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Stochastic asynchronism may trigger phase

transitions in cellular automata.

Nazim Fatès
Nazim.Fates@loria.fr

LORIA, University Nancy 1, France.

Abstract. Cellular automata are discrete dynamical systems that are
widely used to model natural systems. Classically they are run with
perfect synchrony ; i.e., the local rule is applied to each cell at each
time step. A possible modification of the updating scheme consists in
applying the rule with a fixed probability, called the synchrony rate.
It has been shown in a previous work that varying the synchrony rate
continuously could produce a discontinuity in the behaviour of the CA.
This works aims at investigating the nature of this change of behaviour
using intensive numerical simulations. We apply a two-step protocol to
show that the phenomenon is a phase transition whose critical exponents
are in good agreement with the predicted values of directed percolation.

1 Description of the phenomenon

This article adresses a general question raised in the modelling activity : “Does
a given model keep its behaviour when it is submitted to a perturbation of its
updating scheme ?” Of course, this question is too wide to be tackled in all its
generality and we choose here to study it in the more narrow context of cellular
automata.

In its classical paradigm, a cellular automaton consists of a collection of fi-
nite state automata arranged on a regular grid, which update their state at each
time step according to a local rule. Using this formalism, we obtain discrete
dynamical systems that are widely used for modelling spatially extended phe-
nomena governed by a local rule. Such phenomena are to be found in various
fields such as physics (e.g., atoms interaction in a cristal), chemistry (e.g., non-
stirred reaction-diffusion), biology (e.g., virus spreading), etc. (see [1], chap. 1
for a review). The method used for assessing the validity of a model generally
consists in comparing the output produced by the model to the experimental
data. We claim that this step is of course necessary but that it is not sufficient :
one may also need to examine to which extent the behaviour observed is due to
the implicit hypotheses of the model, namely : discretization of state, regularity
of the grid, perfect synchrony of the transitions.

The latter problem was at first adressed in [15] by means of simulation, the
evaluation of the change in behaviour remaining qualitative. Other experimental
works such as [3,17,16] followed, showing that the update scheme was indeed a



key point to study. On the theoretical side, very few results have been obtained
so far : e.g., the independance on the “update history” was shown undecidable
in [9], existence of stationary distributions was studied in [13] and a first classi-
fication based on the convergence time was proposed in [7] and extended in [8].
In the work [6], we experimentally showed that the perturbation of the updating
scheme of elementary cellular automata may alter significantly the behaviour
of some rules while other rules remained robust. We used one of the simplest
means of introducing asynchronism in the dynamics : instead of applying the
rule simultaneously to all the cells, each cell has a given probability α, called the
synchrony rate to apply the rule.

This study showed that, among other phenomena, for seven ECA, there ex-
ists a particular value of the synchrony rate αc for which a small change of
value produces an abrupt change of behaviour. It was then conjectured that
this brutal variation could be explained by the existence of a phase transition,
more precisely that the universality class of the phase transition was ”directed
percolation” (DP). We wish to emphasize that this conjecture was mainly sup-
ported by the observation of the space-time diagrams patterns produced near
criticality; however, it should be noted that directed percolation was identified in
other contexts such that synchronisation of two copies of cellular automata [10],
probabilistic cellular automata [5] or asynchronism for the Game of Life [4].

Let a ring of n cells be indexed by L = Z/nZ, a configuration is word on
{0, 1}L. The density of a configuration x is the ratio of cells in state 1. An
elementary cellular automaton (ECA) is described by a function f : {0, 1}3 →
{0, 1} called the local rule. Each ECA is indexed according to the usual notation
[18].

Using the stochastic asynchronous updating scheme, the local rule f allows
to define a probabilistic global rule F which operates on the random variables
xt according to x0 = x with probability 1 and xt+1 = F (xt) such that :

∀i ∈ U, xt+1
i =

{

f(xt
i−1, x

t
i, x

t
i+1) with probability α

xt
i with probability 1 − α

The rules that were experimentally detected as showing a brutal change
of behaviour for a non-trivial value of α are ECA 6,18,26,50,58,106,146 (only
“minimal representative rules” are considered). Figure 1 shows how the variation
of synchrony rate affects the behaviour of three such rules. We see that two
different behaviours are exhibited : either the system converges quickly to a
fixed-point configuration and we say that we are in the subcritical phase, or the
system evolves to a steady-state caracterised by the production of annihilating-
branching patterns, we call this steady state the supercritical phase.

At this stage, one can notice that for all the identified rules except ECA 6,
the subcritical phase is obtained for small values of α while for ECA 6, it is
obtained for high values of α. It is also worth noticing that ECA 50 is a typical
class-II (periodic) rule in Wolram’s informal classification [18] while ECA 18 is
in class III (chaotic rules).



α = 1 α = 0.75 α = 0.50 α = 0.25

Fig. 1. The three types of phase transitions observed with ECA. The first, sec-
ond and third line respectively show the evolution of ECA 50, 18 and 6. The
columns show the evolutions when synchrony rate is decreased, from α = 1 (left-
most) to α = 0.25 (rightmost). In order to allow the comparison of the different
asynchronous evolutions, the time factor is rescaled by a factor 1/α (i.e., for
α = 0.25 only time steps that are multiples of 4 are displayed).



To identify the nature of this change, we need to determine whether there
exists a phase transition that can be characterised by its critical exponents or
whether the observations are only due to the observation protocol. For example,
one can imagine that for rule 50, the only change between subcritical and super-
critical phases is a significant increase of the convergence time. In this case, the
critical synchrony rate αc would have no intrinsic signification since it would be
highly dependent on the lattice size. On the other hand, if the phenomenon is
indeed a phase transition that belongs to directed percolation universality class,
then theory and observations [11] predict that for an infinite lattice size system,
the behaviour is :

– for the subcritical phase α < αc, the system converges to a frozen state
< 0 >= (0)i∈L with a density : d(t) << t−δ for large t;

– for the critical value αc, the density decreases as a power law following :
d(t) ∼ t−δ;

– for the supercritical phase α > αc, the system converges to a stable density
d∞(α). The divergence from the critical state as α increases follows a power
law: d∞(t) ∼ (α − αc)

β .

For the one-dimensional DP phase transition, the critical exponents are only
known experimentally and are expected to take the following values : δDP =
0.1595 and βDP = 0.2765 (the values are given with four digits, see [12,11] for
better precision).

Naturally, these predictions only hold for infinite systems ; as simulation re-
quires finite lattices, we are bound to introduce finite-size effects. In the following
section, we explain our protocol for measuring these exponents and limiting ex-
perimental errors.

2 Protocol

The measure of DP-critical exponents is a delicate operation that generally re-
quires large amount of computation time. The main difficulty resides in avoiding
systematic errors when obtaining statistical data near the transition point. For
example, it happened that authors were mislead by their measures and con-
cluded that a phase transition phenomenon was not in the DP universality class
[14], which was later proved wrong [10].

In order to limit the influence of systematic errors, we use the two-step pro-
tocol that was used by Grassberger [10] : we first measure the critical synchrony
rate αc by varying α until we reach the best approximation of a power-law decay.
This first experiment also allows to measure the critical exponent δ. The second
step consists in measuring the asymptotic density das as a function of α and
then fitting a power-law in order to calculate β. Note that teh two steps are note
indpendent since the second operation uses the computed value of αc.

Figure 2 shows the temporal decay of the density as α is varied by 10−3 steps
from 0.673 to 0.677. The curves are obtained using lattices of size n = 10000
and by averaging the data on Z = 100 runs of time T = 50000. We see that as



α is increased, the curve in a log-log plot transforms from a concav function to
a convex function ; the best linearity is obtained for α = 0.675 and the slope
measured for this value is δ146 = 0.1601± 0.0027 which is close to the reference
value δDP = 0.1595.
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ECA 146 : Log-Log plot of d(t) for different values of alpha

alpha=0.677
alpha=0.676
alpha=0.675
alpha=0.674
alpha=0.673

f(t)=K*t^-0.1601

Fig. 2. ECA 146 : Determination of the critical synchrony rate αc using the time
decay properties. Each plot is obtained with an average obtained on 100 runs.
The curve for α = 0.675 have slope δ146 = −0.1601± 0.0027.

We iterated the measures of d(t) by varying α with a step of 2.10−4 to
bound αc between two values α1 and α2. Longer sampling times were used (up
to T = 500000) and the convexity of the curves was determined numerically.
This operation is the most time-consuming as the calculus of a single curve may
require more than 1014 applications of the local rule.

Table 1 shows α̃c, the best approximation of αc obtained when varying α
and selecting the curve d(t) that best fits a power-law decay. The corresponding
value of the fit, δ(α̃c), is given in the third column of the table for comparison
with δDP. We took t ∈ [2000, 200000] as a fit interval to limit the influence of the
transient time and the deviation from a power-law decay. However, it should be
noted that because we have α̃c 6= αc, the temporal variation of the density will
not behave as a power-law as time evolves. Thus, we cannot identify the precision
on the value of δ as the precision of the fit itself. Instead, we propose to estimate
the precision on δ with twe following heuristic : if we have, α1 < αc < α2, we use
the quantity Eδ = |δ(α1) − δ(α2)|. The results displayed in Table 1 show that
the computed values of δ and Eδ are compatible with the predicted value δDP.



It is interesting to notice that a variation on α of the order of 10−4 produces
a relative variation of 10% on the value of δ. This explains why αc has to be
measured with high precision.

The second part of the experiments consists in measuring the critical expo-
nent β using the values of the asymptotic density as a function of α. To estimate
this asymptotic density, it is necessary to adjust the sampling time as α varies. In-
deed, as α approaches αc, the asymptotic density vanishes as d∞(α) = (α−αc)

β ,
and the increase of the time needed to reach this density is thus exponential : this
phenomenon, known as critical slowing down (see e.g., [11]), limits the precision
on the measure of the asymptotic density d∞.

The quantity ∆α = α − αc was varied according to an exponential step
from 0.0032 to 0.128. This interval is determined by the following trade-off :
the computer time limits lower values of ∆α (critical slowing down) and for
higher values of ∆α the system “saturates” and no longer follow a power-law.
Sampling times were increased as ∆α was decreased and the highest sampling
time T = 400000 was used for ∆α = 0.0032.

The experiment was conducted for the seven ECA and the calculated values
are shown in table 1. For each ECA, the sampling times were determined ex-
perimentally by visual estimation of the transient time (see Fig. 3). Again, the
computed values of β are in agreement with the reference value βDP = 0.2765.
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ECA 50 : Log-Log plot of asymptotic density vs. synchrony rate
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Fig. 3. ECA 50 : Determination of the critical exponent β using the time decay
properties. Each point is obtained according to using a particular sampling time
(see text). The curve have slope β50 = −0.269± 0.011.



ECA α̃c δ(α̃c) Eδ β

6 0.282(4) 0.158 0.014 0.265 ± 0.015
18 0.713(9) 0.155 0.028 0.271 ± 0.009
26 0.474(8) 0.164 0.032 0.264 ± 0.015
50 0.628(2) 0.159 0.024 0.269 ± 0.011
58 0.340(0) 0.162 0.022 0.270 ± 0.017
106 0.814(4) 0.155 0.023 0.273 ± 0.048
146 0.675(0) 0.163 0.027 0.259 ± 0.021

Table 1. Critical values α̃c for the seven ECA with DP ; the last digit is uncer-
tain. Corresponding value of δ is given with an approximation of the error on δ
(see text). Critical exponent β calculated using the given value α̃c.

3 Discussion

The numerical simulations we presented show good evidence that the change of
behaviour observed for seven asynchronous elementary cellular automata is a
second order phase transition which belong to the directed percolation univer-
sality class. Improvements of precision are still required and would necessitate
much more computation time but also a deeper analysis of the experimental
protocol. For example, the scaling, the transients time and the fitting intervals
are some parameters that should be analyzed in more detail.

The most challenging question now consists in explaining why some ECA
show phase transitions while other have a smooth behaviour. The observation
of the sycnhronous behaviour of the seven ECA studied indicate that there is
certainly no straightforward relation with the existing classifications. Moreover,
the fact that ECA 6 showed an “inversed” phase transition is surprising and this
indicates that finding the relationship between the synchrony rate α and the
probability p used to describe the canonical model of directed percolation may
be a difficult problem.

To conclude, let us speculate that the link showed here between statistical
physics and cellular automata could benefit both domains. Indeed, on the one
hand it is still an open problem to calculate analytically the values of the DP
critical exponents or even to determine their nature to be rational or not. Cellular
automata, by their simplicity could help making progress in the study of the DP
phase transition. On the other hand, the existence of phase transitions suggests
that a distributed system may change its behaviour in a totally decentralised
way. For example, this mechanism could help explaining the trigger of the self-
organisation phase in cellular societies [2] or allow us to design more robust
decentralised network protocols.
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