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Abstract

This paper is devoted to the estimation of a vector @ parametrizing an energy
function associated to some “Nearest-Neighbours” Gibbs point process, via the
pseudo-likelihood method. We present some convergence results concerning this
estimator, that is strong consistency and asymptotic normality, when only a
single realization is observed. Sufficient conditions are expressed in terms of the

local energy function and are verified on some examples.

1 Introduction

Gibbs point processes first appeared in the theory of statistical physics. Historical aspects
of the mathematical theory are covered briefly in Kallenberg (1983). The importance of the
Gibbs point process as a model building principle became widely recognized through these
works. Indeed, the class of Gibbs point processes is interesting because it allows to introduce
and study interactions between points through the modelling of an associated potential function.
This resulting gain explains their use in statistical physics Ruelle (1969), Feynman (1972) (when
taking interactions between molecules in models of dilute gases into account) or in ecology (when
analysing competitions between plants). Within the mechanics statistics framework, Gibbs states
are defined as solutions of the well known equilibrium equations refered to Dobrushin-Lanford-
Ruelle (D.L.R.) equations Dobrushin (1969), Lanford and Ruelle (1969). One way to introduce
Gibbs point processes consists in using a family of local specifications with respect to a weight
process. The Preston’s theorems (Preston (1976)) used precisely this approach in order to give
sufficient conditions on local specifications for the existence of Gibbs states.

Many proposals tried to estimate the potential function from the available point pattern data
generated by some Gibbs point processes. If the potential belongs to a parametric family model,
the most well-known methodology is the use of the likelihood function. The main drawback of
this approach is that the likelihood function contains an unknown scaling factor whose value
depends on the parameters and which is difficult to calculate. The first class of models on which
the estimation of the maximum likelihood has been undertaken is the class of pairwise interaction
point processes. Ogata and Tanemura (1984) developed the maximum likelihood estimation
method based on numerical approximations of the likelihood. Penttinen (1984) used a similar
approach while applying a Monte Carlo method in a way to solve the likelihood equation by the
stochastic Newton-Raphson algorithm. Moyeed and Baddeley (1991) proposed another iterative
procedure for estimating the maximum likelihood estimator. For maximum likelihood by Markov
chain Monte Carlo, see Geyer and Thompson (1992), Geyer (1999) and for U.L.A.N. conditions
for maximum likelihood estimator, see Mase (1992). An alternative approach consists in avoiding

to optimize the likelihood function (because of the scaling factor problem) and introducing
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a pseudo-likelihood function instead. This idea originated from Besag (1974) in the study of
lattice processes. Besag et al. (1982) further considered this method for pairwise interaction
point process, while Jensen and Mgller (1991) generalized it to the general class of Gibbs point
processes, see Mase (1995), Mase (1999), Jensen and Kiinsch (1994), Guyon (1991) for asymptotic
properties. A third way is the Takacs-Fiksel estimation method (Takacs (1986) Fiksel (1988)),
which relies on a characteristic property of Gibbs processes using Palm measure. Asymptotics
properties of Takacs-Fiksel estimator are studied in Heinrich (1992), Billiot (1997). A comparison
of these different procedures applied to the Strauss model is presented in Diggle et al. (1994).
The non parametric setting has been undertaken by Glotzl and Rauschenschwandtner (1981)
and Diggle et al. (1987) (and the references therein). Heikkinen and Penttinen (1999) proposed
a semiparametric estimator based on Bayesian smoothing techniques. A general review of the
problem of statistical inference on spatial point processes can be found in the recent monograph

of Mgller and Waggepetersen (2003).
The present study is devoted to “Nearest-Neighbour” Gibbs point models by combining

stochastic geometry arguments (Stoyan et al. (1995)) and computational geometry ones (Preparata
and Shamos (1988), Edelsbrunner (1988), Boissonnat and Yvinec (1995)). Such models are in-
troduced by Baddeley and Mgller (1989) where the neighbourhood relation depends on the
realization of the process. Sufficient conditions (expressed in terms of the energy function) for
the existence of such processes are proposed in Bertin et al. (1999b) and Bertin et al. (1999a),
where some examples are also proposed. The main one is a pairwise interaction point process
where the neighbourhood relation corresponds to the (slightly modified) Delaunay graph of the

realization of the process.

In this paper, we study a pseudo-likelihood estimator for such processes. More precisely, our
framework is restricted to stationary Gibbs point processes based on energy function related
to some graph (for instance the Delaunay graph) such that the energy function is invariant by
translation and such that the local energy function is stable and quasi-local (or local). The main
results of this paper are convergence results (strong consistency and asymptotic normality) of
maximum pseudo-likelihood estimators in this framework. These results are obtained when only
a single realization is observed. Sufficient conditions are expressed in terms of the local energy
function (which makes the results quite general) for some large family of parametrized energy

functions. Among the different parametrizations, the exponential family is considered.

The paper is organized as follows. Section 2 is devoted to some background on Gibbs point
processes and to the description of our framework. The statistical model and the pseudo-
likelihood method are presented in Section 3. Consistency and asymptotic normality of the
maximum pseudo-likelihood estimator are respectively proved in Section 4 and Section 5. Fi-
nally, the different sufficient conditions ensuring convergence results are verified on some ex-

amples in Section 6. A short simulation is presented to check the effectiveness of maximum
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pseudo-likelihood estimator.

2 Background on Gibbs point processes

2.1 Gibbs point processes

We define B, By, to be respectively the Borel o-field and the bounded Borel boolean ring.

Let Q denotes the class of locally finite subsets of IR?. In particular, an element ¢ of €,
also called configuration (of points), could be represented as ¢ = ),y 0z, Which is a simple
counting Radon measure in IR? (i.e. all the points x; of IR? are distinct) where for every A €
B, dz(A) = 15(z) is the Dirac measure and 14(.) is the indicator function of a set A. This space
Q) is equipped with the vague topology, that is to say the weak topology for Radon measures
with respect to the set of continuous functions vanishing outside a compact set. We also define
the o-field F spanned by the maps ¢ — @(A), A € By, where ¢(A) corresponds to the number
of points of ¢ in A due to the Radon measure representation of . The set of all configurations
in a measurable set A C IR? will be denoted by Q4 and the corresponding o-field F is similarly
defined. Furthermore, for any A € By,

(Q,]:) = (QA,]:A) X (QAC,]:AC)

where A° = IR%\ A denotes the complementary of A in IR?. Finally, Q ¢ denotes the class of all
finite subsets of IR?.

A point process on IR? is a Q-valued random variable, denoted by ®, with probability distri-
bution P on (€, F). and the intensity measure A, of P is defined as a measure on B such that

for any D € B
A(D) = [ o(D) Plag).

In the stationary case, A,(D) = A\,v(D) where the constant A, is called the intensity of P and
v is the Lebesgue measure on IRY.

A Gibbs point process is usually defined using a family of local specifications with respect to
a weight process (often a stationary Poisson process with distribution @) and intensity Ag = 1).
Let A be a bounded region in IR?. For such a process, given some configuration . on A, the

conditional probability on A is of the form, for any Y € F :

1
Za(p)

Ma(p,Y) = { | e v @loan vy ¢A0>@A<d¢>} Ly (9)

where

Za(p) = /Q exp (—V ($]pne)) Qu(de)

is called the partition function and Ry = {p € Q : 0 < Zp(p) < oo}



PSEUDO-LIKELIHOOD FOR SOME GIBBS POINT PROCESSES 5

Whereas the finite energy function V () measures the cost of any configuration, the local

energy V (¢|p) is defined as the energy required to add the points of 9 in ¢ :

V(@lp) =V (@pUe)—V(p).

Let us notice that when v reduces to one point x, we denote by a slight abuse V (z|¢) instead
of V ({x}|¢). It is well known that the collection of probability kernels (IIy)aep, satisfies the set
of compatibility and measurability conditions which define a local specification in the Preston’s

sense (Preston (1976)). The main condition is the consistency :
IIAIT, =TI for A’ C A.

Notice that some conditions are needed to ensure the existence of a probability measure P
with respect to any local energy V' and any weight process that satisfies the so-called Dobrushin-
Lanford-Ruelle (D.L.R.) equations :

P(Y|Fae)(p) =1IA(p,Y) for Pae o€ forany A€ ByandY € F.

For the general theory of Gibbs point processes, the reader may refer to Kallenberg (1983); Daley
and Vere-Jones (1988); Stoyan et al. (1995) and the references therein.

2.2 Campbell and Palm measures and Gl6tz Theorem
The reduced Campbell measure C;) of P is a measure on B® F such that for any D € B and
any Y € F
D x¥) = [ [ 1vlo=d)etds) Plde),
QJp

When some measurable function A from IR? x Q on IR is given, the following equation is often

called the refined Campbell theorem
g h(z, o — 6;)P(dy = / hx,ng!dac,gp .
/gﬁe(p ( ) ( ) d>< ( ) p( ( ))

If the intensity measure A, is o—finite, then for A,- a.a. x € IR?, the distribution P, on (2, F)

exists. It is unique for A,- a.a. x € IR? and such that
(D xY) = /DP;(Y) A(de) forany DeB,Y e F.

Then P, is called the reduced Palm distribution of the point process P with respect to point .
Intuitively, the Palm distribution P, is the conditional probability of configurations of the point

process given that the point z belongs to the realization . Therefore, we have

/Q S h(z, 0 — 6)P(dp) = /mdmhu,so)&(dso)Ap(dw).

TEY
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When the process is stationary, one may apply the previous equation by replacing the intensity
measure A, by its expression in this case A,v, and in this framework, Gl6tzl (1980) proved that
P € Gy (V) if and only if the reduced Campbell measure Cz!, is absolutely continuous with respect

torv x P and :

dc! !
T () = A E (0) = exp (< (ale)

where \p =/ exp (—V (z|¢)) P (dy) is the intensity of the process P. In the particular case
Q

when V (z|¢) = 0, the point process corresponds to the stationary Poisson process Q). We know

from the Slivnyak’s theorem that Q' = @ which is one way of characterizing such process.

2.3 Description of some Gibbs models

This paper is mainly devoted to the statistical study of some nearest-neighbours Gibbs point
processes first introduced in Baddeley and Mgller (1989). More precisely, we are interested in

models based on energy function of the form

3
Ve =, > u¥y), (1)
k=1 £€Dely(¢)
where Del(p) is the set of clique of order k of the Delaunay graph defined just below. For some
¢ € Q in general position, one defines Dels(y) by the unique decomposition into triangles v
in which the convex hull of the circle C'(¢) does not contain any point of ¢ \ ¢. The Delaunay
graph is then defined by the set of edges :

Delg((p) = Uz/JEDelg(ap)/PQ(w)'

In order to ensure the existence of such Gibbs state in IRY, Bertin et al. (1999b) prove that the
local stability and quasilocality properties (only expressed in terms of the energy function) are
sufficient conditions of Preston’s Theorem.

Without any additional modification, the previous model does not satisfy the previous as-
sumptions. We then introduce some subgraphs. First let us denote, for some triangle 1, by D(v)

the diameter of the circle circumscribed of ¢ and by 3 (/) the smallest angle of .

Definition 1 Given any (5, €]0,7/3|, we introduce the following particular subset of Dels (¢) :

Del% (¢) = {t € Dels () : B (1) > By} -

The B-Delaunay graph of order 3, of any configuration ¢ is the Delaunay subgraph defined by :

Delyy(0)= |J  Paw).

peDel3%(p)
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The model obtained by replacing the original Delaunay graph by the g-Delaunay subgraph of
order 3, in (1) satisfies the previous sufficient conditions of Preston’s Theorem. From now on,
this model is called the $-Delaunay model. In this spirit, some other models may be defined (see
e.g. Bertin et al. (1999b), Bertin et al. (1999a)) but we advice the reader to keep in mind the
(B-Delaunay model as the main example in order to illustrate the statistical results developped
in this work.

The framework of this paper is restricted to stationary Gibbs point processes based on energy
function related to some graph, denoted Gy (¢) for some finite configuration ¢ (Gi () representing

the set of cliques of order k), of the form

Kmax

Vi) = > ¢ Y. uB&e) (2)

k=1 | £€Gr(p)

Kmaz

= 0W|p| + Z Z u® (& 0) 3, when uV) =90
k=2 €€Gi(p)

and satisfying Assumptions E1, EX¢ or more generally Egloc, E3 defined by :

E; V (+) is invariant by translation.
E° Locality of the local energy : there exists some fixed range denoted by D such that for
any ¢ € €) one has

V (0lp) =V (0lp N B(0,D)) .

Egloc Quasi-locality of the local energy : there exists a nonnegative function e vanishing

asymptotically such that for any ¢ € (2 one has
[V (0lg) =V (0l N B(0, D)) | < &(D).
Eg Stability of the local energy : there exists K > 0 such that for any ¢ € €,
V(Olg) = K.

This framework includes some classical point processes such as :

— models based on the usual complete graph Ga(p) = Pa2(p)) with pairwise interaction
function satisfying a hard-core or inhibition condition and with finite range.

— k-nearest neighbours models with pairwise interaction function bounded and with finite
range (see Bertin et al. (1999c¢)).

— Widom-Rowlinson or area interaction model.
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3 Statistical model and inference method

3.1 Statistical model

We consider Gibbs point processes with energy function V' (-;0) parametrized as follows

As a statistical model we consider a parametrized version of (2) where the different u*) (¢, )
depend on a vector parameters 0% and then denoted from now by u(*) (&; o, G(k)). It is assumed
that the vector of parameters 8 = (01,...,60p41) = <9(1), 02 ... ,O(Km‘””)> € © where © is an
open bounded set of IRP*.

Our data consist in the realization of a point process with energy function V (+;0%) in a do-
main A C IRY satisfying Assumptions E; to Ez. Thus, 8* is the true parameter to be estimated.
The Gibbs measure will be denoted by Py+. From (2), we obtain easily the energy to insert a

point x in a configuration (.

Kmaz
Vielei0) = PO GINTIER ) B DI G
k=1 £€CGk(pU{z})\Gi(¥) £€G(9)\Gy (pU{z})

3)
Theoretical results presented in the next sections are valid for a general energy function

V (+;0). But among this class of models, we will focus on energy functions described by (2) and

such that
D(6:0W,0) = 0wl (¢ ).
The energy can be rewritten

Kmax Kmax

=Y Y oW B (g = Y 00 u®)(y) (4)

k=1 ¢€Gi(y) k=1
where for any finite configuration ¢
uBe)= > ub&e) and (@) = (@) up (@) = (uW(e),..., ulr ()
§€GK(¥)

For two finite configurations ¢ and %, by denoting

D(lp) = P @ Ue) - ul(p) and  u(vlp) = (@), . uF D wle))  (5)

we have for any point z
Kmax Kmax
Z 0™ u® () = 0u(p) and V (x]¢;0) Z 61" u® (a]p) = 6 u(zlp),
(6)
where u(z|@) = (ui (x|, ..., upr1(z|p) = (WD (2|p), ..., ulm=(2]p)). The local specification of
the Gibbs point process associated to an energy function defined by (6) belongs to an exponential

family.



PSEUDO-LIKELIHOOD FOR SOME GIBBS POINT PROCESSES 9

3.2 Pseudo-likelihood

As precised in the introduction, the idea of maximum pseudo-likelihood is due to Besag (1975)
who first introduced the concept for Markov random fields in order to avoid the normalizing
constant. This work was then widely extended and Jensen and Mgller (1991) (Theorem 2.2)
obtained a general expression for Gibbs point processes. With our notation and up to a scalar
factor the pseudo-likelihood defined for a configuration ¢ and a domain of observation A is

denoted by PLy (p;0) and given by

PL (¢:6) = exp (— [ e v (el e»d:c) ] oo (-Viae\z:0). (@)

TEPA

It is more convenient to define (and work with) the log-pseudo-likelihood function, denoted by
LPLy (¢;6).

LPL (936) = [ exp(=V (aly:6)) do = 3 V (sl \:6) (®)

TEPA
3.3 Main statistical tools

Let us start by presenting a particular case of Campbell Theorem combined with Glotz
Theorem that is widely used in our future proofs. For some finite configuration ¢ (resp. for some
set G) and for all z, we denote by ¢, (resp. G,) the configuration ¢ (resp. the set G) translated

of z.

Corollary 1 If the probability measure P is stationary and if the function h(-,-) (used in Camp-
bell Theorem) can be decomposed into h(z,¢) = 1(x € A)g(z,¢) for A C IR where g(-,-) is
such that g(z,¢,) = g(0,¢) for all x, then the refined Campbell theorem combined with Glotz

Theorem allow us to obtain
Ep( Y. g(z,®\2)) = |A| Ep( 9(0,®)exp(~V (0]@)) ) (9)
zedp\x

Let us now present a version of an ergodic theorem obtained by Nguyen and Zessin (1979)

and widely used in this paper. Let D > 0 and denote by Ag the following fixed domain

D D
AOZ{ZGRQ,—5§|Z|§E},

where for all z € IR?, |z| = max(z1, 22).

Theorem 2 (Nguyen and Zessin (1979)) Let {Hg,G € By} be a family of random vari-

ables, which is covariant, that for all x € IR,

Hg,(¢,) = Ha(p), a.s.
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and additive, that is for every disjoint G1, Gy € By,
HG’1UG2 = HG1 + HG2, a.s.

Let T be the sub—o—algebra of F consisting of translation invariant (with probability 1) sets.
Assume there exists a nonnegative and integrable random variable Y such that |Hg| <Y a.s.

for every convex G C Ay. Then,

1 1

lim Hg, = mE(HAOE), a.s.

n—-4o0o ’Gn’

for each reqular sequence G,, — IR.

4 Consistency of the maximum pseudo-likelihood estimator

Maximizing the pseudo-likelihood is equivalent to minimize U, (@) defined by

1

Un(a) = _m

LPLy, (¢;0).

We denote by 6, = an(@) the maximum pseudo-likelihood estimator based on the configuration
p, alternatively defined as
0, (p) = argmingeoUn (6)

In this section, the existence of an ergodic measure is ensured, relatively to our framework,
by Assumptions Eq, Egloc and Eg. The following Assumptions are needed to derive the almost

sure convergence of this estimator.

Ci1 (An)n>1 is a regular sequence of domains such that A, — IR? as n — +o0.
C, For all 6 € O,
V(0] 8) € L*(Pg+).

Cs Forall e ®)\ 6"
Py ({p, V(0136 # V (0]p:6")} ) >0
Cy4 For all 0,0’ € ©, there exists ¢ > 0 such that Py~ —almost surely, we have
|V (0]®;8) — V (0/2:0") | < |16 — 6']|°9(0, ) (10)

where g(+,-) is a function such that for all z, g(0,®) = g(z,®,) and such that ¢(0,-) €
L' (Pg+).

Remark 1 If one only assumes the existence of an ergodic measure, in particular without As-

sumption Eg (taken into account to express Assumptions Cq and Cy4) then
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e the condition Cq becomes : for all 8 € O, the variables V (0|-;8) exp (— V (0|-;0%)) and
exp (— V (0-;0)) are Pg-integrable.
e the function g(-,-) occuring in Assumption Cyq is now such that for all@ € ©, ¢(0,-) exp (—
V (050)) € L' (Por).
These Assumptions have been verified in Mase (1995) for the Ruelle class of pairwise interaction

function with @ = (3, z) where [ represents the inverse temperature and z the chemical potential.

Proposition 3 Assume Py« stationary, then under Assumptions Cq to C4, we have Pgr—almost

surely, as n — +o0
0,(®) — 6* (11)

Due to the decomposition of stationary measures as a mixture of ergodic measures (see Pre-
ston (1976)), one only needs to prove Proposition 3 by assuming that Py« is ergodic. Therefore,
in Lemmas 4 to 6, Pg+ is assumed to be ergodic.

The tool used to obtain the almost sure convergence is a convergence theorem for minimum

contrast estimators established by Guyon (1992). Define
K, (0,0%) =U,(0) — U,(6")

Lemma 4 For all 8 € O, under Assumptions Cq1 and Ca, we have Pgr—almost surely, as

n — 400
Un(8) = U(8) = E,. (exp (=V (0/9;0)) + V (0]@:0) exp (— V (0[#:6%)))  (12)

Proof. Under Assumptions Cy, C2 and E1, one can apply Theorem 2 (Nguyen and Zessin
(1979)) to the process

Hin, = /A exp (~V (z]¢; 0)) dz.

And from Corollary 1, we obtain Pgr—almost surely as n — 400

1
T E = Brye exp (< (0/0:6). (13)

Now, define
Hyp, = Z V(z|®\ z;0)

$E<I>An

Let G C Ay, we clearly have

[Hogl < ) [V (@|@\250)| < Y |V (2]®\ a:6)]

zedg :BE‘I)AO

Under Assumption Cg and from Corollary 1, we have

Ep,. | Y IV (al®\2:0)| | = [Ao|Ep,. (|V (0/2:8) [exp (~V (02:6%) )) < +o00

mGCI)AO
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This means that for all G C Ay, there exists a random variable Y € L!(Pp+) such that |Hy | <
Y. Thus, under Assumption C; and from Theorem 2 (Nguyen and Zessin (1979)) and from
Corollary 1, we have Pg«—almost surely

N Ep*( S V(|9 0)) — Ep,, <V(oy<1>;0)exp(—V(oycb;a*))) .
Al T A ’

$E<I>A0

(14)
We have the result by combining (13) and (14). H
Lemma 5 Under the conditions of Lemma 4, the function Uy,(-) defines a constrast function,
that is there exists a function K(-,0%) such that Pg«—almost surely the following holds for all
0cO:
K,(0,6") — K(6,0)
where K (-,0%) is a positive which, under Assumption Cg is zero if and only if @ = 6*.
Proof. From Lemma 4, the function K(6,0*) > 0 can be written
K(6,6%) = Er,. (exp(~V (0/;6%) ((exp(V (0/9;6)—V (0]®; 6%))~(1+V (0|2;6)~V (0/;6"))))
(15)
The result is obtained using Assumption Cg and by noting that the function ¢ — exp(t) — (1+1)

is positive and is zero if and only if t =0. W
Lemma 6 Under Assumption Cyg, the functions 8 — U, (0) and 0 — K(0,0%) are continuous
in 8. Moreover, the modulus of continuity of U, (0) defined by

W) = sup { [U(6) = Un(6))

0,0/ €©,]l0 -0l <n}

is such that there exists a sequence (€)k>1, with e — 0 as k — +oo such that for all k > 1

P (133% (Wn (%) > gk>> 0. (16)

Proof. Under Assumption Cy, it is sufficient to prove (16). Denote by

W1n< > sup{ I |/ exp (x|®; 0)) —exp(—V(:U|<I>;9/))>dx,

and

1
0,10 -0'| < -
co.lo- o<}

1

Won(7) =sw | 32 Vle\20) -V (o) 5:0)] 6.0 <O, -0 <

$E<I>An

Under Assumptions Eg and Cg4, one can prove that Py« —almost surely

1 exp(K
- <
o (7) <5,

1 1 1
) < == E
:BE‘I’A,L
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Since g(0,-) € L'(Pg+), from Theorem 1 (Nguyen and Zessin (1979)) there exists Ny € IN such
that for all n > Ny we have

(l) < MEPG* (9(0,®)) and Wy, <1> < 2eL(K)Epm (9(0, ®)).

Win | % ke k ke

)

And so for all n > Nj,

1
W, <%> < % with § = 4exp(K)Ep,, (g(0,®)).

1 0
li - > — > .
o { (1) 2 < = )

Thus, it is sufficient to choose e;, = 6’k~¢ with ¢ > § to obtain the result. W

Since

Proof of Proposition 3

Lemma 5 and Lemma 6 ensure the fact that we can apply Property 3.6 of Guyon (1992)
which asserts almost sure convergence for minimum contrast estimators. ll

The following proposition describes conditions Co, C3 and Cy4 in the case of an exponential
family. New conditions are denoted C5*P, C3*? and C3*P. For this result, let us consider energy

functions described by (6).

Proposition 7 Conditions Co and Cy4 (resp. C3) can be replaced by Cgilp (resp. C3*P) where
Cgilp There exists € > 0 such that for alli=1,...,p+1

ui(0lp) € L5 (Pe).

C3*® Identifiability condition : There exists As,...,Apr1, p+ 1 disjoint events of Q such
that Pg+(A;) > 0 and such that for all y,..., ¢, 1 € Ay X x Apyq the (p+1) x (p+1)
matriz with entries uj(0|p;) is constant and invertible.

Proof.

e Denote by || - ||4 the norm defined for z € IR? by ||z]|, = 3_F_; ]zi]q)l/q with the obvious

notation || - || = || - ||2. We have from Holder’s inequality
[V (01;0) =V (0]9;8") | = [ (0 — 0') u(0]®)| < |6 — 6']] 1= [|u(0] @)1=
Since, © is a bounded set there exists a constant k = (e, ®) such that we have

£ 1

16— 6"l < || — ']l |6 —0']]17 < r [10—0||y*.

Thus, we have (10), with ¢ = 15 and g(0,-) = [[u(0|®)[|1+c. And so, C;ilp implies Cy

and obviously Ca.
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e Assumption C5*P means that for all y € IRP™!\ {0} and for all ¢, ... yPpr1 € Ap X X
Api1, the matrix (p + 1) x (p + 1) with entries (U);; = u; (0]p;) (that does not depend
on ¢y,...,9,41) is such that Uy # 0. So there exists io(y) € {1,...,p + 1} such that
yTQiO(y),_ =ylu <O|gpi0(y)) # 0. Therefore, for all y € IRP*1\ {0}

Py ({0 9"ul00) #0}) > Por (i) >0,

which ends the proof.

5 Asymptotic normality for maximum pseudo-likelihood esti-

mates

In this section, the existence of an ergodic measure is ensured, relatively to our framework, by
Assumptions Eq, Elzoc and Eg3. The main tool used hereafter is a central limit theorem proposed
by Jensen and Kiinsch (1994) which justifies the need of EX¢ instead of Egloc.

To ensure the asymptotic normality for the maximum pseudo-likelihood estimator, the fol-
lowing assumptions are needed. Denote, for some real z, by [z] the integer part of z.

N; The point process is observed in a domain A, ® D = Uzenp, B(x, D), where A,, C IR? can

de decomposed into Uier, A(;) where for i = (i1,12)

~ 1 ~ 1
A(i):{ZGIRZ,D<ij—§> gzj§D<z‘j—§>,j:1,2}

for some D > 0. As n — +00, we also assume that A,, — IR? such that |An| — 400 and
|OAn|
— 0
||
N2 V (0];0) is twice times differentiable in @ = 6* and for all j,k = 1,...,p+1, there exists

€ > 0 such that the variables

8‘/ . p*\3+e 62V . n* 1
o0, (0;6%)”"° and 50,00, (0];6%) € L'(Po+)
N3 The matrix
~ ~ T
=(D,6*)=D?* Y Ep (LPL(Alo) (9;6") LPLY (@;6%) ) (17)
|i|§[%]+1

is symmetric and definite positive. The vector LPLE\? (p;0) is defined for any finite con-

figuration p and forall @ € ® and j=1,...,p+ 1 by

oV oV
(LPLY) (¢:0)) = | o5 (algs0)exp (=V (wlpi @) dr — > 5o (xle\a:6).
J A(i) J EBE‘PA(Z,) J
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Ny vy € IR {0}
Po- ({0, 'V (0lg;6%) # 0} ) >0,
where for i = 1,...,p+ 1, (VD(0|g; 6%)); = 89 V(0] 0%).
N5 There exists a neighborhood V of 6* such that V (+;0) is twice times continuously dif-
ferentiable for all j,k =1,...,p+ 1, we have

oV ov
| < _ p*llcl
g (019:0) — 55 (012:0°)| <110~ 0" 1y (0, ),
and

(0]®;6%)

2 2
‘ i ! — <16 — 67]|* h2(0, D),

0/®;0) — ————

0000y, (0/;6) 0000y,

with ¢j,co > 0 and hq(-,-), ha(-,-) two functions such that, for all z, h;(0, ®) = h;(z, ;)
and such that hy(0,-)? and hy(0,-) € LY(Pa+).

Remark 2 Assumption Ny is similar to the one of Jensen (1993), Jensen and Kinsch (1994)
and Heinrich (1992). Among other things, N1 ensures that A, is a reqular sequence of domains

such that A,, — IR?.

Remark 3 Similarly to Remark 1,

e the integrability condition occuring in Assumption Ng becomes : (gT‘j (0]-;0%) exp ( —
V (0];6%)))*" and 8((3 gek (0];0%) exp ( — V (0];0%) ) are Pg+-integrable.
e the functions hyi(-,-) and ha(-,-) occuring in Assumption N5 are now such that for all
0 € V, the variables hi(0,-)?exp( — V (0];0)) and h2(0,-)exp ( — V (0];0)) are Pgs-
integrable. Moreover, it is also assumed, for all j,k =1,...,p+ 1, the Py~-integrability of
. *\ \2 *
the variables (37}; (0];0%) ) exp (—V (0];0)) and aga‘g (0]-;0%)exp (—V (0]-;0)).
These Assumptions have been verified in Mase (1999) for the Ruelle class of pairwise interaction

function with @ = (3, z) where 3 represents the inverse temperature and z the chemical potential.

For 6 in a neighborhood of 6*, we can define, under Assumption N, U,Sl)(e) as the vector

derivative of U,. More precisely under Assumption Ny, we can write
U (0) = |Aa| ™" Y LPLY) (¢:6). (18)
1€ln

For 0 in a neighborhood of 68*, we can also define, under Assumption N5, the Hessian matrix

%(2)(0) given for j,k=1,...,p+ 1 by

1 oV oV oV
Ua0) = 7 [ (G (es6) Gy oli0) — g (algi) ) exp (< (alpi6) do
n n J
1 v
+ (e \ 7:6). (19)
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Proposition 8 Assume Py~ stationary, then under Assumptions N1 to Ny, we have, for any

D fized, the following convergence in distribution as n — 400
(A2 2,,(D,8,)72 Un® (B,) (80~ 6%) = N (0,L,.11) . (20)
where for some 0 and some finite configuration @, the matriz gn(ﬁ, 0) is defined by

~ ~ ~ T
5,00 =MDy Y LPLY (40)LPLY (4:6) (21)
el j—il<[B]+15€ln

By similar arguments of Jensen and Kiinsch (1994), due to the decomposition of stationary
measures as a mixture of ergodic measures (see Preston (1976)), one only needs to prove Propo-
sition 8 by assuming that Py~ is ergodic. Therefore, in Lemmas 9 to 11, Pg+ is assumed to be
ergodic.

The proof of this result is based on a general result obtained by Guyon (1992) (Proposition
3.7), giving conditions for which a miminum contrast estimator is asymptotically normal. The
following Lemmas are needed to ensure these conditions. The first one ensures a central limit
theorem for U,Sl)(e*).

Lemma 9 Under Assumptions N1, No and N3,

(a) we have, for any fized lN), the following convergence in distribution as n — +oo
N g*\— 1) nx
A22(D, %) 2 UV (0%) — N (0,1,,,) (22)

where the matriz X(D, 0*) is defined by (17).

(b) Moreover, we have Pg«—almost surely as n — 400
£,(D,0") — £(D,6"). (23)

Proof. (a) The idea is to apply to U,S”(e*) a central limit theorem obtained by Jensen and
Kiinsch (1994), Theorem 2.1. The following conditions have to be fullfilled to apply this result.

3
(i) Forall i € I, and for all j =1,...,p+ 1 Ep, <‘(LPL§3) (Q);G*))j‘ > < +o00.

(it) For all i € I,, Ep,, ((LPLE\? (®; 9*))j|(1)/\fi)> =0.

|01, |
T ~
(iv) The matrix Varp,, <\An]1/2Ur(L1) (0*)) converges to the matrix X(D, ), which is definite

(13i) The set I, is such that — 0, as n — +o0.

positive under Assumption Ng.
Condition (7) : let us write

Ep,. <((LPL(A13 (®; 0*))j(3> < 2% (Ty +T) (24)
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where the terms T et T5 are respectively defined by

3
7B, || g;/ (2] 0%) exp(—V (x]®: 0%))dz
(4)
3
av
TEPAG)

Under Assumption No, Holder’s inequality and the stationarity of Pg~, we can prove that

2 ov * ’
T1 < exp(3K)\A0\ X Epg* 39 (1"@ o ) dx
3 ov * ’
< exp(3K)|Ag|” x Ep,, 89 (0]®;07) < 400. (25)
We have from Hoélder’s inequality
T, <E Dy, 2 OV o]0\ 25 0* 3
2 > LiPy« | A(i)| Z 39 ( | \‘IE )
TEPAG)
And from Corollary 1, it follows
oV s .
Ty < ol By 1900, 2| S5 010:6°)| xp (- (0f0:0%) )

Again from Hoélder’s inequality and under Assumption Eg, we can prove that for all nn > 0,

(1+n)> e

Under Assumption Eg it is well-known that, for all z > 0, Ep,, (|®x,|?) < +00. Now, let € = 37,

ov

; 0*
o (019:6")

_n
Ty < [Aolexp(K) Bry. (12, ) ™" Br,. (

there exists k = k(g) such that

ov

o7, (012:0")

3+e 1+ls/3
) < 400 (26)

under Assumption Ng. Condition (7) is obtained by combining (24), (25) and (26)

Ty < k|Ao| Ep,. ('

Condition (4¢) : From the stationarity of the process, it is sufficient to prove that
Ep,. ((LPLY) (:6%);]04;) = 0.

Let us write for any finite configuration ¢

D (0 B*)). — v " . oV .
(LPLY) (¢;6%)); = — . 98, (x[i0; 07) exp(=V (]¢; 6 ))dx+/AO o, (x]o \ 2;0%) p(dz). (27)
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Denote respectively by G1(¢) and Ga(p) the first and the second right-hand term of (27) and
by E; = Ep,, <Gi(<1>)|<I>A(c) = QDAS). From the definition of Gibbs point processes,

1

Ey = ——
ZAo(SOAg) Qa,

Qdgn,) [ onldr)ia (@) 5 ol \ 2207 exp (<7 (o, lonsi0”) )

Denote by ¢ = (¢4, cp’Ac). Since () is a Poisson process we can write

= ZAO(1¢A [ @ue) [ ¢ >§9V (el \ a:6%) exp (= (ionlionz 67))
ZAO(lgOA /Q (de") / ¢ (dz)1p, (z )g;/ <m\<pA0ngAc \ 2; 0" >eXp <—V (SO'AOMOAS;G*))

Now, from Campbell Theorem (applied to the Poisson measure Q)

E dm/ U c0>ex (—V(' Uz C;G*)).
2o ZAO (PAC /AO Q ’LPAO A p PAo "PAO
Since from Slivnyak-Mecke Theorem, @ = @', one can obtain
1 oV
By = ———— | Qd¢') | dx o (alph, Upng: 0" v (¢ .. 0"
? ZAO(QDAg) /QQ( 7 / v 89 <$|QDAO U SDAO’ > €xXp < 4 (spl\o U 'I|SDA07 >>

1 oV . .
N W/QQ(CZ@A“ / du 5g; (2l 67) exp (=V (zlp: 67)) exp (v (enslengi67))
- _ [

Condition (4i7) : this condition is equivalent to Assumption Nj.

Condition (iv) : let us start by noting that the vector LPLg\li) (p; 0%) depends only on PAG) for

j such that |57 — ] < [%} + 1. From (18), we can obtain
Varg: <|An|1/2U,§1>(9*)> = | A" Varp,, (LPLS} (@;9*))

T
=AY Ep, <LPL§\13 (®;6*) LPLY) (9;0%) )
1,J€In

T
=AY { 3 Ep,. <LPLE\13 (@;0") LPLY) (@;6%) )

En N Jj—il<[B]+1€l

T
+ > Ep,. <LPLE\13 (@;0") LPLY) (2;6%) ) }

‘.7 Z‘> [E] +17j61n

Let j € I,, such that |j —i| > [ ] + 1, then using condition (i7)

@D /&. p* M) a gl (1) * (1) * *
Epa* LPLAi (®; 0 )LPLAj (®;07) = Epa* E | LPL, ((I) (7] )LPL ((I) (7] ) |LPL (®;07)

)

— Ep,. (E (LPLy) (@:6%)|LPLY) (#;6")) LPL{) (2;6")

=0

)
)
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Now, denote by I the following set
. D .
= {k‘ € Iy, |k —i|l < |:T:| +1,Vie aln}
D
and (for the sake of simplicity) by E; ; the following mean
B = Ep,. (LPLY (@:6°) LPLY (0:6%)
2,] Py« A; s A, N .

From the stationarity of the process, we can write

Varp,. <|An|1/2U,(Ll)(0*)) =AY 3 Eij + > Ei;
i€\ |j—i|<[R]+15€ln i€l |j—il<[B]+1jeln
=LA YD B+ AN Y Eigy
i1<[2]+1 i—iol<[8]+1

for some ig € 01,,. From the definition of the set I,,, we have as n — +oo

Varp,. (|A 2y, 1>(9*))H Y By = ;(f),e*).
is[3]

(b) According to (21), it is easy to see that X (D, 8*) is defined such that as n — +oo,
EPQ* <2n(ﬁ7 9*)> - z(ﬁ7 0*)
We leave the reader to check that under Assumption N3 and from Theorem 1 (Nguyen and
Zessin (1979)), we have Pg«—almost surely as n — +o0, ,,(D,0%) — X(D,6*). B

Remark 4 From the previous proof, we can note that Assumption N3 is fullfilled as soon as one

can prove that for n sufficiently large the matriz Varp,, (|An|1/2Uys1)(0*)) is definite positive.

Lemma 10 Under Assumptions N1, No and Ns, there exists a neighborhood V of 0* on which
Uy (+) is twice times continuously differentiable and a random variable Y such that for all j, k =

1,...,p+ 1 and for all @ € V we have,
l? (2)0 ‘<Y

Proof. Let j,k =1,...,p+ 1. Under Assmuption N5, there exists a neighborhood V of 8* such

that we can write for any configuration ¢

1 o*V

(Ua0) =~ 157 ), 75,98, (19 0)exp (=V (al:0)) da
1 ov ov
‘A /.. 96, (2l0:8) g (2l 0) exp (=V (2]; 0)) dx

|A ] Z nd aek (2] \ 2:6). (28)
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Denote respectively by Ri, Rs, Rs the three right-hand terms of the previous equation. Under
Assumption N, one can choose the neighborhood V such that ||@ — 6*|| < k. Thus, one can

) as

obtain

1 %V
< K)—— 2 — ;0"
|R1| < exp( )!An! N (ff hz(w,cp)Jr‘aej%k (x|p; 0%)

< C1 C1
o] < exp(I) iy [ (R0 6o 0) | T (al0)
ov ov
Cc1 * . O*
k0 (o) | g als6%)| + |5 (el 6°) G5 (el )
1

|R3| <

5 (Wohateo o)+ g ol 16

TEPA,,

)

Under Assumptions N7 and Ng, from Theorem 2 (Nguyen and Zessin (1979)), and using the

[An]
stationarity of Pg+, there exists Ny € IN such that for all n > Ny, we have Py —almost surely
ov )

00,
1%
(Ua?®) | <

2

—— (0|®; 6

|R1| <2 x exp(K)Ep,,. (Kc2h2(0, ?) +

(0]®; 67)

|R2| <2 x exp(K) {Epa* (kzZClhl(O, <I>)2 + ‘STV (0|®; 0") —
J

ov

59, (01:0"

+Ep,, <,<61h1(o, @) + KSR (0, )] 2 (0|®; 0%)

a6,

)

Consequenlty, for n large enough, there exists a positive constant x’ such that

|Rs| < 2 x exp(K)Ep,. ( “ha(0,2) + ‘aa a9, (012567

k', which implies the result. H

Lemma 11 Under Assumptions Ny and Na, we have almost surely, as n — 400
U, (6%) - U (6%)

where U (0%) is the (p + 1) x (p + 1) matriz whose entry is

ov

* av *
(u®©),, = Bn (G5 00" 5

- O@6 ) exp (V0126 ). (29)

Furthermore, under Assumption Ny, U® isa symmetric definite positive matrix.

Proof. Let j,k=1,...,p+ 1. Under Assumptions N7 and Ny and from Theorem 2 (Nguyen
and Zessin (1979)), we have almost surely, as n — 400
1 9V
U, (6")) —— Ep, (| = (2]®;6%) exp (- V (2]®;6%))d
(©a207) , = = 5 Bre (|, 75,0, #1807 exp (- (a]:67) ds

1 oV 1% N .
+mEP9* < " 69 ( |‘1) 0 )69 (CU|(I) 0 )eXp( ($|‘1),0 )) dw)

|A |Ep9* Z 89 aak (z|® \ z;0%) (30)
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Equation (29) is obtained using Corollary 1. And under Assumption Ny, it is easy to see that

U? isa symmetric definite positive matrix. W

Proof of Proposition 8 Using Lemmas 9 a 11, one can apply a classical result concerning
asymptotic normality for minimum contrast estimators, e.g. Proposition 3.7 de Guyon (1992),

in order to prove as n — +00
8,25, (D.60) 2 TR (8) (8,—6") — N (0.L,41)

The result is then obtained using the fact that /én is a consistent estimator of 6*. W
Let us precise, as in Section 4, the different Assumptions for energy functions that can be

written as (4).

Proposition 12 For energy functions described by (4), Assumptions No and Ny (resp. Ny)
can be replaced by N5 (resp. NZP)
Ngs Fori=1,...,p+1, there ewists ¢ >0 such that u;(0]-) € L3 (Pyy).

exp _ ~exp
N4 - C3

The proof is trivial.

6 Some examples

In this section, it is assumed that the sequence of domains satisfies Ny (which implies Cy).
Moreover, we only focus on examples satisfying the following convenient Assumption denoted
by M :

M There exists Ky, Ko > 0 such that for any finite configuration ¢, we have for all x

— K1 < ui(zlp) < Ko, fori=1,...,p+ 1.
Quite obviously, Assumption M ensures Cg’;p and N;’,(Sp . Let us now present a Corollary of

Propositions 3 and 8.

Corollary 13 Under Assumption M and ngP, the consistency of the maximum pseudo-likelihood,
that is the result (11), is valid. And in addition with N3P, its asymptotic normality property,
that is the result (20), is ensured.
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6.1 Pairwise 5-Delaunay model

We first deal with our main example : $-Delaunay (of order some small enough fixed )

model with multi-Strauss pairwise interaction function. In other words,

V(e 0)=0Wpl+ Y u®(&0,0%) = 0u(y) (31)
£€Dely0, ()

with uq () = |p| and for any i € {2,...,p+ 1},

w@)= S Nl

§€Del§’oﬁ (¢)

where 0 = d; < dp < ... < dp41 are some fixed real numbers. Literally, u;(¢) (¢ > 1) corresponds

to the number of ((-Delaunay) edges of length between d;_; and d;. We may also notice that the

range of the pairwise interaction function is d,.1, that is u®(&; 0, 0®) = 0 when ||¢]| > dpy .
In Bertin et al. (1999a), it is proved that this model satisfies Assumption M. Let us now

verify the technical conditions C3*P and N3*P.

Proposition 14 Assumption C3*P is satisfied for the [B-Delaunay model with multi-Strauss

pairwise interaction function.

Proof. Denote by A the following domain
A={zelR?*:-D <z <D,i=1,2}

and by A; the event A; = {p, oA = 0}. We clearly have for all ¢, € A1, u(0]p,) = (1,0,...,0).
Now, let us give for j =2,...,p+ 1, the points ¢; ; and ¢y ; such that the distances d(0,¢1 ;) =

d(0,c2,5) = d(c1,j,¢2,5) = w. Denote for j = 2,...,p+1 the following events for some 1 > 0

Aj(n) = {w € Q:pp ={21,22},21 € B(crj,m), 22,5 € B(Czjm)}-

One can choose 1 such that for all ¢ € Aj;(n), the distances d(0, z1),d(0, 22 and d(z1,z22) are
comprised between dj_; and dj. One can also choose 7 such that the smallest angle of the
triangle with vertices {0,¢1 5, co ;} is strictly greater thant (3, which means that {0, ¢ j,c2;} €

Delgo(apj). Now, it is easy to see that the matrix U defined in Proposition 7 is given by

10 -+ --- 0

1 3

U = (uj(0lgi)h<ij<per=| 1 0
30
10 0 3

and is clearly invertible, which ends the proof.
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Proposition 15 Assumption N3 is satisfied for the -Delaunay model with multi-Strauss pair-

wise interaction function.

Proof. From Remark 4, it is sufficient to prove that the matrix Varp,, (|An|1/2U¢(L1)(<I>; 0%)) is
definite positive for n sufficiently large. Let D> D, y € IRP*! and let A= Ujij<1A i), by the

same argument of Jensen and Kiinsch (1994) (Equation (3.2)), we can write

Y Varp,, <|An|1/2U,§1>> y > |A,| Ep,. (Varpe* <yTU,S1)|<I>AZ,€ ¢ 3Z2>> .

Now, following the proof of Lemma 9 ((a) condition (iv)), one can prove that there exists ng € IN

such that for all n > ng,
1
y Vare,. (1Aal2) y > 5 Br,. (Varpe* (v'LPLY (@567 05,1 < | < 2)).

The aim is to prove that the function h(®) = y* LPL(I) (®; %) is not almost surely a constant,
when the variables ®4,,1 < [¢| < 2 are (for example) ﬁxed to (. Assume that the function h(-)
explicitly given for any finite configuration ¢ by

p+1

Y [untalon)exp (<0Tulalon,)) do = 37 wnalen,\2)

=
is constant for all p € ' ={p € Q: ¢y, =0,1 < || < 2}.
Denote by Ag = {@ € ¥ : ¢y, =0} and by A1 = {p € Q' :|py,|=1}. It is clear that,
Py+(Ap) > 0 and Py+(A;) > 0. We have for all ¢, € Ag and for all ¢, € A;

h(po) = yilAlexp(=07) and  h(py) = g1l Al exp(=67) — 1.

Assuming h(-) constant implies that y; = 0 and then A(-) vanishes. We now consider particular
configurations of two points in Ag and empty in Ay \ Ag,1 < [¢] < 2. Let us first introduce the
following sets for any j € {1,---,p — 1} and any > 0

Dj(n) = {(21,22) €Az €8 ((0,0), g) and 29 € B ((dj,O) 3;) }
Dj_(n) = {(21,22) €Az €8 ((0,0), g) and 29 € B( ,g) }
D;‘(n) = {(21,22) €Az €B ((0,0), g) and 29 € B( ,g) }

When 7 is small enough, the couple of points (21,22) € D;(n) (resp D (n) and D;r(n)) are
such that dj_1 < dj —n < d(z1,22) < dj + 1 < dj41 (vesp. dj—1 < dj —n < d(z1,22) < dj and
dj < d(Zl,ZQ) < dj +n < dj+1)-
We now derive the corresponding events for any j € {1,---,p — 1} and any n > 0
A5 = {w €25 oy, = {21, 22} with (21,2) € D;(n) |
A7 (n) = {Lp € :pp, = {21,220} with (21, 22) € Di (n } C Aj(n)

)
A;r(n) = {go € Q' pp, = {21, 22} with (21, 22) € D;r(n)} C Aj(n)
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satisfying Pg~(A4;(n)) > 0, Po«(A; (1)) > 0 and Pe- (Aj(n)) > 0.
Let us fix some ¢ € Aj(n). There exists some unique couple of points (21, 22) € D;(n), for

which we define the following domain

A(z1,29) = {x eA:{z,z1,2}¢c Del?o(go U {x})} .

Since {z1,22} ¢ Delgo (), we then derive that
p+1

:hﬂp):kZka/N

A(z1,22)

ug(z|{z1, 22}) exp (—G*Tu(x]{zl,ZQ})> dx. (32)

When {z, 21,22} € Delgo(apu {z}), we decompose ug(z|{z1, 2z2}) into two additive terms in order

to isolate the contribution of z :

up(x{z1, 22}) = w, (21, 22) + (21, 22)

with u; “(21,22) = 0 and u{(z1,22) = 1, and for k # 1, u, " (21,22) = 1[dk,1,dk[(||zl — 2z9]|) and
uf(z1,22) = > gy a(le = z1).
=12
Then Equation (32) becomes for any y € IRPT! with y; = 0
h(¢) =0 = exp (—G*TU_JC(ZLZQ)) (Y u (21, 22) f1(21, 22) + Y F(21,22))
<:>yTu Zl,ZQ)fl(Zl,ZQ —|—ny 21,22) 0 (33)

where u™% = (ufx,---,u;fl), u® = (uf,--,up, ) and f = (f1, fo,..., fp1) with

fr(z1,22) = /~ uy (21, 22) exp <—9*Tux(zl, 22)) dx
A(zl 22)

Since each fj is continuous, one could assert that for any € > 0, there exists n > 0 such that
for any (z1,22) € D;(n), |fu(21,22) — frl < & where f = f&((0,0), (d;,0)) is positive. We then
set 04 (21,22) = fu(21,22) — fr and & = (61, - - ,0p+1). We now apply the equation (33) for some
fixed p; € A; (n) and QD;F € A;r(n). By denoting (2,25 ) € D; (n) and (2, 25) € D+( ) such
that ¢, N Ag = {27, 2 } and <p;r NAg = {z, 2}, we have

y]fl +ny =0
yj—i—lfl +ny =0

By substracting these two terms, we can obtain
(Yjr1 =y i = yi01 (21 2) = yimbi (=, 2) +y (8(21,25) = 8(2, %)) (34)

By the previous continuity argument on the f, on can choose n > 0 (depending on y) small

enough such that the absolute value of the right-hand term of (34) could be lower than any
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€ > 0. Thus, by assuming that y; # y;41 and choosing € = %|yj+1 - yj|fl, there exists 7 such
that |y;41 —yj|fl < %|yj+1 —yj|fl which leads to an obvious contradiction. Thus, (34) holds only
if yj41 = y;. By iterating this argument, we obtain that y» = y3 = ... = yp4+1 and by applying
this result on the equation (33), one may assert that for any y € IR

p+1

y> fulz1,2) =0,
k=1

which implies that y = 0 since fi (21, 22) is positive for any (21, 22) € Dj(n) (j arbitrarily chosen
in{l,---,p+1}) N

We propose a simulation study to verify the consistency of maximum pseudo-likelihood
estimator. We consider the model (31) with the vector of parameters @ = (0,2,4). The vector of
bounds d is assumed to be known and fixed to d = (0,20, 80). The simulation procedure used
here is a direct adaptation to the Delaunay energies of the Geyer and Mgller proposal (Geyer
and Mgller (1994), Geyer (1999)). We refer the reader to Bertin et al. (1999d) for a detail of
the used algorithm. One simulation of such a point process is proposed in Figure 1. Table 1
summarizes the different results obtained via m = 5000 replications each one is generated after
one million of iterations of the algorithm. One may verify that both the bias and the standard

deviation become smaller and smaller as the domain A,, grows.

6.2 Other examples of pairwise interaction models

In order to satisfy C3*® and N3P for models on the complete graph or on the k nearest-
neighbours graph with multi-Strauss pairwise interaction function, we can chosse as in Jensen
and Kiinsch (1994) a configuration with one point or two points. On the delaunay graph, it
may be interesting to study multi-Strauss interaction function on the circumradius or on the
smallest angle of each Delaunay triangle. As discussed previously the identifiability assumption
ngp holds easily but NgXp needs more attention. Otherwise, for pairwise Delaunay model, we
can replace the assumption on the smallest angle by a hard-core assumption and then 2, by the

set of admissible configurations Q5 = {p € Q:Ve,y €c p x g,z #y |z —y|| >0}
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F1c. 1 — Example of the points, with (left) and without the edges (right), of the realization of

the B-Delaunay model with multi-Strauss pairwise interaction function where parameters 8 and

d are respectively fixed to (0,2,4) and (0, 20, 80).

Domain A,, | Mean of Estim. of §3  (Std Dev.) | Mean of Estim. of #5 (Std Dev.)
[—250, 250]? 2.068 0.104 4.382 0.786
[—350, 350]2 2.049 0.071 4.223 0.551
[—450, 450)? 2.041 0.056 4.144 0.436

TaB. 1 — Empirical mean and standard deviation of maximum pseudo-likelihood estimates of

parameters of 6o = 2 and 03 = 4 representing the levels of a multi-Strauss pairwise interaction

function where the vector of bounds is assumed to be known and fixed to d = (0, 20, 80) . These

results are obtained from m = 5000 replications of the point process described by (31) generated

in the domain [—600,600]2. Three sizes of domains A,, have been considered.



