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A WAVELET WHITTLE ESTIMATOR OF THE MEMORY
PARAMETER OF A NON-STATIONARY GAUSSIAN TIME

SERIES

E. MOULINES, F. ROUEFF, AND M.S. TAQQU

CNRS LTCI and Boston University

Abstract. We consider discrete-time Gaussian time series with memory pa-

rameter d ∈ R. These time series are either stationary or can be made station-

ary after differencing a finite number of times. We develop a wavelet-based

semiparametric pseudo-likelihood maximum method estimator of the memory

parameter d, which can be seen as an extension to the wavelet-transform do-

main of the Gaussian semi-parametric estimator discussed in Robinson (1995a).

The estimator may depend on a given finite range of scales or on a range which

become infinite with the sample size. We show that the estimator is, in all

cases, consistent and asymptotically normal.
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1. Introduction and basic assumptions

Let X
def
= {Xℓ}ℓ∈Z be a Gaussian process, not necessarily stationary. Denote by

∆X the first order difference, (∆X)ℓ = Xℓ −Xℓ−1, and by ∆kX the k-th order

difference, which is defined iteratively. The process X is said to have memory

parameter d, d ∈ R, if for any integer k > d − 1/2, ∆kX is stationary with

spectral density function

f∆kX(λ)
def
= |1 − e−iλ|2(k−d) f ∗(λ) λ ∈ (−π, π), (1)

where f ∗ is a non-negative symmetric function which is bounded on (−π, π) and

is bounded away from zero in a neighborhood of the origin. Observe the following.

(1) If f∆kX(λ) is integrable, then it is a spectral density. This happens when

k > d − 1/2, that is, k ≥ [d + 1/2]. Then ∆kX is stationary and so is

∆k′

X for any k′ ≥ k. It is therefore enough to consider in (1) the smallest

integer k greater than d− 1/2.

(2) If d < 1/2, then X is stationary.

(3) When d > 0, X is said to exhibit long memory or long range dependence

(LRD).

The generalized spectral density of X is defined as

f(λ)
def
= |1 − e−iλ|−2d f ∗(λ) λ ∈ (−π, π) (2)

The generalized spectral density f characterizes the distribution of ∆kX for

all k > d− 1/2 and it also characterizes the distribution of X up to a (random)

polynomial trend of degree [d− 1/2]. It is a spectral density only if d < 1/2.

There has been considerable interest in long memory processes in the past

decades both from a theoretical perspective and a modeling perspective see e.g.

Baillie (1996) and Doukhan et al. (2003) and the references therein. Here are

standard examples.

Examples

1) Fractionally integrated auto-regressive moving-average series (FARIMA).

This is a mean zero stationary Gaussian time series with spectral density f(λ)
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given by (2), with d < 1/2, where f ∗ is the spectral density of a standard au-

toregressive moving-average (ARMA) time series X(0). One sometimes writes

X = ∆dX(0) and regards the index d as the fractional differencing index.

2) Fractional Brownian motion (FBM) It is a continuous-time mean zero

Gaussian stationary increment process {X(t), t ∈ R} which is self-similar with

index H ∈ (0, 1), that is, for all a > 0, X(at)
d
= aHX(t), t ∈ R, where

d
= denotes

the equality of the finite-dimensional distributions. The time series X
def
= {Xℓ}ℓ∈Z

is the discrete-time version of FBM. Here ∆kX is stationary for k ≥ 1 and the

generalized spectral density f of X is given, up to a multiplicative constant, by

f(λ) =
∑

k∈Z

|λ+ 2kπ|−(2H+1) = |1 − e−iλ|−2d f ∗(λ), λ ∈ (−π, π).

where d = H + 1/2 ∈ (1/2, 3/2) and

f ∗(λ) =
∑

k∈Z

∣∣∣∣
1 − e−iλ

λ+ 2kπ

∣∣∣∣
2H+1

, λ ∈ (−π, π). (3)

This function f ∗ is bounded on (−π, π). Its behavior at zero frequency is given

by

f ∗(λ) =

∣∣∣∣
1 − e−iλ

λ

∣∣∣∣
2H+1

+
∣∣1 − e−iλ

∣∣2H+1∑

k 6=0

|λ+ 2kπ|−(2H+1) = 1+O(|λ|2∧(2H+1)) ,

and hence it is bounded away from zero in a neighborhood of the origin.

3) Fractional Gaussian noise (FGN). It is X = ∆X(1) where X(1) is the

discrete-time FBM introduced above. It is therefore stationary with spectral

density

f(λ) = |1 − e−iλ|2
∑

k∈Z

|λ+ 2kπ|−(2H+1) = |1 − e−iλ|−2d f ∗(λ), λ ∈ (−π, π),

where d = H − 1/2 ∈ (−1/2, 1/2) and f ∗(λ) is as in (3).

We may consider non-stationary processes X such as FBM because we will use

wavelet analysis to estimate d which performs an implicit differentiation of X

up to any desired order specified by the number of vanishing moments (denoted

M in assumptions (W-3) and (W-4) below) of the wavelet. It is therefore not

required to preprocess the data (e.g. differentiating and tapering) to estimate
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the memory parameter of a possibly nonstationary time-series, in contrast for

example with methods based on Fourier analysis.

We suppose that we observe a finite sample of X and want to estimate the

exponent d under the following typical smoothness assumptions on f ∗. Let β ∈
(0, 2] and L > 0. and assume that f ∗ belongs to the function class H(β, L).

H(β, L) is the set of positive even functions g on [−π, π] such that, for all λ ∈
[−π, π],

|g(λ) − g(0)| ≤ Lg(0) |λ|β . (4)

This setting is typical in semiparametric estimation, see, e.g. , Robinson (1995a).

1.1. Fourier and wavelet estimators. There are two popular semiparametric

estimators for the memory parameter d in the frequency domain:

(1) The GPH estimator introduced in Geweke and Porter-Hudak (1983) and

analyzed by Robinson (1995b). It involves a regression of the log-periodogram

on the log of low frequencies.

(2) The local Whittle estimator (or GSE) proposed in Künsch (1987) and

developed in Robinson (1995a) is based on the Whittle approximation of

the Gaussian likelihood, but adapted to a semiparametric context which

focuses on low frequencies.

The corresponding approaches in the time/scale (wavelet) domain are:

(1) Regression of the logarithm of the wavelet coefficient variance on the

scale index, which has been introduced in Abry and Veitch (1998). See

Bardet et al. (2000) for a treatment in a semiparametric context assuming

observations in continuous time and Moulines et al. (2005) in discrete

time.

(2) Approximation of the Gaussian likelihood in the wavelet domain which

has been proposed by Wornell and Oppenheim (1992), for noisy data (see

also Kaplan and Kuo (1993), McCoy and Walden (1996) and the refer-

ences therein). Although this estimator was the first wavelet estimator

introduced in the context of long memory, to our knowledge, its theoreti-

cal properties have never been established rigorously (see the concluding

remarks in (Velasco, 1999, p. 107)).
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We want to study what we will call the Wavelet Whittle estimator which is the

wavelet parallel to the local Whittle estimator. Working in the semiparametric

setting where f ∗ ∈ H(β, L) is regarded a nuisance function, we show that the

Wavelet Whittle estimator is consistent and asymptotically normal. We intend

to compare this estimator to the ones mentioned above in a subsequent work.

1.2. The choice of wavelets. The functions φ(t), t ∈ R, and ψ(t), t ∈ R, will

denote the father and mother wavelets respectively, and φ̂(ξ)
def
=
∫

R
φ(t)e−iξt dt and

ψ̂(ξ)
def
=
∫

R
ψ(t)e−iξt dt their Fourier transforms. We suppose that the wavelets φ

and ψ satisfy the following assumptions :

(W-1) φ and ψ are integrable and have compact supports, φ̂(0) =
∫

R
φ(x)dx =

1 and
∫

R
ψ2(x)dx = 1.

(W-2) There exists α > 1 such that supξ∈R
|ψ̂(ξ)| (1 + |ξ|)α <∞,

(W-3) The function ψ has M vanishing moments, i.e.
∫

R
tlψ(t) dt = 0 for all

l = 0, . . . ,M − 1

(W-4) The function
∑

k∈Z
klφ(· − k) is a polynomial of degree l for all l =

0, . . . ,M − 1.

Assumption (W-1) implies that φ̂ and ψ̂ are everywhere infinitely differentiable.

When (W-1) holds, Assumptions (W-3) and (W-4) can be expressed in different

ways. (W-3) is equivalent to asserting that the first M − 1 derivative of ψ̂ vanish

at the origin and hence

|ψ̂(λ)| = O(|λ|M) as λ→ 0. (5)

And, by (Cohen, 2003, Theorem 2.8.1, Page 90), (W-4) is equivalent to

sup
k 6=0

|φ̂(λ+ 2kπ)| = O(|λ|M) as λ→ 0. (6)

We define the rescaled and shifted wavelets as

ψj,k(t) = 2−j/2 ψ(2−jt− k), j ∈ Z, k ∈ Z, (7)

adopting the signal processing convention that large values of j correspond to low

frequencies. Here j denote the scale index and k the position index. If φ and ψ

are the scaling and the wavelet functions associated to a multiresolution analysis

(see Cohen (2003)), then {ψj,k, j ∈ Z, k ∈ Z} forms an orthogonal basis in L2(R).

A standard choice are the Daubechies wavelets (DB-M) which are parameterized
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by the number of vanishing moments M (see e.g. Craigmile and Percival (2005)).

The associated scaling and wavelet functions φ and ψ satisfy (W-1)-(W-4) where

α in (W-2) is a function of M which increases to infinity as M tends to infinity

(see (Cohen, 2003, Chapter ?)).

In this work, however, we do not assume that the ψj,k in (7) form an orthogonal

basis. We may choose any φ and ψ as long as (W-1)-(W-4) are satisfied. For

example, we may set, for some positive integer N ,

φ(x) = 1⋆N
[0,1](x) and ψ(x) =

dN

dxN
1⋆2N

[0,1](x),

where 1[0,1] is the indicator function of [0, 1] and 1⋆N
[0,1] denotes the N -order self-

convolution of 1[0,1]. Then

|φ̂(ξ)| = |2 sin(ξ/2)/ξ|N and ψ̂(ξ) = |ξ|N |2 sin(ξ/2)/ξ|2N .

Using (5) and (6), one easily checks that (W-1)-(W-4) are satisfied with M and

α both equal to N . Of course the {ψj,k} are not orthonormal for this choice of

ψ.

To any real valued sequence x = {xk, k ∈ Z}, we associate the functions

xn(t)
def
=

n∑

k=1

xk φ(t− k) and x(t)
def
=
∑

k∈Z

xk φ(t− k) (8)

by using the father wavelet φ as interpolator. The (details) wavelet coefficients

are then defined as

W x

j,k
def
=

∫

R

x(t)ψj,k(t) dt j ≥ 0, k ∈ Z . (9)

We can suppose without loss of generality that φ has support in (−T, 0) and

ψ has support in (0,T) for some integer T ≥ 1. Since, for all k ≤ 0 and all

k > n, φ(· − k) has its support outside [0, n−T + 1], we have xn(t) = x(t) for all

t ∈ [0, n− T + 1]. Moreover, since ψj,k has support in 2j(k, k + T), we have

W x

j,k = W xn

j,k =

∫

R

xn(t)ψj,k(t) dt, (10)

for all indices (j, k) such that j ≥ 0 and 0 ≤ k < nj , where, denoting the integer

part of x by [x],

nj
def
= [2−j(n− T + 1) − T + 1] ∨ 0 (11)
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is the number of available wavelet coefficients at scale index j. We will drop

the superscript x or xn when there is no danger of confusion. In the following

sections, we will perform a wavelet analysis of a random processX = {Xℓ, ℓ ∈ Z},
in which case we will write WX

j,k or simply Wj,k when no ambiguity may occur.

1.3. The Wavelet Whittle estimator. Consider an array of centered indepen-

dent Gaussian random variables {cj,k, (j, k) ∈ I} with variance Ec2j,k, where I is

a finite set. Its log-likelihood, up to a negative multiplicative constant and an

additive constant, may be expressed as

∑

(j,k)∈I

{
c2j,k/Ec

2
j,k + log(Ec2j,k)

}
.

Our Wavelet Whittle estimator uses such a contrast process to estimate the mem-

ory parameter d. The idea is to identify {cj,k, (j, k) ∈ I} with the wavelet coeffi-

cients {WX

j,k, (j, k) ∈ I}. This is because the wavelet coefficients WX

j,k are weakly

correlated. Pseudo-maximum likelihood estimation consists in choosing an ef-

fective approximation of the likelihood. We will show that this approximation

of the likelihood has indeed good properties for the estimation of the memory

parameter d in a semiparametric framework if we set

Ec2j,k
def
= σ222jd , (12)

since, as we show in Moulines et al. (2005), one has EW 2
j,k = σ222dj{1+O(2−βj)}

as j → ∞, under the smoothness assumption f ∗ ∈ H(β, L), see (4).

Applying the contrast process to the wavelet coefficients, we obtain, for all

σ2 > 0 and d ∈ R,

L̂I(σ
2, d) =

∑

(j,k)∈I

{
W 2

j,k/(σ
222dj) + log(σ2 22dj)

}

=
1

σ2

∑

(j,k)∈I

2−2djW 2
j,k + (#I) log(σ2) + 2 log(2)d

∑

(j,k)∈I

j ,

where #I denotes the number of elements of the set I. The Wavelet Whittle

pseudo-maximum likelihood estimator is then defined as

(d̂I , σ̂
2
I)

def
= Argmin

d∈R,σ2>0

L̂I(σ
2, d).
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For any given value of the memory parameter d, the maximum estimator of the

scale coefficient is given by

σ̂2
I(d)

def
= Argmin

σ2>0

L̂I(σ
2, d) =

1

#I
∑

(j,k)∈I

2−2djW 2
j,k .

We define the profile likelihood L̃I(d)
def
= L̂I(σ̂

2
I(d), d), which may be rewritten as

L̃I(d)
def
=

2 log(2)d

#I
∑

(j,k)∈I

j + log



∑

(j,k)∈I

2−2djW 2
j,k


 (13)

= log




∑

(j,k)∈I

22d(η(I)−j)W 2
j,k



 , (14)

where

η(I)
def
=

1

#I
∑

(j,k)∈I

j . (15)

The pseudo maximum likelihood estimator of the memory parameter is equal to

the minimum of the profile likelihood d̂I = Argmind∈R
L̃I(d). Provided that I

contains at least two different scales, then

min{j : (j, k) ∈ I for some k} < η(I) < max{j : (j, k) ∈ I for some k} ,

so that there are indices j for which 2d(η(I) − j) will be positive and others for

which it will be negative and hence L̃I(d) tends to ∞ as d tend to −∞ and +∞.

Thus, d̂I is finite and the derivative of L̃I(d) vanishes at d = d̂I , i.e. ŜI(d̂I) = 0

where, for all d ∈ R,

ŜI(d)
def
=

∑

(j,k)∈I

[j − η(I)] 2−2jdW 2
j,k . (16)

We consider two specific choices for I. For any integers n, J0 and J1 satisfying

0 ≤ J0 < J1 ≤ J
def
= max{j : nj ≥ 1} = [log2{(n− T + 1)/T}] , (17)

we define In(J0, J1)
def
= {(j, k) : J0 ≤ j ≤ J1 and 0 ≤ k < nj}, where nj is defined

in (11). From now on, J0 and J1 are sequences indexed by n but, for notational

simplicity, the dependence of J0, J1 and J in n is implicit. The index J is the

maximal available scale index corresponding to the sample size n and J0 and J1

denote the lower and upper scale indices used by the estimator. As explained

above, the estimator d̂I is well defined as soon as I contains two different scales
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which, for I = In(J0, J1), is equivalent to having (17). As we will see below, in the

semiparametric framework, J0 governs the rate of convergence of d̂I towards the

true memory parameter. There are two possible settings as far as J1 is concerned:

(C-1) J1 − J0 is fixed, equal to ℓ > 0, so that I = In(J0, J0 + ℓ),

(C-2) J1 = J so that I = In(J0, J).

We will study the large sample properties of the estimators d̂In(J0,J0+ℓ) and d̂In(J0,J)

as n tends to infinity for appropriate choices of J0 with the goal of establishing

consistency and asymptotic normality. See the comments following Theorem 4

below for a discussion about these two cases. In our results, we will always as-

sume that J0 ≥ 0 and n2−J0 → ∞. Note that in both cases (C-1) and (C-2),

this implies (17) for n large enough. The rates will depend on n and on the scale

index J0. For Fourier estimators, the bounds are generally expressed as functions

of n and a bandwidth parameter m, equal to the number of discrete Fourier fre-

quencies used to construct the estimator. To allow comparison, we use n and m

to express our results, where m is defined as the number of wavelet coefficients

used by d̂In(J0,J0+ℓ) or d̂In(J0,J), given by m =
∑J0+ℓ

j=J0
nj and m =

∑J
j=J0

nj, re-

spectively. From Lemma 11, we have that n2−J0 → ∞ is equivalent to m → ∞
and, when n2−J0 → ∞,

m ∼





(2 − 2−ℓ)n2−J0 if m =
∑J0+ℓ

j=J0
nj ,

2n2−J0 if m =
∑J

j=J0
nj .

(18)

The paper is structured as follows. We state the main results in Section 2.

The asymptotic behavior of the contrast process is described in Section 3. The

proof of consistency is given in Section 4. Rates of convergence are studied in

Section 5. Useful approximations to the spectral density of the wavelet coefficients

are derived in Section 6. Asymptotic normality is established in Section 7. The

appendix contains auxiliary results which are used in the proofs.

2. Results

We suppose that the wavelet coefficients are those of a Gaussian process with

a generalized spectral density f of the form (2) and we denote by d0 the true
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value of the memory parameter,

f(λ) = |1 − e−iλ|−2d0 f ∗(λ), λ ∈ (−π, π) . (19)

We denote by Pf the probability distribution of {Xℓ, ℓ ∈ Z} corresponding to f

according to the above model and by Ef its associated expectation. If the number

of vanishing moments M in (W-3) is large enough then, for all j ≥ 0, the process

of wavelet coefficients {Wj,k, k ∈ Z} is stationary and we denote

σ2
j (f)

def
= Varf (Wj,k) . (20)

The two following basic conditions, which hold under appropriate conditions on f ∗

(Theorem 1) will be used to establish the consistency and the rate of convergence

of d̂I .

• There exist β > 0 and σ2 > 0 such that, for all j ≥ 0,

sup
j≥0

2βj

∣∣∣∣
σ2

j (f)

σ2 22d0j
− 1

∣∣∣∣ <∞. (21)

• There exists a constant C such that, for all j ≥ 0 and N ≥ 1,

Varf

(
N∑

k=1

W 2
j,k

)
≤ C N σ4

j (f) . (22)

Condition (21) states that, up to the multiplicative constant σ2, the variance

σ2
j (f) is approximated by 22d0j with a rate given by the exponent β. Condi-

tion (22) imposes a bound on the variance of the normalized partial sum of

the stationary centered sequence {W 2
j,k/σ

2
j (f)} which is similar to what happens

when these variables are independent. We stress that the wavelet coefficients

Wj,k, however, are not independent since their spectral density is not constant,

see Moulines et al. (2005).

Theorem 1. Suppose that (19) holds with f ∗ ∈ H(β, L), β ∈ (0, 2] and f ∗(0) > 0.

Assume (W-1)-(W-4) with M ≥ d0 and α > (1 + β)/2 − d0. Then,

(i) Condition (21) holds with σ2 = f ∗(0)K(d0, ψ), where

K(d, ψ)
def
=

∫ ∞

−∞

|ξ|−2d |ψ̂(ξ)|2 dξ . (23)

(ii) Condition (22) holds.

Proof. See Section 6. �
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The estimator d̂I was defined in Section 1.3. The following theorem states that

it is consistent under Conditions (21) and (22). We consider the two different

cases (C-1) and (C-2) discussed above.

Theorem 2 (Weak Consistency). Assume Conditions (21) and (22). Then,

(a) For any fixed positive integer ℓ, if m/n+m−1 → 0 with m =
∑J0+ℓ

j=J0
nj, then

d̂In(J0,J0+ℓ) = d0 +OPf

{(m
n

)β/2

+m−1/4

}
. (24)

(b) If m/n+m−1 → 0 with m =
∑J

j=J0
nj, then there exists γ > 0 such that

d̂In(J0,J) = d0 +OPf

{(m
n

)β/2

+m−γ

}
. (25)

Proof. See Section 4. �

Remark 1. Eqs. (24) and (25) imply that d̂In(J0,J0+ℓ) →Pf
d0 and d̂In(J0,J) →Pf

d0,

respectively. While the rates in (24) and (25) are not optimal, they will be

used to derive the optimal rates of convergence (Theorem 3) and the asymptotic

normality of the estimators (Theorem 4).

Theorem 3 (Rate of Convergence). Assume Conditions (21) and (22). In ad-

dition, assume either that

(a) In = In(J0, J0 + ℓ) for some fixed positive integer ℓ and m =
∑J0+ℓ

j=J0
nj ≍ nγ

for some γ ∈ (0, 1),

(b) or In = In(J0, J) and m =
∑J

j=J0
nj ≍ nγ for some γ ∈ (0, 1).

Then,

d̂In
= d0 +OPf

{
m−1/2 +

(m
n

)β
}
. (26)

Proof. See Section 5. �

Remark 2. The O-term appearing in (26) can be interpreted as a fluctuation +

bias decomposition which is similar to the one obtained for the local Whittle

estimator (see Robinson (1995a)).

Remark 3. By (18), the two terms in (26) are of the same order of magnitude if

we set J0 = [log2(n)/(1 + 2β)]; in that case,

d̂In(J0,J) − d0 = OPf

(
nβ/(1+2β)

)
.
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The rate of convergence nβ/(1+2β) is thus identical to the one for the local Whittle

estimator derived by Robinson (1995a) in a similar semiparametric context.

We also obtain a central limit theorem for the estimator d̂I of d0. For all

d > 1/2 − α and u ∈ N, define

Iu(d, ψ)
def
=

2u−1∑

v=0

∫ π

−π

∣∣∣∣∣
∑

l∈Z

e−i v 2−u(λ+2lπ)

|λ+ 2lπ|2d
ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ))

∣∣∣∣∣

2

dλ (27)

and, for all ℓ ≥ 1,

ηℓ
def
=

ℓ∑

j=0

j
2−j

2 − 2−ℓ
and κℓ

def
=

ℓ∑

j=0

(j − ηℓ)
2 2−j

2 − 2−ℓ
. (28)

Theorem 4 (CLT). Set β ∈ (0, 2] and L < ∞. Let X be a Gaussian process

with generalized spectral density f(λ) = |1−eiλ|−2d0f ∗(λ) where f ∗ ∈ H(β, L) and

satisfies f ∗(0) > 0. Assume (W-1)-(W-4) with M ≥ d0 and α > (1 + β)/2 − d0.

Then,

(a) For any positive integer ℓ, if m =
∑J0+ℓ

j=J0
nj ≍ nγ for some γ ∈ (2β/{1 +

2β}, 1), then

√
m (d̂In(J0,J0+ℓ) − d0)

L−→ N [0,V(d0, ℓ, ψ)] ,

where

V(d0, ℓ, ψ)
def
=

π

κℓ(log(2)K(d0, ψ))2
×

{
I0(d0, ψ) +

2

κℓ

ℓ∑

u=1

Iu(d0, ψ) 2(2d0−1)u
ℓ−u∑

i=0

2−i

2 − 2−ℓ
(i− ηℓ)(i+ u− ηℓ)

}
. (29)

(b) If m =
∑J

j=J0
nj ≍ nγ for some γ ∈ (2β/{1 + 2β}, 1), then

√
m (d̂In(J0,J) − d0)

L−→ N [0,V(d0, ψ)] ,

where

V(d0, ψ)
def
=

π

2(log(2)K(d0, ψ))2

{
I0(d0, ψ) + 2

∞∑

u=1

Iu(d0, ψ) 2(2d0−1)u

}
. (30)

Proof. See Section 7. �
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Remark 4. It will follow from the proofs that V(d0, ℓ, ψ) → V(d0, ψ) as ℓ→ ∞. In

practice, the number of observation n is finite. Since the estimator d̂In(J0,J) may

always be interpreted as an estimator d̂In(J0,J0+ℓ), with ℓ = J − J0, we have two

approximations at hand for the distribution of (n2−J0)1/2 (d̂In(J0,J) − d0), namely,

a N (0,V(d0, ℓ, ψ)) and a N (0,V(d0, ψ)). The first one is obtained by letting

J → ∞ with ℓ fixed and the second by letting both J and ℓ tend to ∞. Since the

first one involves only a single limit, it is likely to provide a better approximation

at finite n.

Both the local Whittle method –which is Fourier based – and the Wavelet Whit-

tle method have advantages and disadvantages. The main advantage of the local

Whittle method is that the asymptotic variance does not depend on the unknown

value of d0 (see (Robinson, 1995a, Theorem 2)). The advantage of the Wavelet

Whittle method is that it is robust to the presence of additive polynomial trends

and continues to apply when d takes value outside the interval (−1/2, 1/2) where

X is stationary and invertible. One has only to choose appropriate wavelets,

for example the Daubechies wavelets with a sufficiently large number of vanish-

ing moments M (see Section 1.2). We will compare systematically the wavelet

Whittle estimator to other estimators in a subsequent work.

3. Asymptotic behavior of the contrast process

We shall decompose the contrast (13) into a sum of deterministic and empirical

terms and provide uniform approximations of the deterministic component and

uniform bounds of the empirical component. More precisely, it is easily verified

from (13) that there exists a constant C such that for all d

L̃I(d)
def
= LI(d) + EI(d) + C , (31)

where

LI(d)
def
= log


 1

#I
∑

(j,k)∈I

22(d0−d)j


− 1

#I
∑

(j,k)∈I

log(22(d0−d)j) , (32)

EI(d)
def
= log


1 +

∑

(j,k)∈I

22(d0−d)j

∑
I 22(d0−d)j

(
W 2

j,k

σ2 22d0j
− 1

)
 (33)
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and σ2 is the constant appearing in Condition (21). Let us comment briefly on

the terms appearing in (31).

(1) d 7→ LI(d) is a deterministic function. The Jensen inequality implies

that this function has a single minimum at d = d0, where it vanishes.

Asymptotic approximations for LI(d) as the number of scales tend to

infinity will be given in Section 3.1.

(2) d 7→ EI(d) is a random process. Consistency is obtained by showing that

it is asymptotically negligible uniformly in d, see Section 3.2.

(3) The constant C may be discarded, as it does not depend on d.

3.1. Deterministic component of the contrast.

Proposition 5. For any finite and non-empty set I ⊂ N × Z, the function

d→ LI(d) is non-negative, convex and vanishes at d = d0.

Assume that n2−J0 → ∞ and that (17) holds for n large enough. Then, for

any constants d⋆ and d⋆ satisfying d0 − 1/2 < d⋆ ≤ d⋆, one has

lim inf
n→∞

max
d∈[d⋆,d⋆]

L̈In(J0,J1)(d) > 0 . (34)

where L̈I denotes the second derivative of the function LI.

Proof. By concavity of the log function, LI(d) ≥ 0 and is zero if d = d0. The

second derivative of the function d→ LI(d) is given by

L̈I(d) = (2 log(2))2




∑

(j,k)∈I

j2 22(d0−d)j

∑
(j′,k′)∈I 22(d0−d)j′

−



∑

(j,k)∈I

j
22(d0−d)j

∑
(j′,k′)∈I 22(d0−d)j′




2
 .

It is easily seen that L̈I(d) ≥ 0 for any d ∈ R showing that d 7→ LI(d) is convex.

Observe that, in the above expression of L̈I(d), the term between the curly

brackets is Var(N), where N is an integer valued random variable with distribu-

tion

P(N = j) =
22(d0−d)j #{k : (j, k) ∈ I}∑

(j′,k)∈I 22(d0−d)j′
, j ≥ 0 .
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Let now d ≥ d⋆ > d0 − 1/2. For I = In(J0, J1) such that (17) holds, one has

P(N = J0) =
22(d0−d)J0 nJ0∑J1

j=J0
22(d0−d)j nj

≥ 22(d0−d)J0 {2−J0(n− T + 1) − T}
(n− T + 1)

∑∞
j=J0

2{2(d0−d)−1}j

≥ (1 − 22(d0−d⋆)−1)
22(d0−d)J0 {2−J0(n− T + 1) − T}

(n− T + 1)2{2(d0−d)−1}J0

= (1 − 22(d0−d⋆)−1)
{
1 − T 2J0 (n− T + 1)−1

}
,

Since n2−J0 → ∞, the term between brackets tends to 1 as n → ∞. Hence, for

n large enough, we have infd≥d⋆
P(N = J0) ≥ (1 − 22(d0−d⋆)−1)/2. Similarly, one

finds, for n large enough, infd∈[d⋆,d⋆] P(N = J0+1) ≥ (1−22(d0−d⋆)−1)22(d0−d⋆)−1/2.

Hence,

inf
d∈[d⋆,d⋆]

Var(N) ≥ {J0 − E(N)}2
P(N = J0) + {J0 + 1 − E(N)}2

P(N = J0 + 1)

≥ (1 − 22(d0−d⋆)−1)22(d0−d⋆)−2({J0 − E(N)}2 + {J0 + 1 − E(N)}2)

≥ (1 − 22(d0−d⋆)−1)22(d0−d⋆)−4 ,

where the last inequality is obtained by observing that either E(N) − J0 ≥ 1/2

or J0 + 1 − E(N) < 1/2. This achieves the proof of (34). �

3.2. Random component of the contrast. We will show that, under appro-

priate assumptions, the random term (33) tends to zero uniformly in d. For all

C > 0, q ≥ 0 and δ ≥ 0, define the set of real-valued sequences

B(C, q, δ)
def
=
{

(µj)j≥0 : |µj| ≤ C (1 + jq) 2jδ for all j ≥ 0
}
. (35)

Let I be a finite subset of N × Z. Define, for any sequence µ
def
= {µj}j≥0,

S̃n,J0,J1
(µ)

def
=

J1∑

j=J0

µj−J0

nj−1∑

k=0

(
W 2

j,k

σ2 22d0j
− 1

)
. (36)

Observe that, in (36), the summation in j starts at j = J0 but that the corre-

sponding indices for µ are j − J0 = 0, 1 . . . , J1 − J0.

We first provide some general uniform bounds for S̃n,J0,J1
(µ) and then, in a

corollary, we focus on the random component (33) appearing in the contrast (31).
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Proposition 6. Let δ < 1. Conditions (21) and (22) imply the following asymp-

totic results for any q ≥ 0 and C > 0 :

(a) if J−1
0 + (n2−J1)−1 → 0 as n→ ∞, then,

sup
µ∈B(C,q,δ)

∣∣∣S̃n,J0,J1
(µ)
∣∣∣

= n2−J0 {1 + (J1 − J0)
q}
{
OPf

(
(n2−J1)−1/2

)
+O

(
2−βJ0

)}
;

(b) if J−1
0 + n2−J0 → 0 as n→ ∞, then,

sup
µ∈B(C,q,δ)

∣∣∣S̃n,J0,J(µ)
∣∣∣

= n2−J0 logq(n2−J0)
{
OPf

(
log(n2−J0) (n2−J0)−(1−δ)/(3−2δ)

)
+O

(
2−βJ0

)}
.

To prove Part (b), we will use Part (a) for some J1 chosen in such a way that

both J1 − J0 and n2−J1 tend to infinity.

Proof. We set C = 1 without loss of generality. We may write

S̃n,J0,J1
(µ) =

J1∑

j=J0

νj µj−J0

nj∑

k=0

(
W 2

j,k

σ2
j (f)

− 1

)
+

J1∑

j=J0

nj µj−J0
(νj − 1) , (37)

where νj
def
=

σ2

j (f)

σ2 22d0j for all j. By convexity of the square function, we have

∣∣∣∣∣

J1∑

j=J0

νj µj−J0

nj−1∑

k=0

(
W 2

j,k

σ2
j (f)

− 1

)∣∣∣∣∣

2

≤
[

J1∑

j=J0

nj |νj µj−J0
|
]2 J1∑

j=J0

1

nj

∣∣∣∣∣

nj−1∑

k=0

(
W 2

j,k

σ2
j (f)

− 1

)∣∣∣∣∣

2

. (38)

By (21), supj≥0 2βj |νj − 1| < ∞. In particular, ‖ν‖∞ def
= supj≥0 |νj | < ∞ and,

since nj ≤ n2−j and δ < 1, for all µ ∈ B(1, q, δ),

J1∑

j=J0

nj |νj µj−J0
| ≤ ‖ν‖∞ {1 + (J1 − J0)

q} n 2−J0

1 − 2δ−1
.
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Inserting this bound in (38) and using (22), we get that there exists a constant

C ′ such that

Ef



 sup

µ∈B(1,q,δ)

∣∣∣∣∣

J1∑

j=J0

νj µj−J0

nj−1∑

k=0

(
W 2

j,k

σ2
j (f)

− 1

)∣∣∣∣∣

2




≤ C ′ {1 + (J1 − J0)
q}2 (n 2−J0)2

J1∑

j=J0

n−1
j .

Observe that, for n2−J1 large enough,

J1∑

j=J0

n−1
j ≤

∑J1

j=J0
2j

n− (T − 1) − 2J1(T − 1)
≤ 2 (n2−J1)−1

1 − 2(T − 1)(n2−J1)−1
.

Applying the Markov inequality, the two last bounds give, as n2−J1 → ∞,

sup
µ∈B(1,q,δ)

∣∣∣∣∣

J1∑

j=J0

νj µj−J0

nj∑

k=0

(
W 2

j,k

σ2
j (f)

− 1

)∣∣∣∣∣ = OPf

(
n2−J0 {1 + (J1 − J0)

q}
(n2−J1)1/2

)
.

We now consider the second term in the RHS of (37). Using again the bound

supj≥0 2βj|νj − 1| ≤ C, we get, for all µ ∈ B(1, q, δ),
∣∣∣∣∣

J1∑

j=J0

nj µj−J0
(νj − 1)

∣∣∣∣∣ ≤ C {1 + (J1 − J0)
q} n 2−(β+1)J0

1 − 2δ−β−1
.

Inserting the two last equations in (37) concludes the proof of Part (a).

We now turn to Part (b). Let J1 ≥ J0 depending on n such that n2−J1 → ∞
and write

S̃n,J0,J(µ) = S̃n,J0,J1
(µ) + S̃n,J1+1,J(µ̄) , (39)

where µ̄
def
= {µj+J1+1−J0

}j≥0. Using Part (a), we have

sup
µ∈B(C,q,δ)

∣∣∣S̃n,J0,J1
(µ)
∣∣∣

= n2−J0 {1 + (J1 − J0)
q}
{
OPf

(
(n2−J1)−1/2

)
+O

(
2−βJ0

)}
. (40)

Let us consider the last term in (39). We have

∣∣∣S̃n,J1+1,J(µ̄)
∣∣∣ ≤

[
sup
j>J1

|µj−J0
|2−j

] J∑

j=J1+1

2j

nj−1∑

k=0

(
W 2

j,k

σ2 22d0j
+ 1

)
.
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Observe that, since δ < 1, there exists C > 0 only depending on q and δ such

that for all µ ∈ B(1, q, δ),

sup
j>J1

|µj−J0
|2−j ≤ C2(δ−1)(J1−J0) {1 + (J1 − J0)

q} 2−J0 .

From (21), EfW
2
j,k/σ

2 22d0j is bounded by a constant independent of j ≥ 0, hence

Ef sup
µ∈B(1,q,δ)

∣∣∣S̃n,J1+1,J(µ̄)
∣∣∣ = O

(
2(δ−1)(J1−J0) {1 + (J1 − J0)

q} 2−J0

J∑

j=J1+1

2j nj

)
.

By the Markov inequality and
∑J

j=J1+1 2j nj ≤ n(J − J1) = O(n log(n2−J1)), we

get

sup
µ∈B(1,q,δ)

∣∣∣S̃n,J1+1,J(µ̄)
∣∣∣

= OPf

(
2(δ−1)(J1−J0) {1 + (J1 − J0)

q}n2−J0 log(n2−J1)
)
. (41)

We may set J1 = J0 + [log2(n2−J0)/(3 − 2δ))] as under the assumptions of (b),

this implies n2−J1 → ∞. For this choice of J1, the conclusion in (b) then follows

from (39), (40), (41) and by using that {1 + (J1 − J0)
q} = O{logq(n2−J0)} and

log(n2−J1) ≤ log(n2−J0). �

Corollary 7. Conditions (21) and (22) imply the two following bounds.

(a) For any ℓ ≥ 0, if J−1
0 + (n2−J0)−1 → 0, then

sup
d∈R

∣∣EIn(J0,J0+ℓ)(d)
∣∣ = OPf

(
2−βJ0 + (n2−J0)−1/2

)
.

(b) For all d⋆ > d0 − 1/2, if J−1
0 + (n2−J0)−1 → 0,

sup
d≥d⋆

∣∣EIn(J0,J)(d)
∣∣ = OPf

(
2−βJ0 + log(n2−J0) (n2−J0)−{1−2(d0−d⋆)}/{3−4(d0−d⋆)}

)
.

Proof. In view of (33) and (36), we have

EIn(J0,J1)(d) = log
[
1 + (n2−J0)−1S̃n,J0,J1

(µ)
]

with µ = {µj}j≥0 defined by

µj
def
= n2−J0

22(d0−d)(j+J0)

∑J1

j′=J0
22(d0−d)j′nj′

1(j ≤ J1 − J0) .
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Part (a) We set J1 = J0 + ℓ and apply Proposition 6 (a) with δ = 0. Indeed,

observe that µj ≤ n2−J0 supj=0,...,ℓ n
−1
j+J0

= n2−J0/nJ0
→ 1 as n2−J0 → ∞. Then

µ ∈ B(2, 0, 0) for all d ∈ R, provided that n is large enough.

Part (b) Set now J1 = J and apply Proposition 6 (b) with δ
def
= 2(d0 − d⋆) < 1.

Then, since, for all d ≥ d⋆, 22(d0−d)(j+J0) ≤ 2δ(j+J0) and
∑J

j′=J0
22(d0−d)j′nj′ ≥

2δJ0nJ0
∼ n2(δ−1)J0 as n2−J0 → ∞, we get µ ∈ B(2, 0, δ) for all d ≥ d⋆, provided

that n is large enough. �

Notation convention. The main differences between cases (C-1) where J1 −J0

is fixed and (C-2) where J1 = J lie in Proposition 6 and in the computations of

the asymptotic variances in Theorem 4 (CLT). Therefore, in the following, we

shall often write, for convenience, I, η, d̂, Ŝ(d), S̃(µ), L̃, E and L for In(J0, J1),

η(In(J0, J1)), d̂In(J0,J1), ŜIn(J0,J1)(d), S̃n,J0,J1
(µ), L̃In(J0,J1), EIn(J0,J1) and LIn(J0,J1)

respectively, with either J1 = J0 +ℓ or J1 = J . We will use the complete notation

when the distinction between these two cases is necessary.

4. Proof of Theorem 2

In view of (18), the assumptions of the theorem are equivalent to J−1
0 +

(n2−J0)−1 → 0 and 2J0 and n2−J0 are asymptotically equivalent to n/m and

m, respectively. We will develop the proof using J0. By definition of d̂ and (31),

we have

0 ≥ L̃(d̂) − L̃(d0) = L(d̂) + E(d̂) − E(d0) . (42)

The basic idea for proving consistency is to show that 1) the function d 7→ L̃(d)

behaves as (d− d0)
2 up to a multiplicative positive constant and 2) the function

d 7→ E(d) tends to zero in probability uniformly in d. Proposition 5 will provide

all the results needed for 1) and Corollary 7 (a) and (b) will respectively provide

those needed for 2) when either J1 = J0 + ℓ or J1 = J . The case J1 = J will

be more involved because d 7→ EIn(J0,J)(d) tends to zero in probability uniformly

only over d ≥ dmin with dmin > d0 − 1/2 (see Corollary 7(b)).

Proof of Part (a) Here J1 = J0 + ℓ with a fixed ℓ ≥ 1. Using classical argu-

ment for contrast estimation (similar to those detailed is Step 2 and Step 3 in the

proof of Part (b) below), (42), the properties of L(d) established in Proposition 5

and Corollary 7(a) give the result.
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Proof of Part (b) Here J1 = J . The proof proceeds in three steps, namely

Step 1 There exists dmin ∈ (d0 − 1/2, d0) such that

Pf{d̂ ≤ dmin} → 0. (43)

Step 2 For any dmax > d0,

Pf{d̂ ≥ dmax} → 0. (44)

Step 3 For all dmin ∈ (d0 − 1/2, d0) and dmax > d0,1(dmin ≤ d̂ ≤ dmax) (d̂− d0)
2 =

OPf

(
2−βJ0

)
+OPf

(
log(n2−J0) (n2−J0)−{1−2(d0−dmin)}/{3−4(d0−dmin)}

)
. (45)

Proof of Step 1. We have, for all d ∈ R,

L̃(d) − L̃(d0) =

log


 1

#I
∑

(j,k)∈I

22(d−d0)(η−j)
W 2

j,k

σ2 22d0j


− log


 1

#I
∑

(j,k)∈I

W 2
j,k

σ2 22d0j


 . (46)

For some dmin ∈ (d0 − 1/2, d0) to be specified later, we set

wj(d)
def
=

{
22(j−η)(d0−d) for j ≤ η

22(j−η)(d0−dmin) otherwise.
(47)

so that, for all j and d ≤ dmin, wj(d) ≤ 22(j−η)(d0−d). We further obtain

L̃(d) − L̃(d0)

≥ log


 1

#I
∑

(j,k)∈I

wj(d)
W 2

j,k

σ2 22d0j


− log


 1

#I
∑

(j,k)∈I

W 2
j,k

σ2 22d0j




= log
Σ(d) + 1

#I

∑
(j,k)∈I wj(d)

(
W 2

j,k

σ2 22d0j − 1
)

1 + 1
#I

∑
(j,k)∈I

(
W 2

j,k

σ2 22d0j − 1
) , (48)

where

Σ(d)
def
=

1

#I
∑

(j,k)∈I

wj(d) .

The proof consists of showing that one may choose dmin ∈ (d0 − 1/2, d0) so

that infd≤dmin
Σ(d) is strictly larger than 1 for n large enough and that the two
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(stochastic) terms involving summations converge to zero in probability uniformly

for d ≤ dmin (the second sum does not depend on d). Since by construction

L̃(d̂) ≤ L̃(d0), this implies that Pf{d̂ ≤ dmin} ≤ Pf{infd≤dmin
L̃(d) ≤ L̃(d0)} → 0,

which establishes (43).

By Lemma 11, we have, for n large enough,

J0 ≤ η < J0 + 2 . (49)

We shall now use (47) with j ≥ J0 + 2 > η. Since d0 > dmin, we get, for n large

enough,

inf
d≤dmin

Σ(d) ≥ 1

#I
J∑

j=J0+2

22(j−η)(d0−dmin) nj

≥ 2−2η(d0−dmin)

#I
J∑

j=J0+2

22j(d0−dmin){n2−j − 2(T − 1)}

Using that n2−J0 → ∞, n ≍ 2J and that 2(d0 − dmin) − 1 < 0, straightfor-

ward computations give that the term involving a summation in the previous

display is asymptotically equivalent to n 2{2(d0−dmin)−1}J0 (4{1 − 22(d0−dmin)})−1.

By Lemma 11, we have #I ∼ 2n2−J0 and η − J0 → 1. Hence,

lim inf
n→∞

inf
d≤dmin

Σ(d) ≥ 2−2(d0−dmin)

8{1 − 22(d0−dmin)} .

There is a value of dmin ∈ (d0−1/2, d0) such that the RHS in the previous display

is strictly larger than 1. For such choice,

inf
d≤dmin

Σ(d) > 1 . (50)

for n large enough.

Let us now check that the two terms in (48) involving summations converge

to zero uniformly in d ≤ dmin. The one in the denominator equals S̃(1)/(#I),

and thus converges to zero by Proposition 6 (b), since #I ∼ 2n2−J0 and J−1
0 +

(n2−J0)−1 → ∞.

The one in the numerator equals S̃({wJ0+j(d)}j≥0)/(#I). Using again Propo-

sition 6 (b), #I ∼ 2n2−J0 and J−1
0 + (n2−J0)−1 → ∞ yield

sup
d≤dmin

2−2(d0−d)J0

#I S̃({wJ0+j(d)}j≥0) = oPf
(1) ,
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provided that there exist C > 0, q ≥ 0 and δ < 1 such that {wJ0+j(d)}j≥0 ∈
B(C, q, δ) for all d ≤ dmin and all n. It now only remains to check this latter fact.

Let d ≤ dmin. Applying the definition (47) and using that d0 − d ≥ d0 − dmin in

the case J0 + j ≤ η, we have, for all j ≥ 0,

wJ0+j(d) ≤ 22(J0+j−η)(d0−dmin) ≤ 22j(d0−dmin) ,

where the last inequality follows by observing that J0 ≤ η. Hence {wJ0+j(d)}j≥0 ∈
B(1, 0, 2(d0 − dmin)) for all d ≤ dmin. Since 2(d0 − dmin) < 1, this achieves the

proof of Step 1. �

Proof of Step 2 : By (42), L(d̂) ≤ E(d0) − E(d̂) so that, for any dmax ≥ d0,

one has infd≥dmax
L(d) ≤ 2 supd≥dmax

|E(d)| on the event {d̂ ≥ dmax}. Since the

function d 7→ L(d) vanishes at d = d0 < dmax and is convex (see Proposition 5),

we have

inf
d≥dmax

L(d) = L(dmax) ≥
1

2
(dmax − d0)

2 inf
d∈[d0,dmax]

L̈(d) .

Using Proposition 5, there exists c > 0 such that, for all n sufficiently large,

infd∈[d0,dmax] L̈(d) ≥ c. Thus, Pf{d̂ ≥ dmax} ≤ Pf{c (d0 − dmax)
2 ≤ E(d)}, which

converges to zero by corollary 7-(b). �

Proof of Step 3 : Let dmin ∈ (d0 − 1/2, d0) and dmax > d0. Relation (42) implies1{dmin ≤ d̂ ≤ dmax}L(d̂) ≤ 2 sup
d≥dmin

|E(d)| (51)

When dmin ≤ d̂ ≤ dmax, we have L(d̂) ≥ 1
2
(d̂− d0)

2 infd∈[dmin,dmax] L̈(d); hence, by

Proposition 5, there exists c > 0 such that, for n large enough,1{dmin ≤ d̂ ≤ dmax}(d̂− d0)
2 ≤ c sup

d≥dmin

|E(d)| .

Corollary 7 (b) then gives (45). �

5. Proof of Theorem 3

We prove here Theorem 3 which concerns rates of convergence. By (18), the

assumptions are equivalent to n2−J0 ≍ nγ for γ ∈ (0, 1) and 2J0 and n2−J0 are

asymptotically equivalent to n/m and m, respectively. We thus again develop
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the proof using J0. We established in Section 1.3 that the estimator d̂ satisfies

Ŝ(d̂) = 0. Performing a Taylor expansion of Ŝ(d) around d = d̂ gives

Ŝ(d0) = 2 log(2) (d̂− d0)
∑

(j,k)∈I

[j − η] j
W 2

j,k

22d̃j
. (52)

where d̃ lies between d0 and d̂. The proof of Theorem 3 now consists in bounding

Ŝ(d0) from above (Step 1) and in showing that
∑

I [j−η] j W 2
j,k/2

2d̃j has a positive

limit (Step 2).

Proof of Step 1. We define the empirical variance of the wavelet coefficients at

scale index j as

σ̂2
j

def
=

1

nj

nj−1∑

k=0

W 2
j,k . (53)

Using that
∑J1

j=J0
(j − η)nj = 0 we may then write (16) as

Ŝ(d0) =

J1∑

j=J0

(j − η)nj

{
2−2jd0 σ̂2

j − σ2
}
,

where σ2 is the constant appearing in (21). Applying the Minkowski inequality

in (16), and Ef [σ̂
2
j ] = σ2

j (f), we get

(
Ef [|Ŝ(d0)|2]

)1/2

≤
J1∑

j=J0

|j − η|
{

Var
1/2
f

( nj

22jd0

σ̂2
j

)
+ nj

∣∣∣∣
σ2

j (f)

22jd0

− σ2

∣∣∣∣
}
.

Condition (21) and Condition (22) imply that the term between curly brackets is

O(n
1/2
j + nj2

−βj). Hence, since nj ≤ n2−j and η − J0 is bounded independently

of n (see Lemma 11), we finally obtain

Ŝ(d0) = OPf

(
(n2−J0)1/2 + n 2−(1+β)J0

)
. (54)

�

Proof of Step 2. We will establish the following asymptotic relations:

(n2−J0)−1
∑

(j,k)∈In(J0,J0+ℓ)

[j − η(In(J0, J0 + ℓ))] j
W 2

j,k

22d̃j
→Pf

(2 − 2−ℓ) κℓ σ
2 , (55)
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where d̃ lies between d0 and d̂In(J0,J0+ℓ) and κℓ is defined in (28), and

(n2−J0)−1
∑

(j,k)∈In(J0,J)

[j − η(In(J0, J))] j
W 2

j,k

22d̃j
→Pf

4 σ2 , (56)

where d̃ lies between d0 and d̂In(J0,J). To prove (55) and (56), write

∣∣∣∣∣∣

∑

(j,k)∈I

(j − η) j
W 2

j,k

22d̃j
−
∑

(j,k)∈I

(j − η) j
W 2

j,k

22d0j

∣∣∣∣∣∣

≤
[

sup
j=J0,...,J1

∣∣∣22(d0−d̃)j − 1
∣∣∣
] ∑

(j,k)∈I

|j − η| j
W 2

j,k

22d0j
. (57)

Applying Theorem 2 with J1 = J0 + ℓ or J1 = J , there exists γ > 0 such that

|d̃− d0| ≤ |d̂− d0| = OPf

(
2−βJ0/2 + (n2−J0)−γ

)
.

Notice that supj≤J1
|22jx − 1| ≤ 22J1|x| − 1 = O(J1|x|) as J1x → 0. Since

n2−J0 ≍ nγ with γ ∈ (0, 1), we obtain J0 supj=J0,...,J1
|22(d0−d̃)j − 1| = oPf

(1).

By Condition (21), {2−2d0jσ2
j (f)}j≥0 is a bounded sequence; hence there exists a

constant C > 0 such that

Ef

∑

(j,k)∈I

|j − η| j
W 2

j,k

22d0j
≤ C

∑

(j,k)∈I

j |j − η|

≤ C

{
J1∑

j=J0

(j − η)2nj + η

J1∑

j=J0

|j − η|nj

}
= O(J0 n2−J0) ,

where the last bound follows from Lemma 11. Inserting the last two displays

in (57), we obtain

∑

(j,k)∈I

(j − η) j
W 2

j,k

22d̃j
= oPf

(n2−J0)+

σ2



∑

(j,k)∈I

(j − η) j +
∑

(j,k)∈I

(j − η) j

(
W 2

j,k

σ2 22d0j
− 1

)
 . (58)

From Lemma 11, we get that (n2−J0)−1
∑

(j,k)∈I(j− η) j converges to (2− 2−ℓ)κℓ

when J1 = J0 + ℓ and to 4 when J1 = J . This establishes (55) and (56).

We finally show that the random term in (58) is negligible. By Proposition 6 (a)

for J1 = J0 + ℓ or Proposition 6 (b) for J1 = J and by using (49) and n2−J0 ≍ nγ
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with γ ∈ (0, 1), we have, for any q, q′ ≥ 0, ηq′
∑

(j,k)∈I(j−η)q
(
W 2

j,k/σ
2 22d0j − 1

)
=

oPf
(n2−J0). Thus writing (j − η)j = (j − η)2 + η(j − η), we conclude

(n2−J0)−1
∑

(j,k)∈I

(j − η) j

(
W 2

j,k

σ2 22d0j
− 1

)
= oPf

(1) .

�

6. The spectral density of wavelet coefficients: definitions and

approximations

We provide some definitions and approximation results introduced and ob-

tained in Moulines et al. (2005) and then prove Theorem 1.

A convenient way to define a joint spectral density for wavelet coefficients is

to consider the between-scale process {[WX
j,k WX

j,k(j − j′)T ]T}k∈Z, where for any

j ≥ u ≥ 0,

WX
j,k(u)

def
=
[
WX

j−u,2uk, . . . ,W
X
j−u,2uk+2u−1

]T
, (59)

and the within-scale process {WX
j,k}k∈Z, which is the between-scale process with

u = 0. For all j ≥ 0, both the within-scale process and the between-scale pro-

cess are covariance stationary in k. We denote by Dj,0(·; f, φ, ψ) the spectral

density of the within-scale process at scale index j and by Dj,u(·; f, φ, ψ) respec-

tively the cross spectral density between {WX
j,k}k∈Z and {WX

j,k(j − j′)T ]T}k∈Z.

Applying (Moulines et al., 2005, Theorem 3), in the setting of Section 2, under

(W-1)-(W-4), we obtain the following approximations for these quantities.

(a) If d0 ∈ ((1 + β)/2 − α,M + 1/2), then, there exists a constant C > 0 such

that, for all j ≥ 0,
∣∣σ2

j (f) − f ∗(0) K(d0, ψ) 22jd0

∣∣ ≤ C f ∗(0)L 2(2d0−β)j (60)

where σ2
j (f) is defined in (20) and K(d, ψ) in (23);

(b) If d0 ∈ ((1 + β)/2 − α,M ], then, for all u ≥ 0, there exists C > 0 such that,

for all λ ∈ (−π, π) and j ≥ 0,
∣∣Dj,u(λ; f, φ, ψ) − f ∗(0)D∞,u(λ; d0, ψ) 22jd0

∣∣ ≤ C f ∗(0)L 2(2d0−β)j (61)

where, for all u ≥ 0 and λ ∈ (−π, π),

D∞,u(λ; d, ψ)
def
=
∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)). (62)
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and where eu(ξ)
def
= [1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T . The spectral density defined

in (62) is related to the quantity appearing in the expressions of the asymptotic

variance of the CLT as follows. From (27), we have

Iu(d, ψ) =

∫ π

−π

|D∞,u(λ; d, ψ)|2 dλ .

Proof of Theorem 1. Condition (21) follows from (60) and by observing that f ∗(0)

and K(d0, ψ) are positive constants.

From (60) and (61), we have that, for all j ≥ 0, {Wj,k/
√
σ2

j (f), k ∈ Z} is a

stationary unit variance sequence whose spectral density is bounded above by

a constant independent of j. Now, Condition (22) is a simple consequence of

Lemma 8. �

7. Proof of Theorem 4

We prove here Theorem 4 (CLT). As the estimator is invariant under multi-

plication of the observations by a positive constant, we may set, without loss of

generality, f ∗(0) = 1.

By Theorem 1, Conditions (21) and (22) with σ2 = K(d0, ψ) under the stated

assumptions. Thus using (18), (52) with (55) and (56), respectively, we obtain

m
1/2
ℓ (d̂In(J0,J0+ℓ) − d0) =

m
−1/2
ℓ ŜIn(J0,J0+ℓ)(d0)

2 κℓ σ2 log(2)
(1 + oPf

(1)) ; (63)

m1/2 (d̂In(J0,J) − d0) =
m−1/2 ŜIn(J0,J)(d0)

4 σ2 log(2)
(1 + oPf

(1)) (64)

Let us write

Ŝ(d0) = Ef

[
Ŝ(d0)

]
+
(
Ŝ(d0) − Ef

[
Ŝ(d0)

])
. (65)

Since
∑

(j,k)∈I(j − η) vanishes and EfW
2
j,k = σ2

j (f), we have

Ef Ŝ(d0) =
∑

(j,k)∈I

(j − η)
(
2−2d0jσ2

j (f) − σ2
)
.

Applying (18), (21), (49) and nj ≤ n2−j, we get

Ef Ŝ(d0) = O

((m
n

)β
)
. (66)
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The following assertions proved below then provide the needed convergence re-

sults on Ŝ(d0).

m
−1/2
ℓ

ŜI(J0,J0+ℓ,J)(d0) − Ef ŜI(J0,J0+ℓ,J)(d0)

2 κℓ σ2 log(2)

L−→ N (0,V(d0, ℓ, ψ)); (67)

m−1/2 ŜI(J0,J)(d0) − Ef ŜI(J0,J)(d0)

4 σ2 log(2)

L−→ N (0,V(d0, ψ)) . (68)

Eq. (66) provides a bound for the bias term in the decomposition (65), while (67)

and (68) provide the Gaussian limit of the fluctuation term in the two cases

J1 − J0 = ℓ fixed and J1 = J . The condition on γ moreover implies that (66)

tends to zero so that the result follows from Slutsky’s lemma.

Proof of (67) and (68). We first establish the following limits. Let Iu(d, ψ),

u ∈ N be defined as in (27). Then,

m−1
ℓ Varf

(
ŜIn(J0,J0+ℓ)(d0)

)
→ 4 π

ℓ∑

j0,j1=0

(j0 − ηℓ)(j1 − ηℓ)I|j1−j0|(d0, ψ)

(2 − 2−ℓ)22d0|j1−j0|+(j1∨j0)
, (69)

m−1Varf

(
ŜIn(J0,J)(d0)

)
→ 2 π

ℓ∑

j0,j1=0

(j0 − 1)(j1 − 1)I|j1−j0|(d0, ψ)

22d0|j1−j0|+(j1∨j0)
(70)

Expressing the RHS of (16) as a weighted sum of the empirical variances σ̂2
j ,

j = J0, . . . , J1 defined in (53), we get

(n2−J0)−1Varf

(
Ŝ(d0)

)
=

J1−J0∑

j0,j1=0

uj0,j1, (71)

where

uj0,j1
def
=
n2−J0

24d0J0

[
∏

j=j0,j1

j − (η − J0)

2(1+2d0)j

]
Covf

(
σ̂2

J0+j0
, σ̂2

J0+j1

)
. (72)

By (49), we have, for n large enough and all j ≥ 0, |j − (η − J0)| ≤ j + 2.

Conditions (21) and (22) imply that, for some constant C, for all j ≥ 0,

Varf

(
σ̂2

J0+j

)
≤ C (n2−J0)−1 2j+4d0(J0+j) .

The two last bounds and the Cauchy-Schwarz inequality give that, for n large

enough,

|uj0,j1| ≤ C (j0 + 2)(j1 + 2) 2−(j0+j1)/2 (73)
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which is summable in j0, j1 ≥ 0 and does not depend on n. Hence, by dominated

convergence, to show (70), we may compute the limit of uj0,j1 for any given fixed

indices j0 and j1 and then compute the sum of the limits over j0 and j1. As

shown in (Moulines et al., 2005, Theorem 5), we have, for any fixed j0 ≤ j1,

n2−J0−4d0J0 Covf

(
σ̂2

J0+j0
, σ̂2

J0+j1

)
→ 4π 2j0 24d0j1 Ij1−j0(d0, ψ) , (74)

where Ij1−j0(d0, ψ) is defined in (27). The limits of η − J0 are computed in

Lemma 11 for J1 = J0 + ℓ and J1 = J so that (72) and (74) yield

uj0,j1 →
4π (j0 − ηℓ) (j1 − ηℓ)

22d0(j0−j1)+j1
Ij1−j0(d0, ψ) (75)

if J1 = J0 + ℓ and

uj0,j1 →
4π (j0 − 1) (j1 − 1)

22d0(j0−j1)+j1
Ij1−j0(d0, ψ) (76)

if J1 = J . The case j0 > j1 is obtained by symmetry. Up to the multiplicative

constants appearing in (18), summing the RHS of (75) over j0, j1 = 0, 1, . . . , ℓ

gives (69), while summing the RHS of (76) over j0, j1 = 0, 1, . . . gives (70).

The normal limits (67) and (68) now follow from Lemma 10. By proving (69)

and (70), we already computed the limits of the variances. It is indeed a simple

verification to show that the RHS of (69) (resp. (70)) divided by (2κℓσ
2 log(2))2

(resp. (4σ2 log(2))2) gives V(d0, ℓ, ψ) (resp. V(d0, ψ)). It remains to check (79).

Let An and Γn be the square matrices indexed on I × I and defined as follows.

(1) An is the diagonal matrix such that [An](j,k),(j,k) = (n2−J0)−1/2sign(j − η)

for all (j, k) ∈ I,

(2) Γn is the covariance matrix of the vector
[
|j − η|1/2 2−d0j Wj,k

]
(j,k)∈I

.

Of course ρ[An] = (n2−J0)−1/2. Moreover, ρ[Γn] ≤∑J1

j=J0
ρ[Γn,j], where Γn,j is the

covariance matrix of the vector
[
|j − η|1/2 2−d0j Wj,k

]
k=0,...,nj−1

. Since {Wj,k}k∈Z

is a stationary time series, by Lemma 9,

ρ[Γn,j] ≤ |j − η| 2−2d0j 2π sup
λ∈(−π,π)

Dj,0(λ; f) .

From (61), noticing that D∞,0(·; d0) is bounded on (−π, π), we then get, for a

constant C not depending on n,

ρ[Γn] ≤ C

J1∑

j=J0

|j − η|.
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By (49), the latter sum is O((1 + J1 − J0)
2). Hence

ρ[An]ρ[Γn] = O
(
(n2−J0)−1/2(J1 − J0)

2
)

so that the conditions of Lemma 10 are met for both cases J1 = J0+ℓ and J1 = J ,

which completes the proof.

Appendix A. Auxiliary results on Gaussian vectors

Lemma 8. Let ξ = {ξℓ, ℓ ∈ Z} be a stationary centered Gaussian process with

spectral density g. Then, for all n ≥ 1,

Var

(
n∑

ℓ=1

ξ2
ℓ

)
≤ 4π n

∫ π

−π

g2(λ) dλ , (77)

Var

(
n∑

ℓ=1

ξ2
ℓ

)
≤ 4π nVar(ξ1) ‖g‖∞ . (78)

Inequality (77) becomes an asymptotic equivalence as n→ ∞ if
∫ π

−π
g2(λ)dλ <∞.

Proof. Denote by γ(·) the auto-covariance function of ξ. Because ξ is Gaussian,

{ξ2
ℓ } is also stationary and its autocovariance function is given by 2γ2(·). Thus,

Var

(
n∑

ℓ=1

ξ2
ℓ

)
= 2n

n−1∑

τ=−n+1

(
1 − |τ |

n

)
γ2(τ)

≤ 2n

∞∑

τ=−∞

γ2(τ) = 4π n

∫ π

−π

g2(λ) dλ

by the Parseval Formula. This shows (77). The asymptotic equivalence in (77) as

n→ ∞ follows by dominated convergence. Since
∫ π

−π
g2(λ) dλ ≤

∫ π

−π
g(λ) dλ ‖g‖∞,

one also gets (78). �

Let ρ(A) denote the spectral radius of the square matrix A, that is, the maxi-

mum of the absolute value of its eigenvalues.

Lemma 9. Let {ξℓ, ℓ ∈ Z} be a stationary process with spectral density g and let

Γn be the covariance matrix of [ξ1, . . . , ξn]. Then, ρ(Γn) ≤ 2π ‖g‖∞.
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Proof. Since Γn is a non-negative definite matrix, ρ(Γn) = supx∈Rn,|x|≤1 xT Γnx,

where |x| is the Euclidean norm of x. For all x ∈ R
n, we may write

xT Γnx =

∫ π

−π

g(λ)

∣∣∣∣∣

n∑

ℓ=1

xℓ e−iℓλ

∣∣∣∣∣

2

dλ,

≤ ‖g‖∞
∫ π

−π

∣∣∣∣∣

n∑

ℓ=1

xℓ e−iℓλ

∣∣∣∣∣

2

dλ = 2π ‖g‖∞ |x|2 .

�

Lemma 10. Let {ξn, n ≥ 1} be a sequence of centered Gaussian vectors and let

Γn be the covariance matrix of ξn. Let (An)n≥1 be a sequence of deterministic

symmetric matrices with adapted dimensions such that

lim
n→∞

Var
(
ξT
nAnξn

)
= σ2 ∈ [0,∞).

Assume that

lim
n→∞

[ρ(An)ρ(Γn)] = 0 . (79)

Then

ξT
nAnξn − E

[
ξT
nAnξn

] L−→ N (0, σ2).

Proof. The result is obvious if σ = 0, hence we may assume σ > 0. Let n ≥ 1, kn

be the rank of Γn and letQn denote a n×kn full rank matrix such thatQnQ
T
n = Γn.

Let ζn ∼ N (0, Ikn
), where Ik is the identity matrix of size k × k. Then, for

any kn × kn unitary matrix Un, Unζn ∼ N (0, Ikn
) and hence QnUnζn has same

distribution as ξn. Moreover, since An is symmetric, so is QT
nAnQn. Choose Un to

be a unitary matrix such that Λn
def
= UT

n (QT
nAnQn)Un is a diagonal matrix. Thus,

ζT
n Λnζn = (QnUnζn)

TAn(QnUnζn) has the same distribution as ξT
nAnξn. Since

Λn is diagonal, ζT
n Λnζn is a sum of independent r.v.’s of the form

∑kn

k=1 λk,nζ
2
k,n,

where, (ζ1,n, . . . , ζkn,n) are independent centered unit variance Gaussian r.v.’s and

λk,n are the diagonal entries of Λn. Note that
∑kn

k=1 λk,n = E
[
ξT
nAnξn

]
. To check

the asymptotic normality, we verify that the Lindeberg conditions hold for the

sum of centered independent r.v.’s ξT
nAnξn − E

[
ξT
nAnξn

]
=
∑kn

k=1 λk,n(ζ
2
k,n − 1).

Under the stated assumptions

lim
n→∞

kn∑

k=1

λ2
k,n E(ζ2

k,n − 1)2 = Var
(
ξT
nAnξn

)
= σ2
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and

ρ(Λn) = ρ(QT
nAnQn) ≤ ρ(An) sup

‖x‖=1

‖Qnx‖ = ρ(An) ρ(Γn) → 0 .

Since ρ(Λn) = max1≤k≤kn
|λk,n|, for all ǫ > 0,

kn∑

k=1

λ2
k,n E

[
(ζ2

k,n − 1)21(|λk,n (ζ2
k,n − 1)| ≥ ǫ)

]
≤

(
kn∑

k=1

λ2
k,n

)
E
[
(ζ2

1,n − 1)21(ρ(Λn) |ζ2
1,n − 1| ≥ ǫ)

]
,

Hence the Lindeberg conditions hold as soon as σ > 0. �

Appendix B. Technical results

Lemma 11. Let 0 ≤ J0 < J1 ≤ J and denote In = In(J0, J1). Let ℓ ≥ 0, ηℓ and

κℓ be defined as in (28), η(I) as in (15) and

κ(I)
def
= (#I)−1

∑

(j,k)∈I

(j − η(I))2 = (#I)−1
∑

(j,k)∈I

j(j − η(I)) .

Assume that n2−J0 → ∞. Then for all p = 0, 1, . . . ,

ηℓ =
1 − 2−ℓ(1 + ℓ/2)

1 − 2−(ℓ+1)
; (80)

lim
l→∞

κℓ = 2 , (81)
∣∣∣∣∣

J1∑

j=J0

(j − J0)
pnj − n2−J0

J1−J0∑

i=0

ip2−i

∣∣∣∣∣ ≤ 2(T − 1) (J1 − J0)
p+1 ; (82)

η(In) − J0 = ηJ1−J0
+O

(
{J1 − J0}2 n2−J0

)
; (83)

(n2−J0)−1κ(In) = κJ1−J0
+O

(
{J1 − J0}3 n2−J0

)
, (84)

Note that, since J1 ≤ J ≤ log2(n), the O-terms of (83) and (84) go to zero as

n2−J0 → ∞.

Proof (sketch). Eq (80) follows from standard computations. This gives ηℓ → 1

as ℓ→ ∞, and by dominated convergence κℓ →
∑

i≥0(i−1)22−i/2, which is equal

to 2, hence (81). To show (82), use that

n2−j − 2(T − 1)nj ≤ n2−j .
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To show (83), use (82) with p = 0, 1 and

η(In) = J0 +

∑J1

j=J0
(j − J0)nj

∑J1

j=J0
nj

To show (84), use (82), (83) and

κ(In) =

∑J1

j=J0
(j − J0)

2nj
∑J1

j=J0
nj

− (η(In) − J0)
2

to be compared with

κJ1−J0
=

∑J1−J0

i=0 i22−i

∑J1−J0

i=0 2−i
− η2

J1−J0
.

�
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