .

Proof. The result is obvious if σ = 0, hence we may assume σ > 0. Let n ≥ 1, kn

be the rank of Γn and let Qn denote a n × kn full rank matrix such that QnQ
T
n =

Γn. Let ζn ∼ N (0, Ikn
), where Ik is the identity matrix of size k × k. Then, for

any kn × kn unitary matrix Un, Unζn ∼ N (0, Ikn
) and hence QnUnζn has same

distribution as ξn. Moreover, since An is symmetric, so is QT
nAnQn. Choose Un to

be a unitary matrix such that Λn
def
= UT

n (QT
nAnQn)Un is a diagonal matrix. Thus,

ζT
n Λnζn = (QnUnζn)TAn(QnUnζn) has the same distribution as ξT

nAnξn. Since Λn

is diagonal, ζT
n Λnζn is a sum of independent r.v.’s of the form

∑kn

k=1 λk,nζ
2
k,n, where,

(ζ1,n, . . . , ζkn,n) are independent centered unit variance Gaussian r.v.’s and λk,n are

the diagonal entries of Λn. Note that
∑kn

k=1 λk,n = E
[
ξT
nAnξn

]
. To check the

asymptotic normality, we verify that the Lindeberg conditions hold for the sum of

centered independent r.v.’s ξT
nAnξn −E

[
ξT
nAnξn

]
=
∑kn

k=1 λk,n(ζ2
k,n − 1). Under the
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stated assumptions

kn∑

k=1

λ2
k,n E(ζ2

k,n − 1)2 = Var
(
ξT
nAnξn

)
→ σ2 as n→ ∞ ,

and ρ(Λn) = ρ(QT
nAnQn) ≤ ρ(An) sup‖x‖=1 ‖Qnx‖

2 = ρ(An) ρ(Γn) → 0 . Since

ρ(Λn) = max1≤k≤kn
|λk,n|, for all ǫ > 0,

kn∑

k=1

λ2
k,n E

[
(ζ2

k,n − 1)21(|λk,n (ζ2
k,n − 1)| ≥ ǫ)

]
≤

(
kn∑

k=1

λ2
k,n

)
E
[
(ζ2

1,n − 1)21(ρ(Λn) |ζ2
1,n − 1| ≥ ǫ)

]
→ 0 as n→ ∞ .

Hence the Lindeberg conditions hold as soon as σ > 0. �

Lemma 13. Let p, ℓ ≥ 0, ηℓ and κℓ be defined as in (28), 〈I〉 as in (19) and

J (I)
def
= |I|−1

∑

(j,k)∈I

(j − 〈I〉)2 = |I|−1
∑

(j,k)∈I

j(j − 〈I〉) .

We have

ηℓ =
1 − 2−ℓ(1 + ℓ/2)

1 − 2−(ℓ+1)
∈ (0, 1) , lim

l→∞
ηℓ = 1, lim

l→∞
κℓ = 2 , (73)

for all u ≥ 0, lim
ℓ→∞

1

κℓ

ℓ−u∑

i=0

2−i

2 − 2−ℓ
(i− ηℓ)(i+ u− ηℓ) = 1 , (74)

and, for all n ≥ 1 and 0 ≤ j0 ≤ j1 ≤ Jn,
∣∣∣∣∣∣

j1∑

j=j0

(j − j0)
pnj − n2−j0

j1−j0∑

i=0

ip2−i

∣∣∣∣∣∣
≤ 2(T − 1) (j1 − j0)

p+1 , (75)

Moreover, if 0 ≤ Ln ≤ Jn with n2−Ln → ∞ as n→ ∞, then

sup
j1=Ln,...,Jn

∣∣∣|In(Ln, j1)| − n2−Ln(2 − 2−(j1−Ln))
∣∣∣ = O

(
log(n2−Ln)

)
,

sup
j1=Ln,...,Jn

|〈In(Ln, j1)〉 − Ln − ηj1−Ln | = O
(
log2(n2−Ln) (n2−Ln)−1

)
,

sup
j1=Ln,...,Jn

|J [In(Ln, j1)] − κj1−Ln | = O
(
log3(n2−Ln) (n2−Ln)−1

)
.
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