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POSET REPRESENTATIONS OF DISTRIBUTIVE

SEMILATTICES

FRIEDRICH WEHRUNG

Abstract. We prove that for any distributive 〈∨, 0〉-semilattice S, there are
a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤

µ(x, y)∨µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together
with the following conditions:

(i) µ(v, u) = 0 implies that u = v, for all u ≤ v in P .
(ii) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) = a ∨ b, then there are

a positive integer n and a decomposition u = x0 ≤ x1 ≤ · · · ≤ xn = v

such that µ(xi+1, xi) lies either below a or below b, for all i < n.
(iii) The subset {µ(x, 0) | x ∈ P} generates the semilattice S.
Furthermore, any finite, bounded subset of P has a join, and P is bounded
in case S is bounded. Furthermore, the construction is functorial on lattice-
indexed diagrams of finite distributive 〈∨, 0, 1〉-semilattices.

1. Introduction

The classical congruence lattice representation problem, usually denoted by CLP,
asks whether any distributive 〈∨, 0〉-semilattice is isomorphic to the semilattice
Conc L of all compact (i.e., finitely generated) congruences of some lattice L. (It is
well-known, see [2] or [3, Theorem II.3.11], that Conc L is a distributive 〈∨, 0〉-semi-
lattice, for any lattice L.) We refer the reader to [5, 10] for surveys about this topic.
If CLP had a positive solution, then it would imply a weaker representation result,
not so easy to state, at the level of posets (i.e., partially ordered sets). The present
paper is intended to provide a positive solution to that poset problem. A negative
solution to CLP finally came out of a failed attempt to extend to semilattices the
results of the present paper [15].

Most of the recent efforts at solving CLP were aimed at lifting not only individual
semilattices, but also diagrams of semilattices, with respect to the congruence semi-
lattice functor Conc. It was observed by P. Pudlák [7] that every distributive 〈∨, 0〉-
semilattice S is the directed union of its finite distributive 〈∨, 0〉-subsemilattices.
Hence, in order to represent S as Conc L for some lattice L, it is sufficient to lift,
with respect to the Conc functor, the diagram of all finite 〈∨, 0〉-subsemilattices
of S, and then to define L as the direct limit of the corresponding lattices.

The possibility whether this could be done in full generality was raised by P.
Pudlák in [7]. This question was answered in the negative by J. Tůma and F.
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2 F. WEHRUNG

Wehrung [11]: there exists a finite poset-indexed diagram of finite Boolean semi-
lattices and 〈∨, 0, 1〉-embeddings that cannot be lifted, with respect to the Conc

functor, by any diagram of lattices (or even by any diagram of algebras in any va-
riety satisfying a nontrivial congruence lattice identity). Nevertheless this left the
possibility open that any lattice-indexed diagram of finite distributive 〈∨, 0〉-semi-
lattices could be liftable by some diagram of lattices.

A caveat in the direction thus suggested appears in [9], where J. Tůma and
the author provide a diagram of finite Boolean semilattices and 〈∨, 0, 1〉-homomor-
phisms, indexed by the cube 23, that cannot be lifted by lattices with permutable
(or even almost permutable) congruences (this is extended to arbitrary algebras with
almost permutable congruences in [8]). Moreover, the contradiction that appears
there makes a very limited use of the lattice structure: namely, only the triangular

inequality for the map that with a pair of lattice elements 〈x, y〉 associates the least
congruence Θ+(x, y) forcing x ≤ y. But this depends only on the poset structure

of the lattices under question!
This suggests that before proving the representation problem with lattices, one

should prove a similar result at poset level. This is what we do in the present paper.
More precisely, we lift any lattice-indexed diagram of finite distributive 〈∨, 0, 1〉-
semilattices and 〈∨, 0, 1〉-homomorphisms by a diagram of finite lattices with so-
called p-measures (where the letter ‘p’ stands for ‘poset’)—see Definition 6.1, the
transition maps being what we shall call interval extensions—see Definition 2.1.
Thus the objects of the resulting diagram are pairs 〈P, µ〉, where P is a finite lattice
and µ : P ×P → D (where D is the corresponding finite distributive 〈∨, 0, 1〉-semi-
lattice) is a p-measure. Furthermore, we require that {µ(x, 0) | x ∈ P} generates D
(as a join-semilattice) and that µ sends prime intervals of P to join-irreducible el-
ements of D—the latter condition amounts to saying that µ satisfies the so-called
V-condition, named this way after H. Dobbertin’s work [1] on measures on Boolean
algebras (see also [8]). The V-condition is fundamental, as otherwise our construc-
tion would be meaningless (e.g., for a given distributive 〈∨, 0〉-semilattice S, it is
easy to construct a distributive lattice L and a surjective 〈∨, 0〉-homomorphism
from Conc L onto S).

Many proofs of positive representation results use transfinite iterations of ‘one-
step constructions’, consisting of building a structure by adding one element at a
time. For instance, such is the case for the main construction of [13] (that proves,
among other things, that every lattice L such that Conc L is a lattice admits a rel-
atively complemented congruence-preserving extension), or the construction used
in [8] to prove that every distributive 〈∨, 0〉-semilattice is the range of some ‘V-
distance’ of type 2, or the construction used in [6] to establish that every bounded
algebraic lattice is isomorphic to the congruence lattice of some groupoid. How-
ever, our result cannot be proved in such a way. The reason for this is presented
in [14], where we construct, at poset level, an example of a p-measure that can-
not be extended to a V-measure. This partly explains the complexity of our main
construction: the posets and measures require a somehow ‘explicit’ construction,
which in turn requires a relatively large technical background.
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For elements a and b in a poset P , we shall use the abbreviations

a ≺P b ⇐⇒ (a <P b and there is no x such that a <P x <P b);

a �P b ⇐⇒ (either a ≺P b or a = b);

a ∼P b ⇐⇒ (either a ≤P b or b ≤P a);

a ‖P b ⇐⇒ (a �P b and b �P a).

We shall use ≤ (instead of ≤P ), ≺, �, ∼, or ‖ in case P is understood.
We shall sometimes view any poset P as a category, the usual way: namely,

the objects of P are the elements of (the underlying poset of) P , while the set of
morphisms from x to y is a singleton if x ≤ y, empty otherwise. For a category C,
a P -indexed diagram of (members of) C is a functor D : P → C. This amounts
to a map Φ from P to the objects of C, together with a system of morphisms
ϕx,y : Φ(x) → Φ(y), for x ≤ y in P , such that ϕx,x = idΦ(x) and ϕx,z = ϕy,z ◦ ϕx,y,
for all x ≤ y ≤ z in P . We shall also denote by D↾≤p (resp., D↾<p) the restriction
of D to {x ∈ P | x ≤ p} (resp., {x ∈ P | x < p}), for all p ∈ P .

A join-semilattice S is distributive, if for all a, b, c ∈ S, if c ≤ a ∨ b, then there
are x ≤ a and y ≤ b in S such that c = x ∨ y. Equivalently, the ideal lattice of S
is a distributive lattice, see [3, Section II.5].

For elements x and y in a lattice L, we denote by ΘL(x, y), or Θ(x, y) if L is
understood, the least congruence of L identifying x and y.

We shall identify every natural number n with the set {0, 1, . . . , n − 1}. We shall
denote by P(X) the powerset of a set X .

2. Relatively complete and interval extensions of posets

Definition 2.1. A poset Q is a relatively complete extension of a poset P , in
notation P ≤rc Q, if for all x ∈ Q, there exists a largest element of P below x
(denoted by xP ) and a least element of P above x (denoted by xP ). Then we
define binary relations ≪P and ≡P on Q by

x ≪P y ⇐⇒ xP ≤ yP ,

x ≡P y ⇐⇒ (xP = yP and xP = yP ),

for all x, y ∈ Q. We say that Q is an interval extension of P , in notation P ≤int Q,
if P ≤rc Q and for all x, y ∈ Q, x ≤ y implies that either x ≪P y or x ≡P y.

The proofs of the following two lemmas are easy exercises.

Lemma 2.2. Let P , Q, and R be posets. If P ≤rc Q and Q ≤rc R, then P ≤rc R.

Lemma 2.3. Let Q be a relatively complete extension of a poset P and let X ⊆ P .

Then
∨

P X exists iff
∨

Q X exists, and then the two values are equal. The dual

statement also holds.

In particular, if P ≤rc Q and Q is a lattice, then P is a sublattice of Q. Hence,
from now on, when dealing with relatively complete extensions, we shall often omit
to mention in which subset the meets and joins are evaluated.

Lemma 2.4. Let Q be an interval extension of a poset P , let x ∈ P and y, z ∈ Q.

If x, y ≤ z and x � y, then yP ≤ z; and dually.
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Proof. If y ≡P z, then, as x ∈ P and x ≤ z, we get x ≤ zP = yP ≤ y, a
contradiction; hence y 6≡P z. As y ≤ z and P ≤int Q, we get y ≪P z, and thus
yP ≤ z. �

Lemma 2.5. Let Q be an interval extension of a poset P . Then Q is a lattice iff P
is a lattice and the interval [xP , xP ] is a lattice for each x ∈ Q. Furthermore, if Q
is a lattice, then for all incomparable x, y ∈ Q,

x ∨ y =

{

xP ∨ yP , if x 6≡P y,

x ∨[u,v] y, if xP = yP = u and xP = yP = v,
(2.1)

x ∧ y =

{

xP ∧ yP , if x 6≡P y,

x ∧[u,v] y, if xP = yP = u and xP = yP = v.
(2.2)

Proof. We prove the nontrivial direction. So suppose that P is a lattice and the
interval [xP , xP ] is a lattice for each x ∈ Q. For incomparable x, y ∈ P , we prove
that the join x ∨ y is defined in Q and given by (2.1). The proof for the meet is
dual. So let z ∈ Q such that x, y ≤ z. If x ≪P z, then xP ≤ z, hence, using
Lemma 2.4 (with xP instead of x), we obtain yP ≤ z, and hence, using Lemma 2.3,
xP ∨yP ≤ z. The conclusion is similar for y ≪P z. As P ≤int Q, the remaining case
is where x ≡P z ≡P y. Putting u = xP = yP and v = xP = yP , the interval [u, v]
is, by assumption, a lattice, so x ∨[u,v] y ≤ z, and hence x ∨ y = x ∨[u,v] y ≤ z. �

Lemma 2.6. Let Q be an interval extension of a poset P . Then x ∼ y implies that

xP ∼ y and xP ∼ y, for all x, y ∈ Q.

Proof. We prove the result for xP . If x ≤ y, then xP ≤ y and we are done. Suppose
that y ≤ x. If y ≪P x, then y ≤ xP . Suppose that y 6≪P x. As y ≤ x and P ≤int Q,
we get x ≡P y, and thus xP = yP ≤ y. �

Definition 2.7. A standard interval scheme is a family of the form
〈P, 〈Qa,b | 〈a, b〉 ∈ I〉〉, where the following conditions are satisfied:

(i) P is a poset, I is a subset of {〈a, b〉 ∈ P × P | a < b}, and Qa,b is a (pos-
sibly empty) poset, for all 〈a, b〉 ∈ I.

(ii) Qa,b ∩ P = ∅, for all 〈a, b〉 ∈ I.
(iii) Qa,b ∩ Qc,d = ∅, for all distinct 〈a, b〉, 〈c, d〉 ∈ I.

We say that the standard interval scheme above is based on P .

The proofs of the following two lemmas are straightforward exercises.

Lemma 2.8. Let 〈P, 〈Qa,b | 〈a, b〉 ∈ I〉〉 be a standard interval scheme. Put Q =
P ∪

⋃

(Qa,b | 〈a, b〉 ∈ I). Furthermore, for all x ∈ Q, put xP = xP = x if x ∈ P ,

while xP = a and xP = b if x ∈ Qa,b, for 〈a, b〉 ∈ I. Let x ≤ y hold, if either

xP ≤ yP or there exists 〈a, b〉 ∈ I such that x, y ∈ Qa,b and x ≤Qa,b
y, for all

x, y ∈ Q. Then ≤ is a partial ordering on Q and Q is an interval extension of P .

In the context of Lemma 2.8, we shall use the notation

Q = P +
∑

(Qa,b | 〈a, b〉 ∈ I). (2.3)

Conversely, the following lemma shows that any interval extension can be obtained
by the P +

∑

(Qa,b | 〈a, b〉 ∈ I) construction. This construction is a special case of
a construction presented in [4].



POSET REPRESENTATIONS OF DISTRIBUTIVE SEMILATTICES 5

Lemma 2.9. Let Q be an interval extension of a poset P . Put

I = {〈a, b〉 ∈ P × P | a < b}, and Qa,b = {x ∈ Q | xP = a and xP = b}, for all

〈a, b〉 ∈ P . Then 〈P, 〈Qa,b | 〈a, b〉 ∈ I〉〉 is a standard interval scheme, and Q =
P +

∑

(Qa,b | 〈a, b〉 ∈ I).

It follows from Lemmas 2.8 and 2.9 that any standard interval scheme based
on P defines an interval extension of P , and every interval extension of P is defined
via some standard interval scheme on P .

3. Covering extensions of posets

Definition 3.1. We say that a poset Q is a covering extension of a poset P , in
notation P ≤cov Q, if Q is an interval extension of P (see Definition 2.1) and the
relation xP �P xP holds for all x ∈ Q.

Lemma 3.2. Let P , Q, and R be posets such that P ≤int Q, Q ≤int R, and there

are no x ∈ P and y ∈ R such that yQ < x < yQ. Then P ≤int R.

Proof. First, P ≤rc R (see Lemma 2.2). Now let x ≤ y in R, and assume, towards
a contradiction, that x 6≪P y and x 6≡P y.

If x ≡Q y, then x ≡P y, a contradiction. As x ≤ y and Q ≤int R, we get x ≪Q y,
that is, xQ ≤ yQ. If xQ ≪P yQ, then x ≪P y, a contradiction. As xQ ≤ yQ and
P ≤int Q, we get xQ ≡P yQ.

As yQ ≤ yQ and P ≤int Q, either yQ ≡P yQ or yQ ≪P yQ. In the first case, we
get, using the relation xQ ≡P yQ, the equalities xP = (xQ)P = (yQ)P = (yQ)P =
yP . In the second case, we get, using again the relation xQ ≡P yQ, the inequalities
xP = (xQ)P = (yQ)P ≤ yQ. But yQ ≤ (yQ)P = xP , and so yQ ≤ xP ≤ yQ. Hence,
by assumption, either xP = yQ or xP = yQ. If xP = yQ, then xP = yP , so x ≪P y,
a contradiction; hence only the subcase where xP = yQ remains, so yQ ∈ P , and
so xP = yQ = yP .

So we have proved that in either case, the equality xP = yP holds. Dually, the
equality xP = yP holds, and so x ≡P y, a contradiction. �

Proposition 3.3. For arbitrary posets P , Q, and R, the following statements hold:

(i) If P ≤int Q and Q ≤cov R, then P ≤int R.

(ii) If P ≤cov Q and Q ≤cov R, then P ≤cov R.

Proof. (i) follows immediately from Lemma 3.2. Now we prove (ii). So assume that
P ≤cov Q and Q ≤cov R, let x ∈ R, we prove that xP �P xP . If {xQ, xQ} ⊆ P ,
then xP = xQ and xP = xQ, but Q ≤cov R, thus xQ �Q xQ, and thus, a fortiori,
xP �P xP . So suppose, from now on, that {xQ, xQ} 6⊆ P , say xQ /∈ P .

If (xQ)P � x, then, as x, (xQ)P ≤ xQ, as P ≤int R (proved in (i)), and by
Lemma 2.4, we get xP ≤ xQ, so xQ ∈ P , a contradiction. Hence (xQ)P ≤ x, but
(xQ)P lies above xP and belongs to P , and so (xQ)P = xP . As P ≤cov Q, we get
xP = (xQ)P �P (xQ)P = xP . �

Example 3.4. The following example shows that interval extensions do not com-
pose. We let K, L, and M the lattices diagrammed on Figure 3.1. Then K ≤int L
and L ≤int M , however K 6≤int M , as x ≤ y and x 6≡K y while xK � yK . In this
example, K ≤cov L and L 6≤cov M .
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0 0 0

1 1 1

a a a x

y yK L M

Figure 3.1. Interval extensions do not compose.

4. Strong amalgams of normal diagrams of posets

In this section we shall deal with families of posets indexed by meet-semilat-
tices. We say that a meet-semilattice Λ is lower finite, if the principal ideal ↓a =
{x ∈ Λ | x ≤ a} is finite, for all a ∈ Λ. Observe that this implies that Λ has a least
element.

Definition 4.1. A normal diagram of posets consists of a family σ = 〈Qi | i ∈ Λ〉
of posets, indexed by a meet-semilattice Λ, such that the following conditions hold
(we denote by ≤i the partial ordering of Qi, for all i ∈ Λ):

(1) Qi is a sub-poset of Qj, for all i ≤ j in Λ.
(2) Qi ∩ Qj = Qi∧j (set-theoretically!), for all i, j ∈ Λ.
(3) For all i, j, k ∈ Λ such that i, j ≤ k and all 〈x, y〉 ∈ Qi × Qj , if x ≤k y,

then there exists z ∈ Qi∧j such that x ≤i z and z ≤j y.

Furthermore, we say that σ is a normal interval diagram of posets, if Qj is an
interval extension of Qi, for all i ≤ j in Λ.

Let σ = 〈Qi | i ∈ Λ〉 be a normal diagram of posets and set P =
⋃

(Qi | i ∈ Λ).
For x, y ∈ P , let x ≤ y hold, if there are i, j ∈ Λ and z ∈ Qi∧j such that x ∈ Qi,
y ∈ Qj, and x ≤i z ≤j y. As the following lemma shows, this definition is indepen-
dent of the chosen pair 〈i, j〉 such that x ∈ Qi and y ∈ Qj.

Lemma 4.2. For all x, y ∈ P and all i, j ∈ Λ such that x ∈ Qi and y ∈ Qj, x ≤ y
iff there exists z ∈ Qi∧j such that x ≤i z ≤j y.

Proof. The given condition implies, by definition, that x ≤ y. Conversely, suppose
that x ≤ y, and fix i′, j′ ∈ Λ and z′ ∈ Qi′∧j′ such that x ∈ Qi′ , y ∈ Qj′ , and
x ≤i′ z′ ≤j′ y. As x ∈ Qi∧i′ , z′ ∈ Qi′∧j′ , and x ≤i′ z′, there exists t ∈ Qi∧i′∧j′

such that x ≤i∧i′ t ≤i′∧j′ z′. As t ∈ Qi∧i′∧j′ , y ∈ Qj∧j′ , and t ≤j′ y, there
exists z ∈ Qi∧i′∧j∧j′ such that t ≤i∧i′∧j′ z ≤j∧j′ y. In particular, z ∈ Qi∧j and
x ≤i z ≤j y. �

Lemma 4.3. The binary relation ≤ defined above is a partial ordering of P . Fur-

thermore, Qi is a sub-poset of P , for all i ∈ Λ.

Proof. Reflexivity is obvious. Now let x, y ∈ P such that x ≤ y and y ≤ x. Fix
i, j ∈ Λ such that x ∈ Qi and y ∈ Qj. By Lemma 4.2, there are u, v ∈ Qi∧j such
that x ≤i u ≤j y ≤j v ≤i x. Hence u ≤i∧j v ≤i∧j u, and so u = v, and therefore
x = u = y.

Now let x ≤ y ≤ z in P , and fix i, j, k ∈ Λ such that x ∈ Qi, y ∈ Qj, and
z ∈ Qk. By Lemma 4.2, there are u ∈ Qi∧j and v ∈ Qj∧k such that x ≤i u ≤j y
and y ≤j v ≤k z. As u ≤j v, there exists w ∈ Qi∧j∧k such that u ≤i∧j w ≤j∧k v.
Hence x ≤i w ≤k z, and so x ≤ z. Therefore, ≤ is a partial ordering on P .
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Finally, let i ∈ Λ and let x, y ∈ Qi. If x ≤i y, then x ≤ y trivially. Conversely,
if x ≤ y, then, by Lemma 4.2, there exists z ∈ Qi such that x ≤i z ≤i y, whence
x ≤i y. Therefore, x ≤ y iff x ≤i y. �

Hence, from now on, we shall drop the index i in ≤i, for i ∈ Λ. We shall call the
poset P the strong amalgam of 〈Qi | i ∈ Λ〉.

Lemma 4.4. Let σ = 〈Qi | i ∈ Λ〉 be a normal diagram of posets, with strong

amalgam P =
⋃

(Qi | i ∈ Λ). Then the following statements hold:

(i) If i ≤ j implies that Qi ≤rc Qj for all i, j ∈ Λ, then Qi ≤rc P for all i ∈ Λ.

(ii) If i ≤ j implies that Qi ≤int Qj for all i, j ∈ Λ, then Qi ≤int P for all

i ∈ Λ.

Proof. (i). Let x ∈ P , say x ∈ Qj , for j ∈ Λ, and let i ∈ Λ. By Lemma 4.2, every
element of Qi below x lies below xQi∧j

; hence xQi
exists, and it is equal to xQi∧j

.

Dually, xQi exists, and it is equal to xQi∧j . In particular, Qi ≤rc P .

To ease notation, we shall from now on use the abbreviations

x(i) = xQi
and x(i) = xQi , for all x ∈ P and all i ∈ Λ. Similarly,

we shall abbreviate x ≡Qi
y by x ≡i y and x ≪Qi

y by x ≪i y,

for all x, y ∈ P and all i ∈ Λ.

(ii). First, it follows from (i) above that Qi ≤rc P . Now let x, y ∈ P such that
x ≤ y, we prove that either x ≡i y or x ≪i y. Fix j, k ∈ Λ such that x ∈ Qj and
y ∈ Qk. Suppose first that j = k. As Qi∧j ≤int Qj, either x ≡i∧j y or x ≪i∧j y. As

t(i) = t(i∧j) and t(i) = t(i∧j) for all t ∈ {x, y} (see proof of (i) above), this amounts
to saying that either x ≡i y or x ≪i y, so we are done.

In the general case, there exists, by Lemma 4.2, z ∈ Qj∧k such that x ≤j z ≤k y.
Applying the paragraph above to the pairs 〈x, z〉 and 〈z, y〉, we obtain that either
x ≡i z or x ≪i z, and either z ≡i y or z ≪i y. If x ≡i z and z ≡i y, then x ≡i y.
In all other three cases, x ≪i y. �

Proposition 4.5. Let σ = 〈Qi | i ∈ Λ〉 be a normal interval diagram of lattices.
Then the following statements hold:

(i) The strong amalgam P =
⋃

(Qi | i ∈ Λ) is a lattice.

(ii) Qi is a sublattice of P , for all i ∈ Λ.

(iii) For all i, j ∈ Λ and all incomparable a ∈ Qi and b ∈ Qj, both a ∨ b and

a ∧ b belong to Qi∧j.

Proof. We denote by ∨k (resp., ∧k) the join (resp., meet) operation in Qk, for all
k ∈ Λ. We first establish a claim.

Claim. Let i, j, k ∈ Λ with i, j ≤ k and let 〈x, y〉 ∈ Qi × Qj. If x ‖ y, then both

x ∨k y and x ∧k y belong to Qi∧j.

Proof of Claim. If x ≡i y, then, as x ∈ Qi, we obtain that x = y, which contradicts
the assumption that x ‖ y; hence x 6≡i y. As Qi ≤int Qk, it follows from Lemma 2.5
that x∨ky = x(i)∨ky(i), and thus, as Qi is a sublattice of Qk, x∨ky ∈ Qi. Similarly,
x ∨k y ∈ Qj , and hence x ∨k y ∈ Qi∧j . The proof for the meet is dual. � Claim.

Now we establish (iii). We give the proof for the meet; the proof for the join
is dual. Suppose that a ‖ b, let i, j ∈ Λ such that a ∈ Qi and b ∈ Qj, and put
c = a(i∧j) ∧i∧j b(i∧j). Of course, c ≤ a, b. Now let x ∈ P such that x ≤ a, b, we
prove that x ≤ c. Pick k ∈ Λ such that x ∈ Qk and set m = i∧j∧k. By Lemma 4.2,
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there are a′ ∈ Qi∧k and b′ ∈ Qj∧k such that x ≤ a′ ≤ a and x ≤ b′ ≤ b. Suppose
first that a′ ‖ b′. It follows from the Claim above that a′ ∧k b′ belongs to Qm, thus
to Qi∧j . As x ≤ a′ ∧k b′ ≤ a, b, we obtain that x ≤ a′ ∧k b′ ≤ c.

Suppose now that a′ ∼ b′, say a′ ≤ b′. By Lemma 4.2, there exists a′′ ∈ Qm such
that a′ ≤ a′′ ≤ b′. If a′′ ≤ a, then (as a′′ ≤ b and a′′ ∈ Qi∧j) a′′ ≤ c, and so x ≤ c.
As a � a′′ (for a � b), the only possibility left is a‖a′′. By the Claim above, a∧i a

′′

belongs to Qm, but this element lies below both a and b, thus, again, below c. As
x ≤ a′ ≤ a ∧i a′′, we thus obtain that x ≤ c.

Hence c is the meet of {a, b} in P , and so P is a meet-semilattice. Dually, P is
a join-semilattice; this establishes (i). In case a, b ∈ Qi, we take i = j, and thus
c = a ∧i b, and so we obtain that Qi is a meet-subsemilattice of P . Dually, Qi is a
join-subsemilattice of P ; this establishes (ii). �

5. Lower finite normal interval diagrams; the elements x• and x•

For a normal diagram σ = 〈Qi | i ∈ Λ〉 of posets, it follows from Definition 4.1(2)
that for every element x of P =

⋃

(Qi | i ∈ Λ), the set {i ∈ Λ | x ∈ Qi} is closed
under finite meets. In particular, in case Λ is lower finite (we shall say that the
diagram σ is lower finite), there exists a least i ∈ Λ such that x ∈ Qi. We shall
denote this element by ν(x), and we shall call the map ν : P → Λ the valuation

associated with the normal diagram σ.
In this section, we shall fix a lower finite normal interval diagram σ = 〈Qi | i ∈ Λ〉

of lattices, with strong amalgam P =
⋃

(Qi | i ∈ Λ). It follows from Proposition 4.5
that P is a lattice.

Lemma 5.1. For all x ∈ P \Q0, there exist a largest x• < x such that ν(x•) < ν(x)
and a least x• > x such that ν(x•) < ν(x). Furthermore, the following hold:

(i) ν(x•) and ν(x•) are comparable.

(ii) Putting i = max{ν(x•), ν(x•)}, both equalities x• = x(i) and x• = x(i)

hold.

(iii) For all y ∈ P such that ν(x) � ν(y), x ≤ y implies that x• ≤ y, and y ≤ x
implies that y ≤ x•.

Proof. Put Λ′ = {i ∈ Λ | i < ν(x)} and X = {x(i) | i ∈ Λ′}. As x /∈ Q0, the set X is
nonempty. As X is finite (because Λ′ is finite), it has a join in P , say x•. It follows
easily from Proposition 4.5 that ν(x•) < ν(x), whence x• is the largest element
of X . The proof of the existence of x• is similar.

As x• ≤ x•, there exists y ∈ Qν(x•)∧ν(x•) such that x• ≤ y ≤ x•. If x ≤ y,
then, as ν(y) < ν(x), we get y = x•, and thus ν(x•) ≤ ν(x•). Similarly, if y ≤ x,
then y = x•, and thus ν(x•) ≤ ν(x•). Now suppose that x ‖ y. It follows from
Proposition 4.5 that ν(x ∧ y), ν(x ∨ y) ≤ ν(y) < ν(x), thus, as x ∨ y ≤ x• and
x• ≤ x ∧ y, we get x ∨ y = x• and x ∧ y = x•. By using the first equality,
we get ν(x•) = ν(x ∨ y) ≤ ν(y) ≤ ν(x•), while by using the second one, we get
ν(x•) ≤ ν(x•), and hence ν(x•) = ν(x•). This takes care of (i).

Now we deal with (ii). From ν(x(i)), ν(x(i)) ≤ i < ν(x) it follows that x(i) ≤ x•

and x• ≤ x(i). As both x• and x• belong to Qi, we get x(i) = x• and x(i) = x•.

Let y ∈ P with ν(x) � ν(y). If x ≤ y, then there exists z ∈ Qν(x)∧ν(y) such that
x ≤ z ≤ y, but ν(z) < ν(x), thus x• ≤ z, and so x• ≤ y. The proof for x• is dual.
This takes care of (iii). �
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6. Extending a p-measure to an interval extension

Definition 6.1. Let S be a 〈∨, 0〉-semilattice and let P be a poset. A map
µ : P × P → S is a S-valued p-measure on P , if µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and
x ≤ y implies µ(x, y) = 0, for all x, y, z ∈ P . The pair 〈P, µ〉 is a S-valued p-

measured poset.

The inequality µ(x, z) ≤ µ(x, y) ∨ µ(y, z) will be referred to as the triangular

inequality.

Notation 6.2. We shall always denote by P , Q, . . . , the underlying posets of p-
measured posets P , Q, . . . . For a p-measured poset P = 〈P, µ〉, we shall use the
notation ‖x 6 y‖P = µ(x, y), for x, y ∈ P . Elements of the form ‖x 6 y‖P will be
called Boolean values.

We shall define the distance function on a p-measured poset P by

‖x = y‖P = ‖max{x, y} 6 min{x, y}‖P , for comparable x, y ∈ P.

Obviously, the distance function on P satisfies the triangular inequality

‖x = z‖P ≤ ‖x = y‖P ∨ ‖y = z‖P , for all pairwise comparable x, y, z ∈ P .
Furthermore, the equality holds for x ≥ y ≥ z.

For 〈∨, 0〉-semilattices S and T and a 〈∨, 0〉-homomorphism ϕ : S → T , a S-
valued p-measured poset P , and a T -valued p-measured poset Q, we shall say
that Q extends P with respect to ϕ, if P is a sub-poset of Q and

‖x 6 y‖Q = ϕ (‖x 6 y‖P ) , for all x, y ∈ P.

We shall then say that the inclusion map from P into Q, together with ϕ, form
a morphism from P to Q, and define diagrams of p-measured posets accordingly.
(Obviously, we could have defined morphisms more generally by involving an order-
embedding from P into Q, but the present definition is sufficient, and more conve-
nient, for our purposes.)

Until Lemma 6.10, we fix a distributive lattice D with zero and a D-valued
p-measured poset P . We are given an interval extension Q of P in which each
interval of Q of the form [xP , xP ], for x ∈ Q, is endowed with a p-measure
‖− 6 −‖[xP ,xP ]. We assume compatibility between those p-measures, in the sense

that ‖xP = xP ‖P = ‖xP = xP ‖[xP ,xP ], for all x ∈ Q. We define a map ‖− 6 −‖Q

from Q × Q to D, by setting ‖x 6 y‖Q = ‖x 6 y‖[xP ,xP ] in case x ≡P y, and

‖x 6 y‖Q = ‖xP 6 yP ‖P ∧
(

‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ]

)

∧
(

‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ]

)

∧
(

‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖yP = y‖[yP ,yP ]

)

,

(6.1)
if x 6≡P y.

The proof of the following lemma is straightforward.

Lemma 6.3. The new map ‖− 6 −‖ extends the original one ‖− 6 −‖P , and also

all maps of the form ‖− 6 −‖[xP ,xP ], for x ∈ Q. Furthermore, for all x, y ∈ Q, the

following statements hold:

(i) x ∈ P implies that ‖x 6 y‖Q = ‖x 6 yP ‖P∧
(

‖x 6 yP ‖P∨‖yP = y‖[yP ,yP ]

)

;

(ii) y ∈ P implies that ‖x 6 y‖Q = ‖xP 6 y‖P∧
(

‖xP 6 y‖P∨‖x = xP ‖[xP ,xP ]

)

.
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Lemma 6.4. x ≤ y implies that ‖x 6 y‖Q = 0, for all x, y ∈ Q.

Proof. If x ≡P y, then ‖x 6 y‖Q = ‖x 6 y‖[xP ,xP ] = 0. If x 6≡P y, then, as

P ≤int Q, we get xP ≤ yP , thus ‖xP 6 yP ‖P = 0, and so ‖x 6 y‖Q = 0. �

Lemma 6.5. The inequality ‖x 6 z‖Q ≤ ‖x 6 y‖Q ∨ ‖y 6 z‖Q holds, for all

x, y, z ∈ Q two of which belong to P .

Proof. Suppose first that x, y ∈ P . By applying Lemma 6.3 to ‖x 6 z‖Q and
‖y 6 z‖Q, we reduce the problem to the two inequalities

‖x 6 zP ‖P ≤ ‖x 6 y‖P ∧ ‖y 6 zP ‖P ,

‖x 6 zP‖P ≤ ‖x 6 y‖P ∧ ‖y 6 zP‖P ,

which hold by assumption. The proof is dual for the case y, z ∈ P .
Suppose now that x, z ∈ P . By applying Lemma 6.3 to ‖x 6 y‖Q and ‖y 6 z‖Q,

we reduce the problem to four inequalities, which we proceed to verify:

‖x 6 z‖P ≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P

≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P .

‖x 6 z‖P ≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P

≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P ∨ ‖y = yP ‖[yP ,yP ].

‖x 6 z‖P ≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P

≤ ‖x 6 yP ‖P ∨ ‖yP 6 z‖P ∨ ‖yP = y‖[yP ,yP ].

‖x 6 z‖P ≤ ‖x 6 yP ‖P ∨ ‖yP = yP ‖P ∨ ‖yP 6 z‖P

= ‖x 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ] ∨ ‖y = yP ‖[yP ,yP ] ∨ ‖yP 6 z‖P .

Hence ‖x 6 z‖P ≤ ‖x 6 y‖Q ∨ ‖y 6 z‖Q. �

Lemma 6.6. The Boolean value ‖x 6 y‖Q lies below each of the semilattice ele-

ments ‖xP 6 yP ‖P , ‖xP 6 yP ‖P∨‖x = xP ‖[xP ,xP ], ‖x
P 6 yP ‖P∨‖yP = y‖[yP ,yP ],

and ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖yP = y‖[yP ,yP ], for all x, y ∈ Q.

Proof. This is obvious by the definition of ‖x 6 y‖Q in case x 6≡P y. If x ≡P y,
then, putting u = xP = yP and v = xP = yP , the four semilattice elements in the
statement above are respectively equal to ‖v = u‖P , ‖x = u‖[u,v], ‖v = y‖[u,v], and
‖x = u‖[u,v] ∨ ‖v = y‖[u,v]. As ‖v = u‖P = ‖v = u‖[u,v], we need to prove that
‖x 6 y‖[u,v] lies below both ‖x = u‖[u,v] and ‖v = y‖[u,v], which is obvious (for
example, ‖x 6 y‖[u,v] ≤ ‖x 6 u‖[u,v] ∨ ‖u 6 y‖[u,v] = ‖x = u‖[u,v]). �

Lemma 6.7. The inequalities ‖xP 6 y‖Q ≤ ‖x 6 y‖Q ≤ ‖xP 6 y‖Q and

‖x 6 yP ‖Q ≤ ‖x 6 y‖Q ≤ ‖x 6 yP ‖Q hold, for all x, y ∈ Q.

Proof. As the two sets of inequalities are dual, it suffices to prove that
‖xP 6 y‖Q ≤ ‖x 6 y‖Q ≤ ‖xP 6 y‖Q. As the conclusion is obvious in case
x ≡P y, it suffices to consider the case where x 6≡P y. As, by Lemma 6.3, the
equality

‖xP 6 y‖Q = ‖xP 6 yP ‖P ∧
(

‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ]

)
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holds, it follows from Lemma 6.6 that ‖x 6 y‖Q ≤ ‖xP 6 y‖Q. Moreover, again
by Lemma 6.3, the equality

‖xP 6 y‖Q = ‖xP 6 yP ‖P ∧
(

‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ]

)

holds, and so ‖xP 6 y‖Q lies below each of the four meetands defining ‖x 6 y‖Q

on the right hand side of (6.1), and hence ‖xP 6 y‖Q ≤ ‖x 6 y‖Q. �

Lemma 6.8. The inequalities ‖x 6 y‖Q ≤ ‖xP 6 y‖Q ∨ ‖x = xP ‖[xP ,xP ] and

‖x 6 y‖Q ≤ ‖x 6 yP ‖Q ∨ ‖yP = y‖[yP ,yP ] hold, for all x, y ∈ Q.

Proof. By symmetry, it suffices to prove the first inequality. Using the expression
of ‖xP 6 y‖Q given by Lemma 6.3(i), we reduce the problem to the following two
inequalities,

‖x 6 y‖Q ≤ ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ],

‖x 6 y‖Q ≤ ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖yP = y‖[yP ,yP ],

that follow immediately from Lemma 6.6. �

Lemma 6.9. The inequalities ‖xP 6 y‖Q ≤ ‖xP = x‖[xP ,xP ] ∨ ‖x 6 y‖Q and

‖x 6 yP ‖Q ≤ ‖y = yP ‖[yP ,yP ] ∨ ‖x 6 y‖Q hold, for all x, y ∈ Q.

Proof. By symmetry, it suffices to prove the first inequality. Suppose first that
x ≡P y, put u = xP = yP and v = xP = yP . We need to prove that ‖v = y‖Q ≤
‖v = x‖Q ∨ ‖x 6 y‖[u,v], which is obvious since ‖v = y‖Q = ‖v = y‖[u,v] and
‖v = x‖Q = ‖v = x‖[u,v].

Now suppose that x 6≡P y. As in (6.1), ‖x 6 y‖Q is the meet of four meetands,
so the first inequality reduces to four inequalities, which we proceed to prove:

‖xP 6 y‖Q ≤ ‖xP 6 yP ‖P (by Lemma 6.6)

≤ ‖xP = x‖Q ∨ ‖x 6 yP ‖Q (by Lemma 6.5)

≤ ‖xP = x‖[xP ,xP ] ∨ ‖xP 6 yP ‖P (by Lemma 6.7).

(We have used the easy observation that ‖xP = x‖Q = ‖xP = x‖[xP ,xP ].)

‖xP 6 y‖Q ≤ ‖xP 6 yP ‖P (by Lemma 6.7)

≤ ‖xP = xP ‖P ∨ ‖xP 6 yP ‖P

= ‖xP = x‖[xP ,xP ] ∨ ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ].

‖xP 6 y‖Q ≤ ‖xP 6 yP ‖P ∨ ‖yP = y‖Q (by Lemma 6.5)

≤ ‖xP = x‖[xP ,xP ] ∨ ‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ].

‖xP 6 y‖Q ≤ ‖xP 6 yP ‖P ∨ ‖yP = y‖Q (by Lemma 6.5)

≤ ‖xP = xP ‖P ∨ ‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ]

= ‖xP = x‖[xP ,xP ] ∨ ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖yP = y‖[yP ,yP ],

which completes the proof of the inequality

‖xP 6 y‖Q ≤ ‖xP = x‖[xP ,xP ] ∨ ‖x 6 y‖Q.

The proof of the inequality ‖x 6 yP ‖Q ≤ ‖y = yP ‖[yP ,yP ] ∨ ‖x 6 y‖Q is dual. �
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Lemma 6.10. The inequality ‖x 6 z‖Q ≤ ‖x 6 y‖Q ∨ ‖y 6 z‖Q holds, for all

x, y, z ∈ Q.

Proof. This is obvious in case x ≡P y ≡P z, as ‖− 6 −‖[xP ,xP ] is a p-measure. So
suppose that either x 6≡P y or y 6≡P z, say x 6≡P y. Expressing the Boolean value
‖x 6 y‖Q as in (6.1), we reduce the problem to four inequalities, that we proceed
to prove:

‖x 6 z‖Q ≤ ‖xP 6 z‖Q (by Lemma 6.7)

≤ ‖xP 6 yP ‖P ∨ ‖yP 6 z‖Q (by Lemma 6.5)

≤ ‖xP 6 yP ‖P ∨ ‖y 6 z‖Q (by Lemma 6.7).

‖x 6 z‖Q ≤ ‖xP 6 z‖Q ∨ ‖x = xP ‖[xP ,xP ] (by Lemma 6.8)

≤ ‖xP 6 yP ‖P ∨ ‖yP 6 z‖Q ∨ ‖x = xP ‖[xP ,xP ] (by Lemma 6.5)

≤ ‖xP 6 yP ‖P ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖y 6 z‖Q (by Lemma 6.7).

‖x 6 z‖Q ≤ ‖xP 6 z‖Q (by Lemma 6.7)

≤ ‖xP 6 yP ‖P ∨ ‖yP 6 z‖Q (by Lemma 6.5)

≤ ‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ] ∨ ‖y 6 z‖Q (by Lemma 6.9).

‖x 6 z‖Q ≤ ‖xP 6 z‖Q ∨ ‖x = xP ‖[xP ,xP ] (by Lemma 6.8)

≤ ‖xP 6 yP ‖P ∨ ‖yP 6 z‖P ∨ ‖x = xP ‖[xP ,xP ] (by Lemma 6.5)

≤ ‖xP 6 yP ‖P ∨ ‖yP = y‖[yP ,yP ] ∨ ‖x = xP ‖[xP ,xP ] ∨ ‖y 6 z‖Q

(by Lemma 6.9).

This completes the proof. �

So we have reached the following result.

Proposition 6.11. Let D be a distributive lattice with zero, let P be a D-valued

p-measured poset, and let Q be an interval extension of P in which each interval

of Q of the form [xP , xP ], for x ∈ Q, is endowed with a p-measure ‖− 6 −‖[xP ,xP ]

such that ‖xP = xP ‖P = ‖xP = xP ‖[xP ,xP ], for all x ∈ Q. Then there exists a

common extension of all p-measures ‖− 6 −‖P and ‖− 6 −‖[xP ,xP ], for x ∈ Q, to

a p-measure on Q, given by (6.1) on pairs 〈x, y〉 such that x 6≡P y.

7. Doubling extensions; the conditions (DB1) and (DB2)

For a poset Λ and a Λ-indexed diagram S = 〈Si, ϕi,j | i ≤ j in Λ〉 of 〈∨, 0〉-
semilattices and 〈∨, 0〉-homomorphisms, we shall say that a Λ-indexed diagram
〈Qi | i ∈ Λ〉 of p-measured posets is S-valued, if Qi is Si-valued and Qj extends Qi

with respect to ϕi,j , for all i ≤ j in Λ.
We shall also use the convention of notation and terminology that consists of

extending to p-measured posets the notions defined for posets, by restricting them
to the underlying posets and stating that the poset extensions involved preserve the
corresponding p-measures. For example, we say that a p-measured poset Q is an
interval extension of a p-measured poset P , in notation P ≤int Q, if Q extends P

and the underlying posets (see Notation 6.2) satisfy P ≤int Q. In particular, a
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normal interval diagram of p-measured lattices is a diagram of p-measured lattices
whose underlying posets form a normal interval diagram.

Definition 7.1. Let P and Q be p-measured posets such that P ≤rc Q. We say
that Q is a doubling extension of P , in notation P ≤db Q, if ‖x = xP ‖ ∼ ‖xP = x‖,
for all x ∈ Q. Equivalently, either ‖xP = xP ‖ = ‖x = xP ‖ or ‖xP = xP ‖ =
‖xP = x‖, for all x ∈ Q.

The following lemma shows that under mild assumptions, doubling extensions
are transitive.

Lemma 7.2. Let P , Q, and R be p-measured posets. If P ≤rc Q ≤rc R, P ≤int R,

and P ≤db Q ≤db R, then P ≤db R.

Proof. Let x ∈ R, we prove ‖x = xP ‖ ∼ ‖xP = x‖. As Q ≤db R, we get
‖x = xQ‖ ∼ ‖xQ = x‖. Hence, if {xQ, xQ} ⊆ P , then xP = xQ and xP = xQ, thus
we are done. Suppose that {xQ, xQ} 6⊆ P , say xQ /∈ P . As P ≤int R and x ∼ xQ, it
follows from Lemma 2.6 that x ∼ (xQ)P . If x ≤ (xQ)P , then, as (xQ)P ≤ xQ and
(xQ)P belongs to P , we get xQ = (xQ)P ∈ P , a contradiction; hence (xQ)P ≤ x.
As xP ≤ (xQ)P and (xQ)P ∈ P , we get (xQ)P = xP . As P ≤db Q, we get
‖xP = xQ‖ ∼ ‖xQ = xP ‖. But this also holds trivially in case xQ ∈ P , so it holds
in every case. So we have proved the following:

‖xP = xQ‖ ∼ ‖xQ = xP ‖. (7.1)

The dual argument gives

‖xQ = xP ‖ ∼ ‖xP = xQ‖. (7.2)

If ‖xP = xQ‖ ≤ ‖xQ = xP ‖, then we get ‖xQ = xP ‖ = ‖xP = xP ‖, and thus
‖x = xP ‖ = ‖xP = xP ‖, and we are done. Dually, the same conclusion follows
from ‖xQ = xP ‖ ≤ ‖xP = xQ‖.

By (7.1) and (7.2), it remains to consider the case where both inequalities
‖xQ = xP ‖ ≤ ‖xP = xQ‖ and ‖xP = xQ‖ ≤ ‖xQ = xP ‖ hold, in which case

‖xQ = xP ‖ = ‖xP = xQ‖ = ‖xP = xP ‖. (7.3)

From Q ≤db R it follows that ‖xQ = x‖ ∼ ‖x = xQ‖. Suppose, for example, that
‖x = xQ‖ ≤ ‖xQ = x‖. Hence ‖xQ = x‖ = ‖xQ = xQ‖, and we get

‖xP = x‖ = ‖xP = xQ‖ ∨ ‖xQ = x‖

= ‖xP = xQ‖ ∨ ‖xQ = xQ‖

= ‖xP = xQ‖

= ‖xP = xP ‖ (see (7.3))

≥ ‖x = xP ‖. �

From now on until the end of this section, we shall fix a finite lattice Λ with
largest element ℓ, a Λ-indexed diagram D = 〈Di, ϕi,j | i ≤ j in Λ〉 of distributive
lattices with zero and 〈∨, 0〉-homomorphisms, a D↾<ℓ -valued normal interval dia-
gram 〈Qi | i < ℓ〉 of p-measured lattices. In addition, we assume that the following
statements hold:

(DB1) Qj is a doubling extension of Qi, for all i ≤ j < ℓ.
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(DB2) For all i < ℓ and all x, y ∈ Qi with ν(x) � ν(y), ‖x = x•‖Qi
= ‖x• = x•‖Qi

implies that ‖x 6 y‖Qi
= ‖x• 6 y‖Qi

and ‖x• = x‖Qi
= ‖x• = x•‖Qi

implies that ‖y 6 x‖Qi
= ‖y 6 x•‖Qi

.

As usual, we denote by P =
⋃

(Qi | i < ℓ) the strong amalgam of 〈Qi | i < ℓ〉.

Remark 7.3. It suffices to verify (DB2) in case x ‖ y. Indeed, let x, y ∈ Qi such
that ν(x) � ν(y) and ‖x = x•‖ = ‖x• = x•‖ (to ease the notation, we drop the
indices Qi). If x ≤ y, then, by Lemma 5.1, x• ≤ y, thus ‖x 6 y‖ = ‖x• 6 y‖ = 0.
If y ≤ x, then, again by Lemma 5.1, y ≤ x•, and so

‖x 6 y‖ = ‖x = x•‖ ∨ ‖x• = y‖ (because y ≤ x• ≤ x)

= ‖x• = x•‖ ∨ ‖x• = y‖ (because ‖x• = x•‖ = ‖x = x•‖)

= ‖x• 6 y‖.

The proof that x ∼ y and ν(x) � ν(y) and ‖x• = x‖ = ‖x• = x•‖ implies that
‖y 6 x‖ = ‖y 6 x•‖ is dual.

Notation 7.4. We add a largest element, denoted by 1, to Dℓ, and for all x, y ∈ P ,
we define an element [[x 6 y]] of Dℓ as follows:

[[x 6 y]] =

{

ϕi,ℓ

(

‖x 6 y‖Qi

)

, if ν(x) ∨ ν(y) ≤ i < ℓ,

1, otherwise.
(7.4)

It is obvious that the value of [[x 6 y]] defined in the first case is independent of the
chosen i such that ν(x) ∨ ν(y) ≤ i < ℓ. We also put

[[x = y]] = [[max{x, y} 6 min{x, y}]], for all comparable x, y ∈ P.

Lemma 7.5. The elements [[x = x(i)]] and [[x(i) = x]] are comparable, for all x ∈ P
and all i < ℓ. Furthermore, [[x• = x]] ∼ [[x = x•]], for all x ∈ P \ Q0.

Proof. Let x ∈ P . As x ∈ Qj for some j < ℓ, we get x(i) = x(i∧j) and x(i) = x(i∧j)

(see Lemma 4.4(i)). As Qi∧j ≤db Qj , we get ‖x = x(i∧j)‖Qj
∼ ‖x(i∧j) = x‖Qj

, that

is, ‖x = x(i)‖Qj
∼ ‖x(i) = x‖Qj

, and thus, applying ϕj,ℓ, we obtain the relation

[[x = x(i)]] ∼ [[x(i) = x]].
It follows from Lemma 5.1 that ν(x•) and ν(x•) are comparable and that, if i

denotes their maximum, then x• = x(i) and x• = x(i). By applying the result of
the previous paragraph, we obtain [[x• = x]] ∼ [[x = x•]]. �

Now we put

P⊕ = {x ∈ P \ Q0 | [[x = x•]] = [[x• = x•]]},

P⊖ = {x ∈ P \ Q0 | [[x• = x]] = [[x• = x•]]}.

If x belongs to Qi \ Q0, then x•, x• ∈ Qi. Hence, both [[x = x•]] and [[x• = x]]
are evaluated by the formula giving the case ν(x) ∨ ν(y) < ℓ of (7.4). Therefore, it
follows from Lemma 7.5 that P \ Q0 = P⊕ ∪ P⊖.

8. Strong amalgams of p-measured posets; from [[x 6 y]] to ‖x 6 y‖

From now on until Lemma 8.12, we shall fix a finite lattice Λ with largest ele-
ment ℓ, a Λ-indexed diagram D = 〈Di, ϕi,j | i ≤ j in Λ〉 of finite distributive lattices
and 〈∨, 0〉-homomorphisms, a D↾<ℓ -valued normal interval diagram 〈Qi | i < ℓ〉 of
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p-measured lattices. Furthermore, we assume that the conditions (DB1) and (DB2)
introduced in Section 7 are satisfied.

We denote by P the strong amalgam of 〈Qi | i < ℓ〉 and by ρ(x) the height of ν(x)
in Λ, for all x ∈ P .

Lemma 8.1. For every positive integer n and all elements x0, x1, . . . , xn ∈ P ,

ν(x0) ∨ ν(xn) < ℓ implies that [[x0 6 xn]] ≤
∨

i<n[[xi 6 xi+1]].

Proof. We argue by induction on the pair 〈n,
∑n

k=0 ρ(xk)〉, ordered lexicographi-
cally. The conclusion is trivial for n = 1.

Now suppose that n = 2. If either ν(x0) ∨ ν(x1) = ℓ or ν(x1) ∨ ν(x2) = ℓ, then
the right hand side of the desired inequality is equal to 1 and we are done; so sup-
pose that ν(x0) ∨ ν(x1), ν(x1) ∨ ν(x2) < ℓ. If ν(x1) ≤ ν(x0) ∨ ν(x2), then, putting
k = ν(x0) ∨ ν(x2) (which is smaller than ℓ), all the Boolean values under consider-
ation are images under ϕk,ℓ of the corresponding Boolean values in Qk, so the con-
clusion follows from the inequality ‖x0 6 x2‖Qk

≤ ‖x0 6 x1‖Qk
∨‖x1 6 x2‖Qk

(we
will often encounter this kind of reduction, and we will summarize it by “everything
happens below level k”). Now suppose that ν(x1) � ν(x0) ∨ ν(x2). In particular,
x1 /∈ Q0 and ν(x1) � ν(x0), ν(x2). By Lemma 7.5, x1 belongs to P⊕ ∪ P⊖. If
x1 ∈ P⊕, then, as ν(x1)∨ν(x2) < ℓ and by (DB2), [[x1 6 x2]] = [[(x1)

• 6 x2]], hence

[[x0 6 x2]] ≤ [[x0 6 (x1)
•]] ∨ [[(x1)

• 6 x2]] (by the induction hypothesis)

≤ [[x0 6 x1]] ∨ [[x1 6 x2]] (because [[x0 6 (x1)
•]] ≤ [[x0 6 x1]])

so we are done. The proof is symmetric in case x1 ∈ P⊖. This concludes the case
where n = 2.

Now assume that n ≥ 3. It ν(xi) ∨ ν(xi+1) = ℓ for some i < n, then the right
hand side of the desired inequality is equal to 1 and we are done, so suppose that
ν(xi)∨ν(xi+1) < ℓ for all i < n. Suppose that there are i, j such that 0 ≤ i ≤ j ≤ n
and 2 ≤ j − i < n such that ν(xi) ∨ ν(xj) < ℓ. It follows from the induction
hypothesis that [[xi 6 xj ]] ≤

∨

i≤k<j [[xk 6 xk+1]]. Hence, using again the induction
hypothesis, we get

[[x0 6 xn]] ≤
∨

k<i

[[xk 6 xk+1]] ∨ [[xi 6 xj ]] ∨
∨

j≤k<n

[[xk 6 xk+1]]

≤
∨

k<n

[[xk 6 xk+1]],

so we are done again. Hence suppose that 0 ≤ i ≤ j ≤ n and 2 ≤ j − i < n implies
that ν(xi)∨ ν(xj) = ℓ, for all i, j. As ν(x1)∨ ν(xn) = ℓ while ν(x0)∨ ν(xn) < ℓ (we

use here the assumption that n ≥ 3), we get ν(x1) � ν(x0). As ν(x2)∨ν(x3) < ℓ and
ν(x1)∨ ν(x3) = ℓ, we get ν(x1) � ν(x2). Hence, if x1 ∈ P⊕, then, as ν(x1) � ν(x2)
and by (DB2), [[x1 6 x2]] = [[(x1)

• 6 x2]], and hence, by using the induction
hypothesis and the obvious inequality [[x0 6 (x1)

•]] ≤ [[x0 6 x1]] (“everything there
happens below level ν(x0) ∨ ν(x1)”), we get

[[x0 6 xn]] ≤ [[x0 6 (x1)
•]] ∨ [[(x1)

• 6 x2]] ∨
∨

2≤i<n

[[xi 6 xi+1]]

≤
∨

k<n

[[xk 6 xk+1]],
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so we are done. If x1 ∈ P⊖, then, as ν(x1) � ν(x0) and by (DB2), [[x0 6 x1]] =
[[x0 6 (x1)•]], hence, by using the induction hypothesis and the obvious inequality
[[(x1)• 6 x2]] ≤ [[x1 6 x2]], we get

[[x0 6 xn]] ≤ [[x0 6 (x1)•]] ∨ [[(x1)• 6 x2]] ∨
∨

2≤i<n

[[xi 6 xi+1]]

≤
∨

k<n

[[xk 6 xk+1]],

so we are done. As x1 ∈ P⊕ ∪ P⊖ (see Lemma 7.5), this completes the induction
step. �

Notation 8.2. We put

P (z) = {t ∈ P | ν(t) < ν(z)},

P⊕(z) = P (z) ∩ P⊕, P⊖(z) = P (z) ∩ P⊖,

for all z ∈ P . Furthermore, for all x, y ∈ P , we define

‖x 6 y‖+ =
∧

(

[[x 6 t]] ∨ [[t 6 y]] | t ∈ P (y)
)

, (8.1)

‖x 6 y‖− =
∧

(

[[x 6 t]] ∨ [[t 6 y]] | t ∈ P (x)
)

, (8.2)

‖x 6 y‖± =
∧

(

[[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] | 〈u, v〉 ∈ P⊖(x) × P⊕(y)
)

, (8.3)

‖x 6 y‖ = [[x 6 y]] ∧ ‖x 6 y‖+ ∧ ‖x 6 y‖− ∧ ‖x 6 y‖±. (8.4)

(All meets are evaluated in Dℓ, the empty meet being defined as equal to 1.) We
observe that the meet on the right hand side of (8.1) may be taken over all t ∈ P (y)
such that ν(x) ∨ ν(t) < ℓ: indeed, for all other t ∈ P (y), we get [[x 6 t]] = 1.
Similarly, the meet on the right hand side of (8.2) may be taken over all t ∈ P (x)
such that ν(t) ∨ ν(y) < ℓ, and the meet on the right hand side of (8.3) may be
taken over all 〈u, v〉 ∈ P⊖(x) × P⊕(y) such that ν(u) ∨ ν(v) < ℓ.

Lemma 8.3. ‖x 6 y‖ ≤ [[x 6 t]] ∨ [[t 6 y]], for all x, y, t ∈ P .

Proof. We argue by induction on ρ(x) + ρ(y) + ρ(t). If ν(x) ∨ ν(t) = ℓ or
ν(t)∨ ν(y) = ℓ then the right hand side of the desired inequality is equal to 1 so we
are done. Suppose, from now on, that ν(x)∨ν(t), ν(t)∨ν(y) < ℓ. If ν(x)∨ν(y) < ℓ,
then it follows from Lemma 8.1 (for n = 2) that [[x 6 y]] ≤ [[x 6 t]] ∨ [[t 6 y]], so we
are done as ‖x 6 y‖ ≤ [[x 6 y]]. Now suppose that ν(x) ∨ ν(y) = ℓ. In particular,
x, y /∈ Q0. If t ∈ Q0, then t ∈ P (y), thus

‖x 6 y‖ ≤ ‖x 6 y‖+ ≤ [[x 6 t]] ∨ [[t 6 y]].

So suppose that t /∈ Q0. If ν(x) ≤ ν(t), then “everything happens below level
ν(t) ∨ ν(y)” (which is smaller than ℓ), so we are done. The conclusion is similar in
case ν(y) ≤ ν(t).

So suppose that ν(x), ν(y) � ν(t). If ν(t) ≤ ν(y), then ν(t) < ν(y) (because
ν(y) � ν(t)), thus t ∈ P (y), and thus

‖x 6 y‖ ≤ ‖x 6 y‖+ ≤ [[x 6 t]] ∨ [[t 6 y]],
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so we are done. If t ∈ P⊕ and ν(t) � ν(y), then, by (DB2), [[t 6 y]] = [[t• 6 y]], and
thus

‖x 6 y‖ ≤ [[x 6 t•]] ∨ [[t• 6 y]] (by the induction hypothesis)

≤ [[x 6 t]] ∨ [[t 6 y]],

so we are done again. This covers the case where t ∈ P⊕. The proof is symmetric
for t ∈ P⊖. �

Lemma 8.4. ‖x 6 y‖ ≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]], for all x, y, u, v ∈ P .

Proof. We argue by induction on ρ(x)+ρ(y)+ρ(u)+ρ(v). If either ν(x)∨ν(u) = ℓ or
ν(u)∨ν(v) = ℓ or ν(v)∨ν(y) = ℓ, then the right hand side of the desired inequality is
equal to 1 and we are done. So suppose that ν(x)∨ν(u), ν(u)∨ν(v), ν(v)∨ν(y) < ℓ.
If ν(x) ∨ ν(v) < ℓ, then, by Lemma 8.1, we get [[x 6 v]] ≤ [[x 6 u]]∨ [[u 6 v]], and so

‖x 6 y‖ ≤ [[x 6 v]] ∨ [[v 6 y]] (by Lemma 8.3)

≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]].

The conclusion is similar for ν(u) ∨ ν(y) < ℓ. So suppose that ν(x) ∨ ν(v) =
ν(u) ∨ ν(y) = ℓ. In particular, ν(x) � ν(u), ν(y) � ν(v), and ν(u) ‖ ν(v), so
x, y, u, v /∈ Q0.

Suppose that u ∈ P⊕. As ν(u) � ν(v) and by (DB2), we get [[u 6 v]] = [[u• 6 v]],
hence

‖x 6 y‖ ≤ [[x 6 u•]] ∨ [[u• 6 v]] ∨ [[v 6 y]] (by the induction hypothesis)

≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] (because [[x 6 u•]] ≤ [[x 6 u]]).

Suppose that u ∈ P⊖ and ν(u) 6< ν(x). As ν(x) � ν(u), we get ν(u) � ν(x), thus
[[x 6 u]] = [[x 6 u•]], and so

‖x 6 y‖ ≤ [[x 6 u•]] ∨ [[u• 6 v]] ∨ [[v 6 y]] (by the induction hypothesis)

≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] (because [[u• 6 v]] ≤ [[u 6 v]]).

The case where either v ∈ P⊖ or (v ∈ P⊕ and ν(v) 6< ν(y) is symmetric. The only
remaining case is where u ∈ P⊖(x) and v ∈ P⊕(y), in which case

‖x 6 y‖ ≤ ‖x 6 y‖± ≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]]. �

Consequently, we get the formula

‖x 6 y‖ =
∧

(

[[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] | u, v ∈ P
)

, for all x, y ∈ P. (8.5)

Lemma 8.5. ‖x 6 z‖ ≤ ‖x 6 y‖ ∨ [[y 6 z]], for all x, y, z ∈ P .

Proof. If ν(y) ∨ ν(z) = ℓ then [[y 6 z]] = 1 and the conclusion is trivial. Suppose
that ν(y) ∨ ν(z) < ℓ. A direct use of Lemma 8.3 yields the inequality ‖x 6 z‖ ≤
[[x 6 y]] ∨ [[y 6 z]], while a direct use of Lemma 8.4 together with the distributivity
of Dℓ yields that ‖x 6 z‖ ≤ ‖x 6 y‖+ ∧‖x 6 y‖−∨ [[y 6 z]]. It remains to establish
the inequality ‖x 6 z‖ ≤ ‖x 6 y‖± ∨ [[y 6 z]], which reduces, by the distributivity
of Dℓ, to proving the inequality

‖x 6 z‖ ≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] ∨ [[y 6 z]], (8.6)
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for all 〈u, v〉 ∈ P⊖(x) × P⊕(y). From ν(v) < ν(y) it follows that [[v 6 z]] ≤
[[v 6 y]] ∨ [[y 6 z]] (“everything there happens below level ν(y) ∨ ν(z)”), and hence

‖x 6 z‖ ≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 z]] (by Lemma 8.4)

≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] ∨ [[y 6 z]],

which completes the proof of (8.6). �

Lemma 8.6. ‖x 6 z‖ ≤ ‖x 6 y‖ ∨ ‖y 6 z‖, for all x, y, z ∈ P .

Proof. For elements u, v ∈ P , we get, by three successive applications of Lemma 8.5,
the inequalities

‖x 6 u‖ ≤ ‖x 6 y‖ ∨ [[y 6 u]];

‖x 6 v‖ ≤ ‖x 6 u‖ ∨ [[u 6 v]];

‖x 6 z‖ ≤ ‖x 6 v‖ ∨ [[v 6 z]].

Hence, combining these inequalities, we obtain

‖x 6 z‖ ≤ ‖x 6 y‖ ∨ [[y 6 u]] ∨ [[u 6 v]] ∨ [[v 6 z]].

Evaluating the meets of both sides over u, v ∈ P and using (the easy direction of)
(8.5) yields the desired conclusion. �

As a consequence, we obtain the following simple expression of ‖x 6 y‖.

Corollary 8.7. The Boolean value ‖x 6 y‖ is equal to the meet in Dℓ of all

elements of Dℓ of the form

[[x 6 z1]] ∨ [[z1 6 z2]] ∨ · · · ∨ [[zn−1 6 y]], (8.7)

where n is a natural number and z0, z1, . . . , zn ∈ P such that z0 = x, zn = y, and

ν(zi) ∨ ν(zi+1) < ℓ for all i < n. Furthermore, it is sufficient to restrict the meet

to finite sequences 〈z0, z1, z2, z3〉 (so n = 3).

Proof. Denote temporarily by ‖x 6 y‖∗ the meet in Dℓ of all elements of Dℓ of
the form (8.7). An immediate application of the easy direction of (8.5) yields the
inequality ‖x 6 y‖∗ ≤ ‖x 6 y‖. Conversely, for every natural number n and all
z0, z1, . . . , zn ∈ P such that z0 = x, zn = y, and ν(zi) ∨ ν(zi+1) < ℓ for all i < n,

‖x 6 y‖ ≤
∨

i<n

‖zi 6 zi+1‖ (by Lemma 8.6)

≤
∨

i<n

[[zi 6 zi+1]] (because ‖zi 6 zi+1‖ ≤ [[zi 6 zi+1]]),

which concludes the proof of the first part. The bound n = 3 follows from the easy
direction of (8.5). �

As an immediate consequence of Lemma 8.1, we obtain that the equality
‖x 6 y‖ = [[x 6 y]] holds for all x, y ∈ P such that ν(x) ∨ ν(y) < ℓ. Hence
we obtain the following lemma.

Lemma 8.8. The p-measure ‖− 6 −‖ extends the p-measure ‖− 6 −‖Qi
with

respect to ϕi,ℓ, for all i < ℓ.

Definition 8.9. The strong amalgam P =
⋃

(Qi | i < ℓ), endowed with the p-
measure ‖− 6 −‖ constructed above, will be called the strong amalgam of the

family 〈Qi | i < ℓ〉 with respect to D.
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So we have reached the main goal of the present section.

Proposition 8.10. Let Λ be a finite lattice with largest element ℓ, let

D = 〈Di, ϕi,j | i ≤ j in Λ〉 be a Λ-indexed diagram of finite distributive lattices

and 〈∨, 0〉-homomorphisms, and let 〈Qi | i < ℓ〉 be a D↾<ℓ -valued normal interval

diagram of p-measured lattices satisfying (DB1) and (DB2). Then the strong amal-

gam P of 〈Qi | i < ℓ〉 (see Definition 8.9) is a Dℓ-valued p-measured lattice, which

extends Qi with respect to ϕi,ℓ, for all i < ℓ.

Lemma 8.11. Under the assumptions of Proposition 8.10, the p-measured poset P

is a doubling extension of Qi, for all i < ℓ.

Proof. An immediate consequence of Lemmas 7.5 and 8.8. �

The goal of the following lemma is to propagate the assumption (DB2) through
the induction process that will appear in the constructions of Theorems 9.1 and 9.2.

Lemma 8.12. For all x, y ∈ P , the following statements hold:

(i) (ν(x) � ν(y) and x ∈ P⊕) implies that ‖x 6 y‖ = ‖x• 6 y‖.
(ii) (ν(y) � ν(x) and y ∈ P⊖) implies that ‖x 6 y‖ = ‖x 6 y•‖.

Proof. As (i) and (ii) are dual, it suffices to establish (i). We first claim that for
all x ∈ P⊕ and all y ∈ P , ν(x) � ν(y) implies that [[x• 6 y]] ≤ [[x 6 y]]. Indeed,
the equality holds by assumption (DB2) in case ν(x)∨ ν(y) < ℓ. If ν(x)∨ ν(y) = ℓ,
then [[x 6 y]] = 1 and we are done again.

Now let x ∈ P⊕ and y ∈ P such that ν(x) � ν(y), we must prove that ‖x• 6 y‖
lies below [[x 6 y]], ‖x 6 y‖+, ‖x 6 y‖−, and ‖x 6 y‖±.

‖x• 6 y‖ ≤ [[x• 6 y]] (see (8.4))

≤ [[x 6 y]] (as ν(x) � ν(y) and by the claim above).

Now let t ∈ P (y).

‖x• 6 y‖ ≤ [[x• 6 t]] ∨ [[t 6 y]] (by Lemma 8.3)

≤ [[x 6 t]] ∨ [[t 6 y]] (as ν(x) � ν(t) and by the claim above).

Evaluating the meets of both sides over t ∈ P⊕(y) yields ‖x• 6 y‖ ≤ ‖x 6 y‖+.
A similar (but not symmetric!) proof yields ‖x• 6 y‖ ≤ ‖x 6 y‖−. Finally, let
u ∈ P⊖(x) and v ∈ P⊕(y). Then

‖x• 6 y‖ ≤ [[x• 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] (by Lemma 8.4)

≤ [[x 6 u]] ∨ [[u 6 v]] ∨ [[v 6 y]] (as ν(x) � ν(u) and by the claim above),

hence, evaluating the meets of both sides over 〈u, v〉 ∈ P⊖(x) × P⊕(y), we get
‖x• 6 y‖ ≤ ‖x 6 y‖±, which completes the proof. �

9. Constructing a p-measure on a covering, doubling extension of a
strong amalgam of lattices

Let Λ, D, and 〈Qi | i < ℓ〉 satisfy the assumptions of Proposition 8.10, with
strong amalgam P (see Definition 8.9). By Proposition 8.10, ‖− 6 −‖P is a Dℓ-
valued p-measure on P , which extends each p-measured lattice Qi with respect to
the corresponding 〈∨, 0〉-homomorphism ϕi,ℓ.
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Now we let Q be a covering extension of P . Furthermore, we assume that each
closed interval [xP , xP ] of Q, for x ∈ Q, is endowed with a p-measure ‖− 6 −‖[xP ,xP ]

such that

‖x = xP ‖[xP ,xP ] ∼ ‖xP = x‖[xP ,xP ], for all x ∈ Q, (9.1)

‖xP = xP ‖[xP ,xP ] = ‖xP = xP ‖P , for all x ∈ Q. (9.2)

(Observe that the notation ‖xP = xP ‖P in (9.2) above does not involve the full
definition of the strong amalgam given in Definition 8.9: indeed, from P ≤cov Q
it follows that xP �P xP ; as P is the strong amalgam of 〈Qi | i < ℓ〉, xP and xP

belong to some Qi, and so we can just put ‖xP = xP ‖P = ϕi,ℓ

(

‖xP = xP ‖Qi

)

,
which is independent of the chosen i.)

The goal of the present section is to extend ‖− 6 −‖P to a p-measure on Q such
that, setting Qℓ = Q, the extended diagram 〈Qi | i ≤ ℓ〉 satisfies the assumptions
of Proposition 8.10.

We need to verify several points. First, for all i < ℓ, as Qi ≤int P and P ≤cov Q,
we obtain from Lemma 4.4 that Qi ≤int Q. Item (3) of Definition 4.1 for the
extended diagram 〈Qi | i ≤ ℓ〉 follows from the definition of the ordering of Pℓ (see
Section 4). Further, the new valuation on the extended diagram 〈Qi | i ≤ ℓ〉 extends
the original one (so we shall still denote it by ν), and ν(x) = ℓ for all x ∈ Q \P . In
addition, the elements x• and x• (see Lemma 5.1) remain the same for x ∈ P \Q0,
while x• = xP and x• = xP for all x ∈ Q \ P .

Now we denote by ‖− 6 −‖Q the p-measure that we constructed in Section 6
(see Proposition 6.11), extending ‖− 6 −‖P and all p-measures ‖− 6 −‖[xP ,xP ], for
x ∈ Q—this is made possible by (9.2). It follows from the assumption (9.1) that
‖xP = x‖Q ∼ ‖x = xP ‖Q, for all x ∈ Q; that is, Q is a doubling extension of P . As
Qi ≤int Q and by Lemmas 8.11 and 7.2 (applied to the extensions Qi ≤ P ≤ Q),
we obtain that Q is a doubling extension of Qi. This takes care of extending (DB1)
to the larger diagram.

It remains to verify that 〈Qi | i ≤ ℓ〉 satisfies (DB2). So let x, y ∈ Q such
that ν(x) � ν(y), we need to verify that ‖x = x•‖Q = ‖x• = x•‖Q implies
that ‖x 6 y‖Q = ‖x• 6 y‖Q and ‖x• = x‖Q = ‖x• = x•‖Q implies that
‖y 6 x‖Q = ‖y 6 x•‖Q. We prove for example the first statement. From
ν(x) � ν(y) it follows that y ∈ P . If x ∈ P then we are done by Lemma 8.12,
so the remaining case is where x ∈ Q \ P . Observe that x• = xP and x• = xP . As
y ∈ P , the Boolean value ‖x 6 y‖Q is given by Lemma 6.3(ii). Hence proving the
inequality ‖x• 6 y‖Q ≤ ‖x 6 y‖Q reduces to proving that ‖xP 6 y‖Q (of course
equal to ‖xP 6 y‖P ) lies below both ‖xP 6 y‖P and ‖xP 6 y‖P ∨‖x = xP ‖[xP ,xP ].
The first inequality is a tautology, and the second one is proved as follows:

‖xP 6 y‖P ≤ ‖xP = xP ‖P ∨ ‖xP 6 y‖P (because ‖− 6 −‖P is a p-measure)

= ‖x = xP ‖Q ∨ ‖xP 6 y‖P (because ‖x = x•‖Q = ‖x• = x•‖Q)

= ‖x = xP ‖[xP ,xP ] ∨ ‖xP 6 y‖P .

As the inequality ‖x 6 y‖Q ≤ ‖x• 6 y‖Q always holds, we have proved the equality,
and hence the extended diagram 〈Qi | i ≤ ℓ〉 satisfies (DB2). So we have reached
the following theorem, which is the main technical result of the present paper. It
refers to the conditions (DB1) and (DB2) introduced in Section 7.
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Theorem 9.1. Let Λ be a finite lattice with largest element ℓ, let

D = 〈Di, ϕi,j | i ≤ j in Λ〉 be a Λ-indexed diagram of finite distributive lattices

and 〈∨, 0〉-homomorphisms, and let 〈Qi | i < ℓ〉 be a D↾<ℓ -valued normal interval

diagram of p-measured lattices satisfying (DB1) and (DB2). Let Q be a cover-

ing extension of the strong amalgam P of 〈Qi | i < ℓ〉. Furthermore, we assume

that for all x ∈ Q, the closed interval [xP , xP ] of Q is endowed with a p-measure

‖− 6 −‖[xP ,xP ] (depending only on the interval [xP , xP ]) such that

‖x = xP ‖[xP ,xP ] ∼ ‖xP = x‖[xP ,xP ] and ‖xP = xP ‖[xP ,xP ] = ‖xP = xP ‖P .

Then there exists a Dℓ-valued p-measure on Q extending all p-measures ‖− 6 −‖[xP ,xP ]

such that, defining Qℓ as the corresponding p-measured poset, the extended diagram

〈Qi | i ≤ ℓ〉 is a D-valued normal interval diagram of p-measured posets satisfying

(DB1) and (DB2).

This result makes it possible to state and prove our main theorem.

Theorem 9.2. Let Λ be a lower finite lattice and let D = 〈Di, ϕi,j | i ≤ j in Λ〉 be

a Λ-indexed diagram of finite distributive lattices and zero-separating 〈∨, 0, 1〉-ho-
momorphisms. Then there exists a D-valued normal interval diagram 〈Qi | i ∈ Λ〉
of finite p-measured lattices satisfying (DB1) and (DB2) together with the following

additional conditions:

(i) For all i < j in Λ and all x < y in Qi, there exists z ∈ Qj such that

x < z < y.
(ii) ‖y = x‖Qi

is join-irreducible in Di, for all i ∈ Λ and all x ≺ y in Qi.

(iii) For all i ∈ Λ and all p ∈ J(Di), there exists x ∈ Qi such that 0 ≺Qi
x and

‖x = 0‖Qi
= p.

Proof. We construct Qi by induction on the height of i in Λ. After possibly adding
a new zero element to Λ, we may assume that D0 = {0, 1}, so we take Q0 = {0, 1},
with the p-measure defined by ‖1 = 0‖Q

0
= 1. Put Λn = {i ∈ Λ | height(i) ≤ n}

and denote by D(n) the restriction of D to Λn, for every natural number n. Sup-
pose having constructed a D(n)-valued normal interval diagram 〈Qi | i ∈ Λn〉 of
finite p-measured lattices satisfying (DB1), (DB2), and Conditions (i)–(iii) of the
statement of the theorem, we show how to extend it to a D(n+1)-valued normal
interval diagram of finite p-measured lattices satisfying (DB1) and (DB2). In order
to propagate Item (2) of Definition 4.1, we shall add the induction hypothesis that
every x ∈

⋃

(Qi | i ∈ Λn) can be written in the form 〈x, ν(x)〉, where ν denotes the
valuation associated with the diagram 〈Qi | i ∈ Λn〉.

Let ℓ ∈ Λn+1 \ Λn and denote by P ℓ the strong amalgam of 〈Qi | i < ℓ〉 with
respect to D given in Definition 8.9. It follows from Proposition 4.5 that Pℓ is a
lattice and every Qi, for i < ℓ, is a sublattice of Pℓ. For x ≺ y in Pℓ, we put

1x,y,ℓ = {p ∈ J(L) | p ≤ ‖y = x‖P ℓ
} (that we shall sometimes simply denote by 1),

Bx,y,ℓ = P(1x,y,ℓ) (the powerset lattice of 1x,y,ℓ),

Qx,y,ℓ = {〈X, 0〉 | X ⊆ 1x,y,ℓ} ∪ {〈1, Y 〉 | Y ⊆ 1x,y,ℓ} (a sublattice of Bx,y,ℓ × Bx,y,ℓ).

Hence Qx,y,ℓ can be viewed as the ordinal sum of two copies of the Boolean
lattice Bx,y,ℓ, with the top of the lower copy of Bx,y,ℓ (namely, 〈X, 0〉 where
X = 1x,y,ℓ) identified with the bottom of the upper copy of Bx,y,ℓ (namely, 〈1, Y 〉
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where Y = ∅). As x ≺Pℓ
y, there exists i < ℓ such that x, y ∈ Qi. By in-

duction hypothesis (Condition (ii)), ‖y = x‖Qi
> 0, thus, as ϕi,ℓ separates zero,

‖y = x‖P ℓ
= ϕi,ℓ(‖y = x‖Qi

) > 0, and thus 1x,y,ℓ is nonempty.

We endow Qx,y,ℓ with the p-measure ‖− 6 −‖x,y,ℓ defined by

‖〈X0, 0〉 6 〈X1, 0〉‖x,y,ℓ =
∨

(X0 \ X1),

‖〈1, Y0〉 6 〈1, Y1〉‖x,y,ℓ =
∨

(Y0 \ Y1),

‖〈X, 0〉 6 〈1, Y 〉‖x,y,ℓ = 0,

‖〈1, Y 〉 6 〈X, 0〉‖x,y,ℓ =
∨

(

∁X ∪ Y
)

,

(where we put ∁X = Ωx,y,ℓ \X), for all X, X0, X1, Y, Y0, Y1 ⊆ 1 (it is easy to verify

that this way we get, indeed, a p-measure on Qx,y,ℓ). Further, we put

Q′
x,y,ℓ = Qx,y,ℓ \ {〈∅, 0〉, 〈1, 1〉} (“truncated Qx,y,ℓ”),

Qx,y,ℓ = Q′
x,y,ℓ × {ℓ},

where Q′
x,y,ℓ is endowed with the restrictions of both the ordering and the p-measure

of Qx,y,ℓ and Qx,y,ℓ is endowed with the ordering and p-measure for which the map
t 7→ 〈t, ℓ〉 is a measure-preserving isomorphism. So Qx,y,ℓ is the result of applying

to Qx,y,ℓ the following two transformations:

— Remove the top and bottom elements of Qx,y,ℓ; get Q′
x,y,ℓ.

— Replace t by 〈t, ℓ〉, for all t ∈ Q′
x,y,ℓ; get Qx,y,ℓ.

Put Qℓ = Pℓ +
∑

(Qx,y,ℓ | x ≺ y in Pℓ) (see (2.3)). Then Qℓ is an interval extension
of Pℓ (see Lemma 2.8). In fact, as Qx,y,ℓ is defined only for x ≺ y in Pℓ, the
poset Qℓ is a covering extension of Pℓ (see Definition 3.1). We shall still denote
by ‖− 6 −‖x,y,ℓ the p-measure on Qx,y,ℓ ∪ {x, y} inherited from the p-measure on

Qx,y,ℓ. As Pℓ is a lattice and [x, y]Qℓ
= Qx,y,ℓ ∪ {x, y} ∼= Qx,y,ℓ is a lattice, for all

x ≺ y in Pℓ, it follows from Lemma 2.5 that Qℓ is a lattice.
Now we verify Conditions (9.1) and (9.2) with respect to ‖− 6 −‖P ℓ

and all
p-measures ‖− 6 −‖x,y,ℓ. Fix x ≺ y in Pℓ. Condition (9.1) follows immediately
from the inequalities

‖〈X, 0〉 = 〈∅, 0〉‖x,y,ℓ =
∨

X ≤ ‖y = x‖P ℓ
= ‖〈1, 1〉 = 〈X, 0〉‖x,y,ℓ,

‖〈1, 1〉 = 〈1, X〉‖x,y,ℓ =
∨

(

∁X
)

≤ ‖y = x‖P ℓ
= ‖〈1, X〉 = 〈∅, 0〉‖x,y,ℓ,

for all X ⊆ 1x,y,ℓ. Condition (9.2) follows from the equalities

‖〈1, 1〉 = 〈∅, 0〉‖x,y,ℓ =
∨

1x,y,ℓ = ‖y = x‖P ℓ
.

Hence, by Theorem 9.1, there is a p-measure on Qℓ, extending all p-measures
‖− 6 −‖x,y,ℓ, such that 〈Qi | i ≤ ℓ〉 is a D≤ℓ -valued normal interval diagram of
p-measured lattices satisfying (DB1) and (DB2).

Now we verify Conditions (i)–(iii) of the statement of Theorem 9.2. Let i < ℓ and
let x < y in Qi, we prove that x 6≺Qℓ

y. If x 6≺Pℓ
y this is trivial, so suppose that

x ≺Pℓ
y. Pick any element z ∈ Qx,y,ℓ (e.g., z = 〈〈1, 0〉, ℓ〉, the ‘middle element’—

here we use the nonemptiness of 1x,y,ℓ); then x < z < y in Qℓ. Condition (i)
follows.
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In order to verify Condition (ii) at level Qℓ, it suffices to prove that ‖v = u‖x,y,ℓ

belongs to J(Dℓ), for all x ≺ y in Pℓ and all u ≺ v in Qx,y,ℓ. There are a proper

subset X of 1x,y,ℓ and an element p ∈ ∁X such that either (u = 〈X, 0〉 and v =
〈X ∪ {p}, 0〉) or (u = 〈1, X〉 and v = 〈1, X ∪ {p}〉). In both cases, ‖v = u‖x,y,ℓ = p
belongs to J(Dℓ).

Now we verify Condition (iii). Let p ∈ J(Dℓ) and pick k ≺ ℓ in Λ. As p ≤
ϕk,ℓ(1) =

∨

(ϕk,ℓ(q) | q ∈ J(Dk)) and p is join-irreducible, there exists q ∈ J(Dk)
such that p ≤ ϕk,ℓ(q). By the induction hypothesis (Condition (iii)), there exists
x ∈ Qk such that 0 ≺Qk

x and ‖x = 0‖Qk
= q. Suppose that there exists y ∈ Pℓ

such that 0 < y < x, and let i < ℓ such that y ∈ Qi. As y ≤ x, there exists
z ∈ Qi∧k such that y ≤ z ≤ x. As 0 < z ≤ x with z ∈ Qk and 0 ≺Qk

x, we
get z = x, and so x ∈ Qi∧k. If i ∧ k < k, then, by Condition (i) on D(n), we get
0 6≺Qk

x, a contradiction. Therefore, k = i ∧ k ≤ i, but k ≺ ℓ, and thus i = k. As
0 < y < x, y ∈ Qk, and 0 ≺Qk

x, we get again a contradiction. So we have proved
that 0 ≺Pℓ

x. As p ≤ ϕk,ℓ(q) = ‖x = 0‖P ℓ
, we get p ∈ 10,x,ℓ. We consider the

element t = 〈〈{p}, 0〉, ℓ〉 of Q0,x,ℓ (so 0 ≺ t < x in Qℓ). We compute

‖t = 0‖Qℓ
= ‖〈{p}, 0〉 = 〈∅, 0〉‖0,x,ℓ = p,

which completes the verification of Condition (iii) at level ℓ.
In order to verify that 〈Qi | i ∈ Λn+1〉 is as required, it remains to verify that

〈Qi | i ∈ Λn+1〉 satisfies Item (2) of Definition 4.1. So let i, j ∈ Λn+1, we need to
verify that Qi ∩Qj = Qi∧j . This holds by induction hypothesis for i, j ∈ Λn. As it
trivially holds for i = j, we assume that i 6= j. If height(i) = height(j) = n, then

Qi = Pi ∪
⋃

(Qx,y,i | x ≺ y in Pi), (9.3)

Qj = Pj ∪
⋃

(Qx,y,j | x ≺ y in Pj), (9.4)

and thus, as i ‖ j,

Qi ∩ Qj = Pi ∩ Pj =
⋃

(Qi′ ∩ Qj′ | i′ < i, j′ < j) = Qi∧j .

If height(i) = n while height(j) < n, then Qi is still given by (9.3), and so

Qi ∩ Qj = Pi ∩ Qj =
⋃

(Qi′ ∩ Qj | i′ < i) = Qi∧j ,

which completes the verification of Item (2) of Definition 4.1. This completes the
proof of the induction step. �

Corollary 9.3. For every distributive 〈∨, 0〉-semilattice S, there are a 〈∧, 0〉-semi-

lattice P and a S-valued p-measure ‖− 6 −‖ on P satisfying the following additional

conditions:

(i) ‖y = x‖ > 0, for all x < y in P .

(ii) For all x ≤ y in P and all a, b ∈ S, if ‖y = x‖ = a∨b, there are a positive

integer n and a decomposition x = z0 ≤ z1 ≤ · · · ≤ zn = y such that either

‖zi+1 = zi‖ ≤ a or ‖zi+1 = zi‖ ≤ b, for all i < n.

(iii) The subset {‖x = 0‖ | x ∈ P} generates the semilattice S.

Furthermore, if S is bounded, then P can be taken a bounded lattice.
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Proof. Suppose first that S is bounded. By a well-known result of P. Pudlák,
see [7, Fact 4, p. 100], S is the directed union of its finite distributive 〈∨, 0, 1〉-
subsemilattices. Hence one can write S = lim

−→i∈Λ
Di, where Λ is the (lower fi-

nite) lattice of all finite subsets of S × ω, all the Di are finite distributive 0, 1-
subsemilattices of S, and the transition map from Di to Dj is the inclusion map
for all i ≤ j in Λ. Let 〈Qi | i ∈ Λ〉 be as in Theorem 9.2. Then the union of all the
p-measures ‖− 6 −‖Qi

on Q =
⋃

(Qi | i ∈ Λ) is as required. Conditions (i) and (ii)
above follow from Condition (ii) in Theorem 9.2, while Condition (iii) above follows
from Condition (iii) in Theorem 9.2.

In the general case, we apply the result above to S ∪ {1} (for some new unit
element 1), and then, denoting by P the corresponding p-measured lattice, we set
Q = {x ∈ P | ‖x = 0‖ ∈ S}, which is a lower subset of P . The restriction of the
p-measure of P to Q × Q is as required. �

The following example shows that the conditions (DB1) and (DB2) cannot be
removed from the assumptions of Theorem 9.1. The construction is inspired by the
one of the cube Dc presented in [9, Section 3].

Example 9.4. Put Λ = P(3) (the three-dimensional cube) and Λ∗ = Λ\{3}. There

are a Λ-indexed diagram B = 〈Bp | p ∈ Λ〉 of finite Boolean lattices and 〈∨, 0, 1〉-em-

beddings, whose restriction to Λ∗ we denote by B∗, and a B∗-valued normal interval

diagram 〈Qp | p ∈ Λ∗〉 of finite p-measured lattices that cannot be extended to any

B-valued normal diagram of p-measured posets.

Proof. We first put B{0,1,2} = P(5) (where, as usual, 5 = {0, 1, 2, 3, 4}). Further,
we define elements γi,j of P(5), for i < 3 and j < 4, by

γ0,0 = {0, 4}, γ0,1 = {3}, γ0,2 = {2}, γ0,3 = {1, 4};

γ1,0 = {0, 4}, γ1,1 = {1, 4}, γ1,2 = {2}, γ1,3 = {3, 4};

γ2,0 = {0, 4}, γ2,1 = {1}, γ2,2 = {3}, γ2,3 = {2, 4}.

Observe that the equality 5 =
⋃

(γi,j | j < 4) holds, for all i < 3.
We shall now define certain subsemilattices of 〈P(5),∪, ∅〉. For {i, j, k} = 3,

we define B{i,j} as the 〈∨, 0〉-subsemilattice of 〈P(5),∪, ∅〉 generated by the subset
{γk,0, γk,1, γk,2, γk,3}.

Further, for all i < 3, let B{i} be the 〈∨, 0〉-subsemilattice of P(5) generated by
{αi, βi}, where we put

α0 = {0, 1, 4}, β0 = {2, 3, 4};

α1 = {0, 3, 4}, β1 = {1, 2, 4};

α2 = {0, 2, 4}, β2 = {1, 3, 4}.

At the bottom of the diagram, we put the two-element semilattice B∅ = {∅, 5}.
Observe, in particular, that 5 is the largest element of Bp, for all p ⊆ 3.

It is a matter of routine to verify that Bp is a 〈∨, 0, 1〉-subsemilattice of Bq if
p ⊆ q, for all p, q ⊆ 3. In that case, we denote by ϕp,q the inclusion map from Bp

into Bq. Set

B = 〈〈Bp, ϕp,q〉 | p ⊆ q in P(3)〉,

B∗ = 〈〈Bp, ϕp,q〉 | p ⊆ q in P(3) \ {3}〉.
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Let Qp, for p ∈ Λ∗, and P be the lattices diagrammed on Figure 9.1. We observe
that 〈Qp | p ∈ Λ∗〉 is a normal interval diagram of finite lattices. We endow Q∅

P
0 0

1 1

x0xi xi xj x1 x2

Q {i}

0

1

Q {i,j}

0

1

Q ∅

Figure 9.1. The posets Q∅, Q{i}, Q{i,j}, and P .

with the unique p-measure ‖− 6 −‖∅ that satisfies ‖1 = 0‖∅ = 5, the largest
element of B∅. For i < 3, we endow Q{i} with the unique p-measure ‖− 6 −‖{i}

that satisfies ‖xi = 0‖{i} = αi and ‖1 = xi‖{i} = βi. Finally, for {i, j, k} = 3, it is
not hard to verify that there exists a unique p-measure ‖− 6 −‖{i,j} on Q{i,j} such
that ‖xi 6 xj‖{i,j} = γk,1 and ‖xj 6 xi‖{i,j} = γk,2.

Suppose that the B∗-valued diagram 〈Qp | p ∈ Λ∗〉 extends to some B-valued
diagram 〈Qp | p ∈ Λ〉. Evaluating the Boolean values in Q{0,1,2}, we obtain

‖x0 6 x1‖ = ‖x0 6 x1‖{0,1} = γ2,1,

‖x1 6 x2‖ = ‖x1 6 x2‖{1,2} = γ0,1,

‖x0 6 x2‖ = ‖x0 6 x2‖{0,2} = γ1,1,

hence, by the triangular inequality, γ1,1 ⊆ γ0,1 ∪ γ2,1, a contradiction. �

10. Comparison with semilattice-valued distances

The main result of the present paper, Theorem 9.2, is formally similar to one of
the results of [8], that states that every distributive 〈∨, 0〉-semilattice is, functorially,

the range of a V-distance of type 2 on some set. By definition, for a 〈∨, 0〉-semi-
lattice S, a S-valued distance on a set X is a map δ : X × X → S such that
δ(x, x) = 0, δ(x, y) = δ(y, x), and δ(x, z) ≤ δ(x, y) ∨ δ(y, z), for all x, y, z ∈ X .
Furthermore, δ satisfies the V-condition of type 2, if for all a, b ∈ S and all x, y ∈ X ,
if δ(x, y) = a ∨ b, then there are u, v ∈ X such that δ(x, u) ∨ δ(v, y) ≤ a and
δ(u, v) ≤ b. As every distance on a set X is obviously a p-measure on X viewed as
a discrete poset, the problem of functorially lifting distributive 〈∨, 0〉-semilattices
by p-measures does not appear as difficult. The main problem encountered in the
present work is to get our posets connected, which is the case here as they are
meet-semilattices.
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