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. When 1/6 < H < 1/2, the exact rate of convergence of the Crank-Nicholson scheme is determined for a particular equation. Here we show convergence in law of the error to a random variable, which depends on the solution of the equation and an independent Gaussian random variable.

Introduction

Let B = (B t , t ∈ [0, 1]) be a fractional Brownian motion (in short: fBm) with Hurst parameter H ∈ (0, 1), i.e., B is a continuous centered Gaussian process with covariance function R H (s, t) = 1 2 (s 2H + t 2H -|t -s| 2H ), s, t ∈ [0, 1].

For H = 1/2, B is a standard Brownian motion, while for H = 1/2, it is neither a semimartingale nor a Markov process. Moreover, it holds

(E|B t -B s | 2 ) 1/2 = |t -s| H , s, t ∈ [0, 1],
and almost all sample paths of B are Hölder continuous of any order α ∈ (0, H).

In this paper, we are interested in the pathwise approximation of the equation

X t = x 0 + t 0 σ(X s )dB s + t 0 b(X s )ds, t ∈ [0, 1], (1) 
with a deterministic initial value x 0 ∈ R. Here, σ and b satisfy some standard smoothness assumptions and the integral equation ( 1) is understood in the sense of Russo-Vallois. Let us recall briefly the significant points of this theory.

Definition 1 (following [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF]) Let Z = (Z t ) t∈[0,1] be a stochastic process with continuous paths.

• A family of processes (H (ε) t ) t∈[0,1] is said to converge to the process (H t ) t∈[0,1] in the ucp sense, if sup t∈[0,1] |H (ε) t -H t | goes to 0 in probability, as ε → 0.

• The (Russo-Vallois) forward integral t 0 Z s d -B s is defined by

lim ε→0 -ucp ε -1 t 0 Z t (B t+ε -B t )dt, (2) 
provided the limit exists.

• The (Russo-Vallois) symmetric integral

t 0 Z s d • B s is defined by lim ε→0 -ucp (2ε) -1 t 0 (Z t+ε + Z t )(B t+ε -B t )dt, (3) 
provided the limit exists.

Now we state the exact meaning of equation [START_REF] Benassi | Identification of filtered white noises[END_REF] and give conditions for the existence and uniqueness of its solution. We consider two cases, according to the value of H:

• Case H > 1/2.
Here the integral with respect to B is defined by the forward integral [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF].

Proposition 1 If σ ∈ C 2 b and if b satisfies a global Lipschitz condition, then the equation

X t = x 0 + t 0 σ(X s )d -B s + t 0 b(X s ) ds, t ∈ [0, 1] (4) 
admits a unique solution X in the set of processes whose paths are Hölder continuous of order α > 1 -H. Moreover, we have a Doss-Sussmann type [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF][START_REF] Sussmann | An interpretation of stochastic differential equations as ordinary differential equations which depend on a sample point[END_REF] representation:

X t = φ(A t , B t ), t ∈ [0, 1], (5) 
where φ and A are given respectively by

∂φ ∂x 2 (x 1 , x 2 ) = σ(φ(x 1 , x 2 )), φ(x 1 , 0) = x 1 , x 1 , x 2 ∈ R (6) 
and

A ′ t = exp - Bt 0 σ ′ (φ(A t , s))ds b(φ(A t , B t )), A 0 = x 0 , t ∈ [0, 1]. (7) 
Proof. If X and Y are two real processes whose paths are a.s. Hölder continuous of index α > 0 and β > 0 with α + β > 1, then t 0 Y s d -X s coincides with the Young integral t 0 Y s dX s (see [START_REF] Russo | Elements of stochastic calculus via regularisation[END_REF], Proposition 2.12). Consequently, Proposition 1 is a consequence of, e.g., [START_REF] Klingenhöfer | Ordinary differential equations with fractal noise[END_REF] or [START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF]. 2

• Case 1/6 < H < 1/2.

When H < 1/2, in particular the forward integral t 0 B s d -B s does not exist. Thus, in this case, the use of the symmetric integral (3) is more adequate. Here we consider only the case b = 0: for the general case see [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF], [START_REF] Nourdin | Correcting symmetric integral by a Lévy area[END_REF] and Remark 1.

Proposition 2 If H > 1/6 and if σ ∈ C 5 (R) satisfies a global Lipschitz condition, then the equation

X t = x 0 + t 0 σ(X s )d • B s , t ∈ [0, 1] (8) 
admits a unique solution X in the set of processes of the form X t = f (B t ) with f ∈ C 5 (R). The solution is given by X t = φ(x 0 , B t ), t ∈ [0, 1], where φ is defined by [START_REF] Craigmile | Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes[END_REF].

Proof. See [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF], Theorem 2.10.

Remark 1

In [START_REF] Nourdin | Correcting symmetric integral by a Lévy area[END_REF], Nourdin and Simon developed recently a new concept, namely the Newton-Côtes integral corrected by Lévy areas, in order to study equation [START_REF] Benassi | Identification of filtered white noises[END_REF] for any H ∈ (0, 1). It allows to use a fixed point theorem to obtain existence and uniqueness in the set of processes whose paths are Hölder continuous of index α ∈ (0, 1) and not only in the more restrictive -and a little arbitrary -set of processes of the form X t = f (B t , A t ) with f : R × [0, 1] → R regular enough and A a process with C 1 -trajectories, as shown in [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF].

Approximation schemes for stochastic differential equations of the type (1) are studied only in few articles, see, e.g., [START_REF] Neuenkirch | Optimal approximation of SDE's with additive fractional noise[END_REF] and the references therein. In [START_REF] Nourdin | Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire[END_REF], the second-named author considers the approximation of autonomous differential equations driven by Hölder continuous functions (of any fractal index 0 < α < 1). He determines upper bounds for the order of convergence of the Euler scheme and a Milshtein-type scheme, see also [START_REF] Talay | Résolution trajectorielle et analyse numérique des équations différentielles stochastiques[END_REF], and applies then his results to the case of the fBm. In [START_REF] Neuenkirch | Optimal approximation of SDE's with additive fractional noise[END_REF], the first-named author studies the following equation with additive fractional noise

X t = x 0 + t 0 σ(s)dB s + t 0 b(s, X s )ds, t ∈ [0, 1] (9) 
under the hypothesis H > 1/2. For a mean-square-L 2 -error criterion, he derives by means of the Malliavin calculus the exact rate of convergence of the Euler scheme, also for nonequidistant discretizations. Moreover, the optimal approximation of equation ( 9) is also studied in [START_REF] Neuenkirch | Optimal approximation of SDE's with additive fractional noise[END_REF].

In this paper, we are interested in the exact rate of convergence of the Euler scheme associated to (4) and of the Crank-Nicholson schemes associated to [START_REF] Gradinaru | Approximation at first and second order of the mvariation of the fractional Brownian motion[END_REF]. Thus here, compared to [START_REF] Neuenkirch | Optimal approximation of SDE's with additive fractional noise[END_REF], we study the non-additive case. We obtain two types of results (see Section 3 for precise statements):

(i) If H > 1/2 and under standard assumptions on σ and b, then the classical Euler scheme X n with step-size 1/n for equation (4) defined by

X n 0 = x 0 X n (k+1)/n = X n k/n + σ(X n k/n )∆B k/n + b(X n k/n ) 1 n , k ∈ {0, . . . , n -1}, (10) 
and

X n t = X n [nt]/n for t ∈ [0, 1] verifies n 2H-1 X n 1 -X 1 a.s. -→ - 1 2 1 0 σ ′ (X s )D s X 1 ds. ( 11 
)
Here D s X t , s, t ∈ [0, 1] denotes the Malliavin derivative at time s of X t with respect to the fBm B. This result is somewhat surprising because it does not have an analogue in the case of the standard Brownian motion. Indeed, in this framework, or more generally when SDEs driven by semimartingales are considered, it is generally shown that X n 1 converges a.s. to X 1 and then that the correctly renormalized difference converges in law, see, e.g, [START_REF] Kurtz | Wong-Zakai corrections, random evolutions and simulation schemes for SDEs[END_REF] and Remark 2, point 3. For the approximation of Itô-SDEs with respect to mean square error criterions, see, e.g., [12] or [START_REF] Milstein | Numerical Integration of Stochastic Differential Equations[END_REF] and Remark 2, point 3.

Moreover, if we consider the global error on the interval [0, 1] of the Euler scheme, we obtain

n 2H-1 X n -X ∞ a.s. -→ 1 2 sup t∈[0,1] t 0 σ ′ (X s )D s X t ds .
(ii) Assume that 1/6 < H < 1/2 and let us consider the Crank-Nicholson scheme X n with step-size 1/n associated to [START_REF] Gradinaru | Approximation at first and second order of the mvariation of the fractional Brownian motion[END_REF]:

     X n 0 = x 0 X n (k+1)/n = X n k/n + 1 2 σ( X n k/n ) + σ( X n (k+1)/n ) (B (k+1)/n -B k/n ), k ∈ {0, . . . , n -1}, (12) and X n t = X n [nt]/n for t ∈ [0, 1].
Here we obtain the following rates of convergence:

• (Exact rate) If the diffusion coefficient σ ∈ C 1 satisfies σ(x) 2 = αx 2 + βx + γ with some α, β, γ ∈ R, we have n 3H-1/2 X n 1 -X 1 L -→ σ H α 12 σ(X 1 ) G, (13) 
with G ∼ N(0, 1) independent of X 1 and σ 2 H given by [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. We prove also an equivalent of [START_REF] Kurtz | Wong-Zakai corrections, random evolutions and simulation schemes for SDEs[END_REF], at the global level:

n 3H-1/2 sup k∈{0,...,n} X n k/n -X k/n L -→ σ H α 12 sup t∈[0,1] |σ(X t ) W t | ,
with W a standard Brownian motion independent of X. Compared to the above result for the Euler scheme, the convergence to a mixing law obtained here is classical in the semimartingale framework. In the fBm framework, such a phenomenon was already obtained in three recent papers for 1/2 < H < 3/4: in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF], the authors study the asymptotic behavior of the power variation of processes of the form T 0 u s dB s , while, in [START_REF] León | Stable convergence of certain functionals of diffusions driven by fBm[END_REF] and [START_REF] León | Limits for weightes p-variations and likewise functionals of fractional diffusions with drift[END_REF] the asymptotic behavior of

t 0 f (X n s )G( Ẋn s n H-1
)ds is studied, where X n denotes the broken-line approximation with stepsize 1/n of the solution X of (8) and Ẋn its derivative.

• (Upper bound) If 1/3 < H < 1/2 and σ ∈ C ∞ b is bounded, we have for any α < 3H -1/2, n α X n 1 -X 1 Prob -→ 0. ( 14 
)
Note that (i) covers in particular the case of a linear diffusion coefficient, while in (ii) we consider smooth diffusion coefficients, which are bounded and therefore nonlinear. The exact rate of convergence in the general case (ii) remains an open problem although it seems that it is again 3H -1/2, as in (i).

The paper is organized as follows. In Section 2, we recall a few facts about the Malliavin calculus with respect to the fBm B. Section 3 contains the results concerning the exact rates of convergence for the Euler and the Crank-Nicholson schemes associated to ( 4) and ( 8) respectively. The proofs of the results for the Euler scheme are postponed to Section 4.

Recalls of Malliavin calculus with respect to a fBm

Let us give a few facts about the Gaussian structure of fBm and its Malliavin derivative process, following Section 3.1 in [START_REF] Nualart | Stochastic differential equations with additive fractional noise and locally unbounded drift[END_REF] and Chapter 1.2 in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. Let E be the set of stepfunctions on [0, 1]. Consider the Hilbert space H defined as the closure of E with respect to the scalar product

1 [0,t] , 1 [0,s] H = R H (t, s), s, t ∈ [0, 1].
More precisely, if we set

K H (t, s) = Γ (H + 1/2) -1 (t -s) H-1/2 F (H -1/2, 1/2 -H; H + 1/2, 1 -t/s) ,
where F denotes the standard hypergeometric function, and if we define the linear operator

K * H from E to L 2 ([0, 1]) by (K * H ϕ)(s) = K H (T, s)ϕ(s) + T s (ϕ(r) -ϕ(s)) ∂K H ∂r (r, s) dr, ϕ ∈ H, s ∈ [0, 1],
then H is isometric to L 2 ([0, 1]) due to the equality

ϕ, ρ H = T 0 (K * H ϕ)(s)(K * H ρ)(s) ds, ϕ, ρ ∈ H. (15) 
The process B is a centered Gaussian process with covariance function R H , hence its associated Gaussian space is isometric to H through the mapping

1 [0,t] → B t .
Let f : R n → R be a smooth function with compact support and consider the random variable F = f (B t 1 , . . . , B tn ) (we then say that F is a smooth random variable). The derivative process of F is the element of L 2 (Ω, H) defined by

D s F = n i=1 ∂f ∂x i (B t 1 , . . . , B tn )1 [0,t i ] (s), s ∈ [0, 1].
In particular D s B t = 1 [0,t] (s). As usual, D 1,2 is the closure of the set of smooth random variables with respect to the norm

||F || 2 1,2 = E |F | 2 + E ||D.F || 2 H .
The divergence operator δ is the adjoint of the derivative operator. If a random variable u ∈ L 2 (Ω, H) belongs to the domain of the divergence operator, then δ(u) is defined by the duality relationship

E(F δ(u)) = E DF, u H , for every F ∈ D 1,2 .
Finally, let us recall the following result proved in [START_REF] Nourdin | On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion[END_REF]:

Proposition 3 Let H > 1/2, σ ∈ C 2 b and b ∈ C 1 b .
Then we have for the unique solution X = (X t , t ∈ [0, 1]) of equation ( 4) that X t ∈ D 1,2 for any t ∈ (0, 1] and

D s X t = σ(X s )exp t s b ′ (X u )du + t s σ ′ (X u )d -B u , 0 ≤ s ≤ t ≤ 1, t > 0. ( 16 
)
3 Exact rates of convergence

In the sequel, we will assume that [0, 1] is partitioned by

{0 = t 0 < t 1 < . . . < t n = 1} with t k = k/n, 0 ≤ k ≤ n.
Rates of convergence will thus be given relative to this partition scheme. For simplicity, we write ∆B k/n instead of B (k+1)/n -B k/n . For the usage of non-equidistant discretization in the simulation of fBm, see Remark 3, point 2.

Euler scheme

In this section, we assume that H > 1/2 and we consider equation (4), i.e., the integral with respect to B is defined by (2). The Euler scheme X n for equation ( 4) is defined by [START_REF] Hüsler | On convergence of the uniform norms for Gaussian processes and linear approximation problems[END_REF]. The following theorem shows that the exact rate of convergence of the Euler scheme is in general n -2H+1 for the error at the single point t = 1.

Theorem 1 Let b ∈ C 2 b and σ ∈ C 3 b . Then, as n → ∞, we have n 2H-1 X n 1 -X 1 a.s. -→ - 1 2 1 0 σ ′ (X s )D s X 1 ds. ( 17 
)
Proof. We postpone it to Section 4. 2

Remark 2

1. The asymptotic constant of the error does not vanish, e.g., for the linear equation with constant coefficients, i.e.,

X t = x 0 + γ t 0 X s d -B s + β t 0 X s ds, t ∈ [0, 1] (18) 
with γ, β ∈ R, γ = 0 and x 0 = 0.

2. The appearance of the Malliavin derivative in the asymptotic constant seems to be due to the fact that (D t X 1 ) t∈[0,1] measures the functional dependency of X 1 on the driving fBm, see [START_REF] Nualart | Malliavin Calculus for Stochastic Differential Equations driven by Fractional Brownian Motion[END_REF].

3. For the Itô-SDE, i.e., the case H = 1/2, it is shown in [START_REF] Kurtz | Wong-Zakai corrections, random evolutions and simulation schemes for SDEs[END_REF] that

n 1/2 X n 1 -X Itô 1 L -→ - 1 √ 2 Y 1 1 0 σσ ′ (X Itô s )Y -1 s dW s
as n → ∞, with a Brownian motion W , which is independent of the Brownian motion B, and

Y s = exp s 0 b ′ (X Itô u ) - 1 2 σσ ′ (X Itô u ) du + s 0 σ ′ (X Itô u ) dB u , s ∈ [0, 1].
In [START_REF] Cambanis | Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design[END_REF] the analogous assertion for the mean-square error is established, i.e.,

n E X n 1 -X Itô 1 2 -→ 1 2 E Y 1 1 0 σσ ′ (X Itô s )Y -1 s dW s 2 as n → ∞. 4. Assume that b ∈ C 2 b , σ ∈ C 3 b
and that additionally b and σ are bounded with inf x∈R |σ(x)| > 0. Under these stronger assumptions, which are a priori only of technical nature, we can show -by applying the same techniques -that Theorem 1 is also valid with respect to the mean square error, i.e.,

n 2H-1 E X n 1 -X 1 2 1/2 -→ 1 2 E 1 0 σ ′ (X s )D s X 1 ds 2 1/2
as n → ∞. Note that under the above assumptions on b and σ equation ( 7) simplifies to

A ′ t = b(φ(A t , B t )) σ(φ(A t , B t )) , A 0 = x 0 , t ∈ [0, 1],
which allows us to control the integrability of the remainder terms in the error expansions made in the Proof of Theorem 1.

5. For equation ( 18) and when H < 3/4, it is possible to go further and to obtain a convergence in law for the third term in the asymptotic development of X n 1 , see also Theorem 3: We have, as n → +∞,

X n 1 a.s. -→ X 1 n 2H-1 X n 1 -X 1 a.s. -→ -γ 2 2 X 1 n 2H-1/2 X n 1 -X 1 + γ 2 2 X 1 n 1-2H L -→ -γ 2 2 X 1 G (19) 
with G a centered Gaussian random variable. For H = 3/4 the last convergence is again valid if one replaces n 2H-1/2 by n 2H-1/2 (log n) -1/2 . Indeed, we have

X n 1 = x 0 exp γB 1 + β - 1 2 γ 2 n-1 k=0 (∆B k/n ) 2 + R n with n 2H-1/2 |R n | a.s.
-→ 0 as n → ∞. Thus it holds, as n → +∞,

X n 1 -X 1 + γ 2 2 X 1 n 1-2H ≈ - γ 2 2n 2H X 1 n-1 k=0 [(n H ∆B k/n ) 2 -1].
Hence Theorem 3 (or Theorem 6 for the case H = 3/4) in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF] allows us to obtain the convergence in law in [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF]. When H > 3/4, it seems to be hard to derive a result in law since, in this case, arguments used in the proof of Theorem 3 in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF] are not valid anymore. Indeed, in this case, we do not work in a Gaussian framework, see, e.g., Theorem 8 in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF].

To overcome this problem one can modify the Euler scheme for the linear equation such that the second order quadratic variation of B appears in the error expansion. See, e.g., [START_REF] León | Limits for weightes p-variations and likewise functionals of fractional diffusions with drift[END_REF] for a similar strategy in the case of weighted p-variations of fractional diffusions. The second order quadratic variation of fractional Brownian motion is given by

V 2 n (B) = n-1 k=1 (B (k+1)/n -2B k/n + B (k-1)/n ) 2 .
It is well known, compare for example [START_REF] Benassi | Identification of filtered white noises[END_REF], that

n 2H-1 V 2 n (B) a.s. -→ 4 -2 2H n 2H-1/2 V 2 n (B) -n 1/2 (4 -2 2H ) L -→ G,
as n → ∞, where G is a centered Gaussian random variable with known variance c 2 H > 0. Moreover, by an obvious modification of Proposition 4 we also have

B 1 , n 2H-1/2 V 2 n (B) -n 1/2 (4 -2 2H ) L -→ (B 1 , G) as n → ∞, with G independent of B 1 .
For the following approximation scheme for the linear equation ( 18)

     X n 0 = x 0 X n (k+1)/n = X n k/n + γ X n k/n ∆ k/n B + γ 2 2 X n k/n ∆ k/n B ∆ (k-1)/n B + β X n k/n 1 n , k ∈ {0, . . . , n -1},
we get by straightforward calculations

X n 1 = X 1 exp - 1 4 γ 2 V 2 n (B) - β 2 2 1 n -βγB 1 1 n + R n with n min{2H-1/2,1} |R n | a.s.
-→ 0 as n → ∞. Hence we obtain

n 2H-1 X n 1 -X 1 a.s. -→ - γ 2 4 (4 -2 2H )X 1
as n → ∞. Furthermore, we get the following error expansions according to the different values of H.

(i) Case 1/2 < H < 3/4: n 2H-1/2 X n 1 -X 1 + γ 2 4 (4 -2 2H )X 1 n 1-2H L -→ - γ 2 4 X 1 G. (ii) Case H = 3/4: n X n 1 -X 1 + γ 2 4 (4 -2 3/2 )X 1 n -1/2 L -→ - γ 2 4 X 1 G - β 2 2 X 1 -βγX 1 B 1 . (iii) Case 3/4 < H < 1: n X n 1 -X 1 + γ 2 4 (4 -2 2H )X 1 n 1-2H L -→ - β 2 2 X 1 -βγX 1 B 1 .
Thus for this scheme we get -according to the values of H -different error expansions due to the drift part of the equation.

For the global error on the interval [0, 1], we obtain the following result.

Theorem 2 n 2H-1 X n -X ∞ a.s. -→ 1 2 sup t∈[0,1] t 0 σ ′ (X s )D s X t ds . (20) 
Proof. We postpone it to Section 4.

2

Hence the Euler scheme obtains the same exact rate of convergence for the global error on the interval [0, 1] as for the error at the single point t = 1. Moreover we have a.s.

sup

t∈[0,1] t 0 σ ′ (X s )D s X 1 ds = 0 if and only if a.s. X t ∈ (σσ ′ ) -1 ({0}) for all t ∈ [0, 1].
Remark 3 1. If b = 0, Theorem 1 and 2 are again valid under the weaker assumption that σ ∈ C 1 b . Since in this case

D s X t = σ(X s )exp t s σ ′ (X u )d -B u = σ(X t ) s ∈ [0, t],
which is an obvious consequence of the change of variable formula for fBm, we have here

n 2H-1 X n 1 -X 1 a.s. -→ - 1 2 σ(X 1 ) 1 0 σ ′ (X s )ds and n 2H-1 X n -X ∞ a.s. -→ 1 2 sup t∈[0,1] σ(X t ) t 0 σ ′ (X s )ds , respectively.
2. For H = 1/2 the increments of fractional Brownian motion are correlated. Therefore the exact simulation of B(t 1 ), . . . , B(t n ) is in general computationally very expensive. The Cholesky decomposition method, which is to our best knowledge the only known exact method for the non-equidistant simulation of fractional Brownian, requires O(n 3 ) operations. Moreover the covariance matrix, which has to be decomposed, is ill-conditioned. If the discretization is equidistant, i.e., t i = i/n, i = 1, . . . , n, the computational cost can be lowered considerably, making use of the stationarity of the increments of fractional Brownian motion. For example, the Davies-Harte algorithm for the equidistant simulation of fractional Brownian motion has computational cost O(n log(n)), see, e.g., [START_REF] Craigmile | Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes[END_REF]. For a comprehensive survey of simulation methods for fractional Brownian motion, see, e.g., [START_REF]Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF].

3. In the Skorohod setting, it is in general difficult to write an Euler type scheme associated to equation (1), even if H > 1/2 and b = 0. Indeed, in this case, by using the integration by parts rule δ(F u) = F δ(u) -DF, u H for the Skorohod integral and by approximating X (k+1)/n by X k/n + (k+1)/n k/n σ(X k/n )δB s (as in the case H = 1/2), one obtains

X n (k+1)/n = X n k/n + σ(X n k/n ) B (k+1)/n -B k/n -σ ′ (X n k/n ) DX n k/n , 1 [k/n,(k+1)/n] H .
The problem is that the Malliavin derivative DX n k/n appears, which is difficult to compute directly. Moreover, the error analysis of such an approximation seems also to be very difficult, because the L 2 -norm of the Skorohod integral involves the first Malliavin derivative of the integrand. Thus, for analyzing such an approximation scheme, we need also to control the difference between the Malliavin derivative of the solution and the Malliavin derivative of the approximation. But this involves the second Malliavin derivative etc. and we cannot have closable formulas. It is one of the reasons for which we preferred here to work within the Russo-Vallois framework, instead of the Skorohod one. Another reason is that the Russo-Vallois framework is, from our point of view, simpler in the one-dimensional case than the Skorohod one, as it is shown in [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF].

Crank-Nicholson scheme

In this section, we assume that 1/6 < H < 1/2 and we consider equation [START_REF] Gradinaru | Approximation at first and second order of the mvariation of the fractional Brownian motion[END_REF]. Let X n be the Crank-Nicholson scheme defined by (12), which is the canonical scheme associated to equation [START_REF] Gradinaru | Approximation at first and second order of the mvariation of the fractional Brownian motion[END_REF], since the integral with respect to the driving fBm B is defined by the symmetric integral. It is an implicit scheme, but it is nevertheless well-defined, since for n sufficiently large, x → x -1 2 ∆B k/n σ(x) is invertible. Although (12) seems to be rather close to [START_REF] Hüsler | On convergence of the uniform norms for Gaussian processes and linear approximation problems[END_REF] with b = 0, the situation is in fact here significantly more difficult. That is why we study the rate of convergence for the Crank-Nicholson scheme only in the following particular cases:

• Case 1: 1/6 < H < 1/2 and σ ∈ C 1 satisfies σ(x) 2 = αx 2 +βx+γ for some α, β, γ ∈ R,

• Case 2: 1/3 < H < 1/2 and σ ∈ C ∞ b bounded.

Case 1

Compared to Theorem 1, we have here a convergence in law. Moreover, the limit of the error is expressed as a mixed law between B 1 and an independent standard Gaussian random variable G, see also Remark 2, point 4.

Theorem 3 Assume that 1/6 < H < 1/2 and σ ∈ C 1 satisfies σ(x) 2 = αx 2 + βx + γ for some α, β, γ ∈ R. Then, as n → ∞, we have

n 3H-1/2 X n 1 -X 1 L -→ σ H α 12 σ(X 1 ) G. ( 21 
)
Here G ∼ N(0, 1) is independent of X 1 and

σ 2 H = 4/3 + 1/3 ∞ ℓ=1 θ(ℓ) 3 , where 2θ(ℓ) = (ℓ + 1) 2H + (ℓ -1) 2H -2ℓ 2H . (22) 
In fact, we have also a result at a functional level:

Theorem 4 Assume that 1/6 < H < 1/2 and σ ∈ C 1 satisfies σ(x) 2 = αx 2 + βx + γ for some α, β, γ ∈ R. Then, as n → ∞, we have

n 3H-1/2 sup k∈{0,...,n} X n k/n -X k/n L -→ σ H α 12 sup t∈[0,1] |σ(X t ) W t | . ( 23 
)
Here W is a standard Brownian motion independent of X and σ H > 0 is once again given by [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF].

Remark 4 1. In [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF], equation ( 8) is also studied and it is shown that X n 1 converges in probability if and only if H > 1/6 and that, in this case, the limit is X 1 , the solution of equation ( 8) at t = 1. Of course, this fact is also an obvious consequence of Theorem 3.

Let us show how the constant in (22) appears. Set Y

n = n -1/2 n-1 k=0 (n H ∆B k/n ) 3 . We claim that Var[Y n ] → σ 2 H as n → +∞. Indeed, using (n H B t/n ) t∈[0,∞) L = (B t ) t∈[0,∞) , we have Var[Y n ] = n -1 n-1 k,ℓ=0 E (B k+1 -B k ) 3 (B ℓ+1 -B ℓ ) 3 . Since x 3 = H 3 (x) + 3H 1 (x)
, where H 1 (x) = x and H 3 (x) = x 3 -3x denote the first and third Hermite polynomial, we can write, by using the well-known identity E[H i (X)H j (Y )] = 0 for i = j and E[H i (X)H i (Y )] = E[XY ] i /i! for a centered Gaussian vector (X, Y ) with Var[X] = Var[Y ] = 1 (see, e.g., [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Lemma 1.1.1):

Var[Y n ] = (6n) -1 n-1 k,ℓ=0 θ(ℓ -k) 3 + 9n -1 n-1 k,ℓ=0 θ(ℓ -k), with 2θ(ℓ -k) = 2E [(B k+1 -B k )(B ℓ+1 -B ℓ )] = |ℓ -k + 1| 2H + |ℓ -k -1| 2H -2|ℓ -k| 2H .
On the one hand, let us remark that n

-1 n-1 k,ℓ=0 θ(ℓ-k) = n -1 E n-1 k=0 B k+1 -B k 2 = n 2H-1 -→ 0 as n → +∞, if H < 1/2.
On the other hand, we can write

n-1 k,ℓ=0 θ(ℓ -k) 3 = n-1 k=0 θ(0) 3 + 2 n-1 k=0 n-1 ℓ=k+1 θ(ℓ -k) 3 = 8n + 2 n-1 k=0 n-k-1 ℓ=1 θ(ℓ) 3 .
Consequently, since θ(ℓ) < 0 for H < 1/2, we deduce by using Cesaro's theorem that Var[Y n ] -→ σ 2 H given by ( 22), as n → +∞. 3. In [START_REF] Hüsler | On convergence of the uniform norms for Gaussian processes and linear approximation problems[END_REF], in particular the approximation of fBm by its piecewise linear interpolation

B n t = B k/n + (nt -[nt])(B (k+1)/n -B k/n ), t ∈ [k/n, (k + 1)/n]
is studied. It is shown that the correct renormalization of B -B n ∞ converges to the Gumbel distribution, i.e.,

P B n -B ∞ ≤ σ n (ν n + x/ν n ) -→ exp(-exp(-x))
as n → for x ∈ R, where σ n ≈ c H n -H with c H > 0 and ν n is in terms of log(n). Since 3H -1/2 > H for H > 1/4, the analogue of Theorem 2 in the setting of Theorem 4, i.e.,

n 3H-1/2 X n -X ∞ L -→ σ H α 12 sup t∈[0,1] |σ(X t ) W t | ,
as n → ∞, can not hold without further restriction of the Hurst parameter.

For the proof of Theorem 3, we need the following Lemma.

Lemma 1 i) We have, for H < 1/2, B 1 , n 3H-1/2 n-1 k=0 (∆B k/n ) 3 L -→ (B 1 , G), as n → +∞, ( 24 
)
where G is a centered Gaussian random variable with variance σ 2 H given by ( 22), independent of B 1 .

ii) We have

n 5H-1/2 n-1 k=0 (∆B k/n ) 5 L -→ G ′ , as n → ∞,
where G ′ is a centered Gaussian random variable.

iii) We have

n 6H-1 n-1 k=0 (∆B k/n ) 6 Prob -→ 15, as n → +∞.
Proof of Lemma 1. The second and the third point are classical: we refer to [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]. Thus we have only to prove the first point. Let us denote by H 1 (x) = x and H 3 (x) = x 3 -3x the first and third Hermite polynomial. Since H < 1/2, we have

n -1/2 n-1 k=0 H 1 (n H ∆B k/n ) = n H-1/2 B 1 Prob -→ 0
and we deduce that the convergence in law [START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF] will hold if and only if

B 1 , n -1/2 n-1 k=0 H 3 (n H ∆B k/n ) L -→ (B 1 , G), (25) 
as n → +∞. In [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF], it is shown that n

-1/2 n-1 k=0 H 3 (n H ∆B k/n ) L -→ G.
See also the second point of Remark 4. Then, the proof ( 25) is finished by the following Proposition, which is an obvious consequence of the main result contained in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF].
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Proposition 4 Let (F n 1 , F n 
3 ) be a random vector such that, for every n,

F n i (i = 1, 3) is in the i-th Wiener chaos associated to the fBm B. If F n 1 L -→ G 1 and F n 3 L -→ G 3 with G i (i = 1, 3) some Gaussian variables, then L(F n 1 , F n 3 ) -→ L(G 1 ) ⊗ L(G 3 ).
Proof of Theorem 3. In [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF], the second-named author proved

X n 1 = φ B 1 + α 12 n-1 k=0 (∆B k/n ) 3 + α 2 80 n-1 k=0 (∆B k/n ) 5 + O n-1 k=0 (∆B k/n ) 6 , x 0 . ( 26 
)
Note that X 1 = φ(x 0 , B 1 ) and ∂φ ∂x 2 (x 1 , x s ) = σ(φ(x 1 , x 2 )). Consequently by a Taylor expansion

X n 1 -X 1 equals α 12 σ(X 1 ) n-1 k=0 (∆B k/n ) 3 + α 2 80 σ(X 1 ) n-1 k=0 (∆B k/n ) 5 +O   |X 1 | × n-1 k=0 (∆B k/n ) 6 ∧ n-1 k=0 (∆B k/n ) 3 2   .
By the second point of Lemma 1, we deduce that n 3H-1/2 n-1 k=0 (∆B k/n ) 5 -→ 0 in law, hence in probability. By the third point of Lemma 1, and since H > 1/6, we have that

n 3H-1/2 n-1 k=0 (∆B k/n ) 6 = n 1/2-3H × n 6H-1 n-1 k=0 (∆B k/n ) 6 -→ 0 in probability.
By the first point of Lemma 1, and since H > 1/6, we have that n

3H-1/2 n-1 k=0 (∆B k/n ) 3 2 = n 1/2-3H n 3H-1/2 n-1 k=0 (∆B k/n ) 3 2
-→ 0 in probability. Then, using again the first point of Lemma 1 and Slutsky's Lemma, we obtain [START_REF] Nourdin | Correcting symmetric integral by a Lévy area[END_REF].

2

Proof of Theorem 4. Exactly as in the proof of Theorem 3 in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF], we can prove

B t , n 3H-1/2 V n 3 (B) t L -→ (B t , σ H W t ), as n → +∞,
in the space D([0, 1]) 2 equipped with the Skorohod topology. Here, W is a standard Brownian motion independent of B and

V n 3 (B) is defined by V n 3 (B) t = [nt]-1 ℓ=0 (∆B ℓ/n ) 3 .
To obtain Theorem 4, it suffices then to adapt the proof of Theorem 3 below. 2

Case 2

Now assume that σ ∈ C ∞ b is bounded and that 1/3 < H < 1/2. In the sequel, we will need some fine properties concerning the m-order variation of B on the interval [0, 1]. Let us state them in the following proposition:

Proposition 5 Let h ∈ C 1 b .
1. If m ∈ N is even then, for any H ∈ (0, 1):

n mH-1 n-1 k=0 h(B k/n )(B (k+1)/n -B k/n ) m Prob -→ m! 2 m/2 (m/2)! 1 0 h(B s )ds, as n → +∞. 2. If m ∈ N \ {1} is odd then, for any H ∈ (1/4, 1/2) and α < mH -1/2: n α n-1 k=0 h(B k/n ) + 1 2 h ′ (B k/n )(B (k+1)/n -B k/n ) (B (k+1)/n -B k/n ) m Prob -→ 0, ( 27 
)
as n → +∞.

Proof.

1. When h ≡ 1, it is a classical result: we refer to [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] for instance. To obtain the general case, it suffices to adapt the methodology developed in step 5 of [START_REF] Gradinaru | Approximation at first and second order of the mvariation of the fractional Brownian motion[END_REF], p. 8. or in the proof of Theorem 1 in [START_REF] Corcuera | Power variation of some integral long-memory processes[END_REF].

2. Using the same linear regression as in the proof of Theorem 4.1 in [START_REF] Gradinaru | m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index[END_REF], we can prove that, when H < 1/2:

n α n-1 k=0 [h(B (k+1)/n ) + h(B k/n )] (B (k+1)/n -B k/n ) m
converges in probability to 0, for any α < mH -1/2. Convergence [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF] can then be obtained using a Taylor expansion and the fact that H > 1/4.

Details are left to the reader. 2

Using the above proposition we can show the following result.

Theorem 5 Assume that H ∈ (1/3, 1/2) and σ ∈ C ∞ b is bounded. Then we have:

For any α < 3H -1/2, n α X (n) 1 -X 1 Prob -→ 0 ( 28 
)
as n → ∞.

Proof of Theorem 5. In the following, denote

∆ j Z k/n = (Z (k+1)/n -Z k/n ) j
for j, n ∈ N, k ∈ {0, . . . , n -1} and a process Z = (Z t ) t∈[0,1] . When j = 1, we prefer the notation ∆Z k/n instead of ∆ 1 Z k/n for simplicity. Denote also, for p ∈ N,

∆ p (B) = max k=0,...,n-1 |∆ p B k/n |.
Moreover, it is recall that φ given by ( 6) verifies the semigroup property:

∀x, y, z ∈ R, φ(φ(x, y), z) = φ(x, y + z) (29) 
and we have

X t = φ(x, B t ), t ∈ [0, 1].
Simple but tedious computations (see, for instance, [START_REF] Nourdin | A simple theory for the study of SDEs driven by a fractional Brownian motion[END_REF]) allow us to obtain:

X (n) (k+1)/n = φ X (n) k/n , ∆B k/n + f ( X (n) k/n )∆ 3 B k/n + g( X (n) k/n )∆ 4 B k/n + O(∆ 5 (B)) , with f = (σ 2 ) ′′ 24
and g = σ(σ 2 ) ′′′ 12 . We deduce from the semi-group property (29) that for every ℓ ∈ {1, . . . , n}:

X (n) ℓ/n = φ x, B ℓ/n + ℓ-1 k=0 f ( X (n) k/n )∆ 3 B k/n + ℓ-1 k=0 g( X (n) k/n )∆ 4 B k/n + O(n∆ 5 (B)) . (30) 
In particular, we have sup ℓ∈{0,...,n}

X (n) ℓ/n -X ℓ/n = sup ℓ∈{0,...,n} X (n) ℓ/n -φ(x, B ℓ/n ) = O(n∆ 3 (B)) (31) 
and then [START_REF] Talay | Résolution trajectorielle et analyse numérique des équations différentielles stochastiques[END_REF] becomes

X (n) ℓ/n = φ x, B ℓ/n + ℓ-1 k=0 f ( X (n) k/n )∆ 3 B k/n + ℓ-1 k=0 g(X k/n )∆ 4 B k/n + O(n 2 ∆ 7 (B)) . ( 32 
)
Due to the assumptions on σ we have that

φ(x, y 2 ) = φ(x, y 1 ) + m j=1 1 j! ∂ j φ (∂x 2 ) j (x, y 1 )(y 2 -y 1 ) j + O((y 2 -y 1 ) m+1 ).
Thus we get

X (n) k/n = X k/n + m j=1 1 j! ∂ j φ (∂x 2 ) j (x, B k/n ) (33) ×   k-1 k 1 =0 f ( X (n) k 1 /n )∆ 3 B k 1 /n + k-1 k 1 =0 g(X k 1 /n )∆ 4 B k 1 /n + O(n 2 ∆ 7 (B))   j +O(n m+1 ∆ 3(m+1) (B)).
(i) Now assume for a moment that H > 5/12. By using (33) with m = 1 and ∂φ

∂x 2 (x 1 , x 2 ) = σ(φ(x 1 , x 2 )) we get X (n) k/n = X k/n + σ(X k/n ) k-1 k 1 =0 f ( X n k 1 /n )∆ 3 B k 1 /n + O(n 2 ∆ 6 (B)).
and

X (n) k/n = X k/n + σ(X k/n ) k-1 k 1 =0 f (X k 1 /n )∆ 3 B k 1 /n + O(n 2 ∆ 6 (B)). (34) 
By inserting the previous equality in (32) with ℓ = n, we obtain

X (n) 1 = φ   x, B 1 + n-1 k=0 f (X k/n )∆ 3 B k/n + n-1 k=0 f ′ σ(X k/n )∆ 3 B k/n k k 1 =0 f (X k 1 /n )∆ 3 B k 1 /n + n-1 k=0 g(X k/n )∆ 4 B k/n + O(n 3 ∆ 9 (B)) . (35) 
But we have, due to the second point of Theorem 5 and the fact that g = 2 σf ′ and X t = φ(x, B t ):

n α n-1 k=0 f (X k/n )∆ 3 B k/n + n-1 k=0 g(X k/n )∆ 4 B k/n Prob -→ 0.
Moreover, since H > 5/12 and α < 3H -1/2, we have

n α+3 ∆ 9 (B) a.s.
-→ 0.

On the other hand, since

2 n-1 k=0 f ′ σ(X k/n )∆ 3 B k/n k k 1 =0 f (X k 1 /n )∆ 3 B k 1 /n = n-1 k=0 f ′ σ(X k/n )∆ 3 B k/n   n-1 k 1 =0 f (X k 1 /n )∆ 3 B k 1 /n   - n-1 k=0 f f ′ σ(X k/n )∆ 6 B k/n
we deduce, this time due to the first and the second point of Theorem 5, that

n α n-1 k=0 f ′ σ(X k/n )∆ 3 B k/n k k 1 =0 f (X k 1 /n )∆ 3 B k 1 /n Prob -→ 0.
Finally, we obtain (28) when H > 5/12. (ii) To prove the announced result, that is [START_REF] Russo | Elements of stochastic calculus via regularisation[END_REF] for arbitrary H ∈ (1/3, 1/2), it suffices to use (33) with the appropriate m for the considered H and then to proceed as in (i). The remaining details are left to the reader.

Proof of Theorems 1 and 2

Throughout this section we assume that b ∈ C 2 b , σ ∈ C 3 b and H > 1/2. For g : [0, 1] → R and λ ∈ (0, 1) we will use the usual notations

g ∞ = sup t∈[0,1] |g(t)|, g λ = sup s,t∈[0,1],s =t |g(t) -g(s)| |t -s| λ .
Moreover positive constants, depending only on b, σ, their derivatives, x 0 and H, will be denoted by c, regardless of their value. We will write ∆ instead of 1/n.

The following properties of the function φ are taken from Lemma 2.1 in [START_REF] Talay | Résolution trajectorielle et analyse numérique des équations différentielles stochastiques[END_REF].

Lemma 2 Let φ given by ( 6). Then we have

(a) φ(x 1 , x 2 ) = φ(φ(x 1 , y), x 2 -y), x 1 = φ(φ(x 1 , x 2 ), -x 2 ) (b) ∂φ ∂x 2 (x 1 , x 2 ) = σ(x 1 ) ∂φ ∂x 1 (x 1 , x 2 ) (c) σ 2 (x 1 ) ∂ 2 φ ∂x 2 1 (x 1 , -x 2 ) -2σ(x 1 ) ∂ 2 φ ∂x 1 ∂x 2 (x 1 , -x 2 ) + (σσ ′ )(x 1 ) ∂φ ∂x 1 (x 1 , -x 2 ) + ∂ 2 φ ∂x 2 2 (x 1 , -x 2 ) = 0 (d) 1 = ∂φ ∂x 1 (φ(x 1 , x 2 ), -x 2 ) ∂φ ∂x 1 (x 1 , x 2 ) (e) ∂φ ∂x 1 (x 1 , x 2 ) = exp x 2 0 σ ′ (φ(x 1 , s)) ds for all x 1 , x 2 , y ∈ R.
The following is well known and easy to prove.

Lemma 3 Let n ∈ N and a i , b i ∈ R for i = 1, . . . , n.

(a) For x j , j = 0, . . . , n given by the recursion

x j+1 = x j b j + a j , j = 0, . . . , n -1, with x 0 = 0, we have

x j = j-1 i=0 a i j-1 k=i+1 b k , j = 1, . . . n. (b) If |x j+1 | ≤ |x j ||b j | + |a j |, j = 0, . . . , n -1,
with x 0 = 0 and |b j | ≥ 1 for all j = 0, . . . , n -1, then max j=0,...,n

|x j | ≤ n-1 i=0 |a i | n-1 k=1 |b k |.
We will also require that the Euler approximation of the solution and the process (A t ) t∈[0,1]

given by ( 7) can be uniformly bounded in terms of the driving fBm.

Lemma 4

We have

sup n∈N sup k=0,...,n |X n k/n | ≤ exp(c exp(c ( B ∞ + B 2 1/2 ))) a.s., (36) 
A ∞ ≤ exp(c exp(c B ∞ )) a.s. (37) 
Proof. We prove only the first assertion, following the proof of Lemma 2.4. in [START_REF] Talay | Résolution trajectorielle et analyse numérique des équations différentielles stochastiques[END_REF]. The second assertion can be obtained by a straightforward application of Gronwall's Lemma to equation [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF]. By Lemma 2 (a) we have

φ(X n k/n , -B k/n ) = φ(φ(X n k/n , ∆B k/n ), -B (k+1)/n ).
Using this, we obtain by the mean value theorem

φ(X n (k+1)/n , -B (k+1)/n )-φ(X n k/n , -B k/n ) = X n (k+1)/n -φ(X n k/n , ∆B k/n ) ∂φ ∂x 1 (ξ k , -B (k+1)/n ) with ξ k between X n (k+1)/n and φ(X n k/n , ∆B k/n ). Moreover φ(X n k/n , ∆B k/n ) = φ(X n k/n , 0) + ∆B k/n ∂φ ∂x 2 (X n k/n , 0) + 1 2 (∆B k/n ) 2 ∂ 2 φ ∂x 2 2 (X n k/n , ζ k ) with |ζ k | ≤ |∆B k/n |. Thus we get φ(X n k/n , ∆B k/n ) = X n k/n + σ(X n k/n )∆B k/n + 1 2 (σσ ′ )(φ(X n k/n , ζ k ))(∆B k/n ) 2 20 
by the definition of φ. So we finally obtain

φ(X n (k+1)/n , -B (k+1)/n ) -φ(X n k/n , -B k/n ) = b(X n k/n )∆ - 1 2 (σσ ′ )(φ(X n k/n , ζ k ))(∆B k/n ) 2 ∂φ ∂x 1 (ξ k , -B (k+1)/n ). Since ∂φ ∂x 1 (x 1 , x 2 ) = exp x 2 0 σ ′ (φ(x 1 , s)) ds
by Lemma 2 (e), we have

∂φ ∂x 1 (ξ k , -B (k+1)/n ) ≤ exp(c B ∞ ).
Due to the assumptions, the drift and diffusion coefficients satisfy a linear growth condition, i.e.,

|b(x)| ≤ c(1 + x), |σ(x)| ≤ c(1 + x) for x ∈ R. Hence we get |φ(X n (k+1)/n , -B (k+1/n) )| ≤ |φ(X n k/n , -B k/n )| + c exp(c B ∞ )(1 + |X n k/n |)∆ +c exp(c B ∞ )(1 + |φ(X n k/n , ζ k )|)(∆B k/n ) 2 .
Since by Lemma 2 (a)

X n k/n = φ(φ(X n k/n , -B k/n ), B k/n
), and φ(0, 0) = 0, we have by Lemma 2 (b) and (e)

|X n k/n | ≤ c exp(c B ∞ ) |φ(X n k/n , -B k/n )| + B ∞ and furthermore, since |ζ k | ≤ |∆B k/n | |φ(X n k/n , ζ k )| ≤ c exp(c B ∞ ) |X n k/n | + B ∞ ≤ c exp(c B ∞ ) |φ(X n k/n , -B k/n )| + B ∞ .
Together with

|∆B k/n | ≤ B 1/2 ∆ 1/2 , this yields |φ(X n (k+1)/n , -B (k+1/n) )| ≤ |φ(X n k/n , -B k/n )| 1 + c exp(c B ∞ )(1 + B 2 1/2 )∆ +c exp(c B ∞ )(1 + B 2 1/2 )∆. Setting M = B ∞ + B 2 1/2 it follows by Lemma 3 |φ(X n k/n , -B k/n )| ≤ n k=1 c exp(c M )∆ n j=1 (1 + c exp(c M )∆) ≤ exp(c exp(c M )).
Thus with

X n k/n = φ(φ(X n k/n , -B k/n ), B k/n ), we get the estimate |X n k/n | ≤ exp(c B ∞ )|φ(X n k/n , -B k/n )| + c exp(c B ∞ ) B ∞ ≤ exp(c exp(c M )).
Now we will state some Lemmas, which will be needed to determine the asymptotic constant of the error of the Euler scheme. The following Lemma 5 can be shown by straightforward calculations.

Lemma 5 Denote f (x, y) = exp - x 0 σ ′ (φ(y, s)) ds b(φ(y, x)),
x, y ∈ R.

Then we have f ∈ C 1,2 and in particular f y (x, y) = b ′ (φ(y, x)) -f (x, y)

x 0 σ ′′ (φ(y, s)) ∂φ ∂x 1 (y, s) ds, x, y ∈ R.

Lemma 6

We have a.s.

exp t s b ′ (X u ) du + t s σ ′ (X u )d -B u = ∂φ ∂x 1 (A t , B t ) ∂φ ∂x 1 (X s , -B s ) exp t s f y (B u , A u ) du , 0 ≤ s ≤ t ≤ 1.
Proof. By Lemma 2 (d) and (e) we have

∂φ ∂x 1 (A t , B t ) = exp Bt 0 σ ′ (φ(A t , u)) du , ∂φ ∂x 1 (X s , -B s ) = exp - Bs 0 σ ′ (φ(A s , u)) du .
Using the notation g(x, y) =

x 0 σ ′ (φ(y, u)) du we get by Lemma 5

∂φ ∂x 1 (A t , B t ) ∂φ ∂x 1 (X s , -B s ) exp t s f y (B u , A u ) du = exp g(B t , A t ) -g(B s , A s ) + t s f y (B u , A u ) du = exp t s b ′ (X u ) du exp (g(B t , A t ) -g(B s , A s )) exp - t s Bu 0 σ ′′ (φ(A u , τ )) ∂φ ∂x 1 (A u , τ ) dτ f (B u , A u )du . Since g x (x, y) = σ ′ (φ(y, x)) and g y (x, y) = x 0 σ ′′ (φ(y, s)) ∂φ ∂x 1 (y, s) ds
we have by the change of variable formula for Riemann-Stieltjes integrals, see e.g., [START_REF] Klingenhöfer | Ordinary differential equations with fractal noise[END_REF],

g(B t , A t ) -g(B s , A s ) = t s σ ′ (φ(A u , B u )) d -B u + t s Bu 0 σ ′′ (φ(A u , v)) ∂φ ∂x 1 (A u , v) dv dA u , Since A ′ t = f (B t , A t ) we finally get g(B t , A t ) -g(B s , A s ) - t s Bu 0 σ ′′ (φ(A u , v)) ∂φ ∂x 1 (A u , v) dv f (B u , A u )du = t s σ ′ (X u ) d -B u ,
which shows the assertion.

The next Lemma can be shown by a density argument.

Lemma 7 Let g, h ∈ C([0, 1]) and denote ∆h k/n = h((k+1)/n)-h(k/n) for k = 0 . . . , n-1, n ∈ N. If sup t∈[0,1] n 2H-1 n-1 k=0 1 [0,t] (k/n)(∆h k/n ) 2 -t -→ 0 as n → ∞, then it follows sup t∈[0,1] n 2H-1 n-1 k=0 g(k/n)1 [0,t] (k/n)(∆h k/n ) 2 - t 0 g(s) ds -→ 0 as n → ∞.
Now we finally prove Theorem 1 and 2. In the following we will denote by C random constants, which depend only on b, σ, their derivatives, x 0 , H, B ∞ and B λ with λ < H, regardless of their value. We start with the proof of Theorem 2.

Proof of Theorem 2. (1) We first establish a rough estimate for the pathwise error of the Euler scheme. For this, we follow the lines of the proof of Theorem 2.6. in [START_REF] Talay | Résolution trajectorielle et analyse numérique des équations différentielles stochastiques[END_REF]. Set

A n k = φ(X n k/n , -B k/n ), k = 0, . . . , n
for n ∈ N. By a Taylor expansion, the properties of φ and Lemma 4 we have

A n k+1 -A n k = ∂φ ∂x 1 (X n k/n , -B k/n )(X n (k+1)/n -X n k/n ) - ∂φ ∂x 2 (X n k/n , -B k/n )∆B k/n + 1 2 ∂ 2 φ ∂x 2 1 (X n k/n , -B k/n )σ(X n k/n ) 2 (∆B k/n ) 2 + 1 2 ∂ 2 φ ∂x 2 2 (X n k/n , -B k/n )(∆B k/n ) 2 - ∂ 2 φ ∂x 2 ∂x 1 (X n k/n , -B k/n )σ(X n k/n )(∆B k/n ) 2 + R (1) k with |R (1) k | ≤ C((∆B k/n ) 3 + ∆ • ∆B k/n + ∆ 2 ). ( 38 
) Since - 1 2 ∂φ ∂x 1 (X n k/n , -B k/n )(σσ ′ )(X n k/n ) = 1 2 ∂ 2 φ ∂x 2 1 (X n k/n , -B k/n )σ(X n k/n ) 2 + 1 2 ∂ 2 φ ∂x 2 2 (X n k/n , -B k/n ) - ∂ 2 φ ∂x 2 ∂x 1 (X n k/n , -B k/n )σ(X n k/n )
by Lemma 2 (c), we have

A n k+1 = A n k + b(X n k/n ) ∂φ ∂x 1 (X n k , -B k/n )∆ + Q k + R (1) 
k , for k = 0, . . . , n -1, n ∈ N, with

Q k = - 1 2 (σσ ′ )(X n k/n )(∆B k/n ) 2 ∂φ ∂x 1 (X n k , -B k/n ), k = 0, . . . , n.
Since X n k/n = φ( A n k , B k/n ) and using Lemma 2 (d) and (e) we get We have e 0 = A 0 -φ(x 0 , 0) = 0 and 

A n k+1 = A n k + f (B k/n , A n k )∆ + Q k + R ( 
|e k+1 | ≤ |e k |(1 + C∆) + |Q k | + |R (1) 
k | + (k+1)/n k/n f (B τ , A τ ) -f (B k/n , A k/n ) dτ .
k | ≤ C B 3 H-ε ∆ 3H-3ε + B H-ε ∆ H+1-ε + ∆ 2 ≤ C∆ H+1-ε . ( 39 
)
Since also (2) Now we derive the exact asymptotics of the error of the Euler scheme. We can write the recursion for the error e k = A k/n -A n k as

| Q k | ≤ C(∆B k/n ) 2 ≤ C∆ 2H-
e k+1 = e k + f y (B k/n , A k/n )e k ∆ + Q k + R (2) k + 1 2 f yy (B k/n , η k )e 2 k ∆
with η k between A k/n and A n k . Put

Q k = - 1 2 (σσ ′ )(X k/n )(∆B k/n ) 2 ∂φ ∂x 1 (X k/n , -B k/n ).
By (40) we have

|Q k -Q k | ≤ C∆ 4H-1-4ε .
Since moreover 

k | ≤ C∆ min{4H-2-4ε,H-ε} .

Moreover, since X t = φ(A t , B t ), t ∈ [0, 1] and X n k/n = φ( A n k , B k/n ), k = 0, . . . , n we have

X k/n -X n k/n = ∂φ ∂x 1 (A k/n , B k/n )(A k/n -A n k ) + 1 2 ∂ 2 φ ∂x 2 1 (θ k , B k/n )(A k/n -A n k ) 2
with θ k between A k/n and A n k . It follows by ( 40) and (42)

X k/n -X n k/n = ∂φ ∂x 1 (A k/n , B k/n ) k-1 i=0 Q i exp k/n i/n f y (B s , A s ) ds + R (6) k with |R (6) 
k | ≤ C∆ min{4H-2-4ε,H-ε} .

  1) k for k = 0, . . . , n -1, n ∈ N, with the function f given in Lemma 5. Note that sup n∈N sup k=0,...,n| A n k | ≤ exp(c exp(c ( B ∞ + B 2 1/2 ))),as a consequence of Lemma 4. Now sete k = A k/n -A n k , k = 0, . . . n.

  τ , A τ ) -f (B k/n , A k/n ) dτ ≤ C (k+1)/n k/n |B τ -B k/n | dτ + C∆ 2we can rewrite the above recursion as|e k+1 | ≤ |e k |(1 + C∆) + |Q k | + |R

  | ≤ C∆ 2H-1-2ε , (41) due to X t = φ(A t , B t ), t ∈ [0, 1], and X n k/n = φ( A n k , B k/n ), k = 0, . . . , n.

  f y (B t , A t ) dt -f y (B k/n , A k/n )∆ ≤ C∆ H+1-ε ,we get by (39) and (41)e k+1 = e k + e k (k+1)/n k/n f y (B t , A t ) dt + Q k + R C∆ min{4H-1-4ε,H+1-ε} . Applying Lemma 3 yields A k/n -A n k = f y (B t , A t ) dt + R f y (B t , A t ) dt ≤ C∆ min{4H-2-4ε,H-ε} .Thus it remains to consider the termf y (B t , A t ) dt .f y (B t , A t ) dt, j = 0, . . . , nf y (B s , A s ) ds + R
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Since finally by Lemma 6

we have

and we get by (43)

Furthermore it holds

28

with

This is due to the fact that the sample paths of Z are Hölder continuous of any order λ < H.

It is well known that

is monotone in t, the exceptional set of the almost sure convergence can be chosen independent of t ∈ [0, 1]. Thus we get by Dini's second theorem that a.s.

Hence it follows by Lemma 7

which finally shows the assertion.

Proof of Theorem 1. By (43) we have

σ ′ (X i/n )D i/n X 1 (∆B i/n ) 2 + R (6) n with |R (6) n | ≤ C∆ min{4H-2-4ε,H-ε} . The assertion follows then by (44) and Lemma 7, as in the previous proof.