open science

Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion

Andreas Neuenkirch, Ivan Nourdin

- To cite this version:

Andreas Neuenkirch, Ivan Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. 2006. hal-00016415v1

HAL Id: hal-00016415
https://hal.science/hal-00016415v1
Preprint submitted on 3 Jan 2006 (v1), last revised 27 Nov 2006 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion

Andreas Neuenkirch
Technical University of Darmstadt, Department of Mathematics, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
neuenkirch@mathematik.tu-darmstadt.de
Ivan Nourdin
LPMA, Université Pierre et Marie Curie Paris 6, Boite courrier 188, 4 Place Jussieu, 75252 Paris Cedex 5, France nourdin@ccr.jussieu.fr

Abstract

In this paper, we derive the exact rate of convergence of some approximation schemes associated to scalar stochastic differential equations driven by a fractional Brownian motion with Hurst index H. We consider two cases. If $H>1 / 2$, the exact rate of convergence of the Euler scheme is determined. We show that the error of the Euler scheme converges almost surely to a random variable, which in particular depends on the Malliavin derivative of the solution. This result extends those contained in 13 and 14. When $1 / 6<H<1 / 2$, the exact rate of convergence of the Crank-Nicholson scheme is determined for a particular equation. Here we show convergence in law of the error to a random variable, which depends on the solution of the equation and an independent Gaussian random variable.

Key words: Fractional Brownian motion - Russo-Vallois integrals - Doss-Sussmann type transformation - Stochastic differential equations - Euler scheme - Crank-Nicholson scheme - Mixing law.

2000 Mathematics Subject Classification: 60G18, 60H05, 60H20.

1 Introduction

Let $B=\left(B_{t}, t \in[0,1]\right)$ be a fractional Brownian motion (in short: fBm) with Hurst parameter $H \in(0,1)$, i.e., B is a continuous centered Gaussian process with covariance function

$$
R_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right), \quad s, t \in[0,1]
$$

For $H=1 / 2, B$ is a standard Brownian motion, while for $H \neq 1 / 2$, it is neither a semimartingale nor a Markov process. Moreover, it holds

$$
\left(\mathrm{E}\left|B_{t}-B_{s}\right|^{2}\right)^{1 / 2}=|t-s|^{H}, \quad s, t \in[0,1]
$$

and almost all sample paths of B are Hölder continuous of any order $\alpha \in(0, H)$.
In this paper, we are interested in the pathwise approximation of the equation

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s, \quad t \in[0,1] \tag{1}
\end{equation*}
$$

with a deterministic initial value $x_{0} \in \mathbb{R}$. Here, σ and b satisfy some standard smoothness assumptions and the integral equation (1]) is understood in the sense of Russo-Vallois. Let us recall briefly the significant points of this theory.

Definition 1 (following [23]) Let $Z=\left(Z_{t}\right)_{t \in[0,1]}$ be a stochastic process with continuous paths.

- A family of processes $\left(H_{t}^{(\varepsilon)}\right)_{t \in[0,1]}$ is said to converge to the process $\left(H_{t}\right)_{t \in[0,1]}$ in the ucp sense, if $\sup _{t \in[0,1]}\left|H_{t}^{(\varepsilon)}-H_{t}\right|$ goes to 0 in probability, as $\varepsilon \rightarrow 0$.
- The (Russo-Vallois) forward integral $\int_{0}^{t} Z_{s} d^{-} B_{s}$ is defined by

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}-\operatorname{ucp} \varepsilon^{-1} \int_{0}^{t} Z_{t}\left(B_{t+\varepsilon}-B_{t}\right) d t \tag{2}
\end{equation*}
$$

provided the limit exists.

- The (Russo-Vallois) symmetric integral $\int_{0}^{t} Z_{s} d^{\circ} B_{s}$ is defined by

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}-\operatorname{ucp}(2 \varepsilon)^{-1} \int_{0}^{t}\left(Z_{t+\varepsilon}+Z_{t}\right)\left(B_{t+\varepsilon}-B_{t}\right) d t \tag{3}
\end{equation*}
$$

provided the limit exists.

Now we state the exact meaning of equation (11) and give conditions for the existence and uniqueness of its solution. We consider two cases, according to the value of H :

- Case $H>1 / 2$.

Here the integral with respect to B is defined by the forward integral (22).
Proposition 1 If $\sigma \in \mathcal{C}_{b}^{2}$ and if b satisfies a global Lipschitz condition, then the equation

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d^{-} B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s, \quad t \in[0,1] \tag{4}
\end{equation*}
$$

admits a unique solution X in the set of processes whose paths are Hölder continuous of order $\alpha>1-H$. Moreover, we have a Doss-Sussmann type [回, 2-] representation:

$$
\begin{equation*}
X_{t}=\phi\left(A_{t}, B_{t}\right), \quad t \in[0,1], \tag{5}
\end{equation*}
$$

where ϕ and A are given respectively by

$$
\begin{equation*}
\frac{\partial \phi}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\sigma\left(\phi\left(x_{1}, x_{2}\right)\right), \quad \phi\left(x_{1}, 0\right)=x_{1}, \quad x_{1}, x_{2} \in \mathbb{R} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{t}^{\prime}=\exp \left(-\int_{0}^{B_{t}} \sigma^{\prime}\left(\phi\left(A_{t}, s\right)\right) d s\right) b\left(\phi\left(A_{t}, B_{t}\right)\right), \quad A_{0}=x_{0}, \quad t \in[0,1] . \tag{7}
\end{equation*}
$$

Proof. If X and Y are two real processes whose paths are a.s. Hölder continuous of index $\alpha>0$ and $\beta>0$ with $\alpha+\beta>1$, then $\int_{0}^{t} Y_{s} d^{-} X_{s}$ coincides with the Young integral $\int_{0}^{t} Y_{s} d X_{s}$ (see [24], Proposition 2.12). Consequently, Proposition 11 is a consequence of, e.g., (8] or [2].

- Case $1 / 6<H<1 / 2$.

When $H<1 / 2$, in particular the forward integral $\int_{0}^{t} B_{s} d^{-} B_{s}$ does not exist. Thus, in this case, the use of the symmetric integral (3) is more adequate. Here we consider only the case $b=0$: for the general case see (15], (17] and Remark 1 .

Proposition 2 If $H>1 / 6$ and if $\sigma \in \mathcal{C}^{5}(\mathbb{R})$ satisfies a global Lipschitz condition, then the equation

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d^{\circ} B_{s}, \quad t \in[0,1] \tag{8}
\end{equation*}
$$

admits a unique solution X in the set of processes of the form $X_{t}=f\left(B_{t}\right)$ with $f \in \mathcal{C}^{5}(\mathbb{R})$. The solution is given by $X_{t}=\phi\left(x_{0}, B_{t}\right), t \in[0,1]$, where ϕ is defined by (G).

Proof. See 15], Theorem 2.10.

Remark 1 In the case where $H>1 / 3$ and $b \neq 0$, Nourdin and Simon (17] developed recently a new concept, namely the symmetric integral corrected by a Lévy area, in order to study equation (11). It allows to use a fixed point theorem to obtain existence and uniqueness in the set of processes whose paths are Hölder continuous of index $\alpha>1 / 3$ and not only in the more restrictive - and a little arbitrary - set of processes of the form $X_{t}=f\left(B_{t}, A_{t}\right)$ with $f \in \mathcal{C}^{5,1}(\mathbb{R})$ and A a process with \mathcal{C}^{1}-trajectories, as shown in (15).

Approximation schemes for stochastic differential equations of the type (11) are studied only in few articles, see, e.g., [13] and the references therein. In [14], the second-named author considers the approximation of autonomous differential equations driven by Hölder continuous functions (of any fractal index $0<\alpha<1$). He determines upper bounds for the order of convergence of the Euler scheme and a Milshtein-type scheme, see also [26], and applies then his results to the case of the fBm. In [13], the first-named author studies the following equation with additive fractional noise

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma(s) d B_{s}+\int_{0}^{t} b\left(s, X_{s}\right) d s, \quad t \in[0,1] \tag{9}
\end{equation*}
$$

under the hypothesis $H>1 / 2$. For a mean-square- L^{2}-error criterion, he derives by means of the Malliavin calculus the exact rate of convergence of the Euler scheme, also for nonequidistant discretizations. Moreover, the optimal approximation of equation (9) is also studied in (13].

In this paper, we are interested in the exact rate of convergence of the Euler scheme associated to (4) and of the Crank-Nicholson schemes associated to (8). Thus here, compared to [13], we study the non-additive case. We obtain two types of results (see Section 3 for precise statements):

- If $\underline{X}_{>}>1 / 2$ and under standard assumptions on σ and b, then the classical Euler scheme \bar{X}^{n} with step-size $1 / n$ for equation (7) defined by

$$
\left\{\begin{array}{l}
\bar{X}_{0}^{n}=x_{0} \tag{10}\\
\bar{X}_{(k+1) / n}^{n}=\bar{X}_{k / n}^{n}+\sigma\left(\bar{X}_{k / n}^{n}\right) \Delta B_{k / n}+b\left(\bar{X}_{k / n}^{n}\right) \frac{1}{n}, \quad k \in\{0, \ldots, n-1\},
\end{array}\right.
$$

and $\bar{X}_{t}^{n}=\bar{X}_{[n t] / n}^{n}$ for $t \in[0,1]$ verifies

$$
\begin{equation*}
n^{2 H-1}\left[\bar{X}_{1}^{n}-X_{1}\right] \xrightarrow{\text { a.s. }}-\frac{1}{2} \int_{0}^{1} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{1} d s . \tag{11}
\end{equation*}
$$

Here $D_{s} X_{t}, s, t \in[0,1]$ denotes the Malliavin derivative at time s of X_{t} with respect to the $\mathrm{fBm} B$. This result is somewhat surprising because it does not have an analogue
in the case of the standard Brownian motion. Indeed, in this framework, or more generally when SDEs driven by semimartingales are considered, it is generally shown that \bar{X}_{1}^{n} converges a.s. to X_{1} and then that the correctly renormalized difference converges in law, see, e.g, 10. For the approximation of Itô-SDEs with respect to mean square error criterions, see, e.g., [9] or [12], and Remark 2, point 3.
Moreover, if we consider the global error on the interval $[0,1]$ of the Euler scheme, we obtain

$$
n^{2 H-1}\left\|\bar{X}^{n}-X\right\|_{\infty} \xrightarrow{\text { a.s. }} \frac{1}{2} \sup _{t \in[0,1]}\left|\int_{0}^{t} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{t} d s\right|
$$

- Assume that $1 / 6<H<1 / 2$ and that the diffusion coefficient $\sigma \in \mathcal{C}^{1}$ satisfies

$$
\sigma(x)^{2}=a x^{2}+b x+c \text { with some } a, b, c \in \mathbb{R}
$$

Let us consider the Crank-Nicholson scheme \widehat{X}^{n} with step-size $1 / n$ associated to (8):

$$
\left\{\begin{array}{l}
\widehat{X}_{0}^{n}=x_{0} \tag{12}\\
\widehat{X}_{(k+1) / n}^{n}=\widehat{X}_{k / n}^{n}+\frac{1}{2}\left(\sigma\left(\widehat{X}_{k / n}^{n}\right)+\sigma\left(\widehat{X}_{(k+1) / n}^{n}\right)\right)\left(B_{(k+1) / n}-B_{k / n}\right) \\
\\
\quad k \in\{0, \ldots, n-1\}
\end{array}\right.
$$

and $\widehat{X}_{t}^{n}=\widehat{X}_{[n t] / n}^{n}$ for $t \in[0,1]$. We have

$$
\begin{equation*}
n^{3 H-1 / 2}\left[\widehat{X}_{1}^{n}-X_{1}\right] \xrightarrow{\mathcal{L}} \sigma_{H} \frac{a}{12} \sigma\left(X_{1}\right) G, \tag{13}
\end{equation*}
$$

with $G \sim \mathrm{~N}(0,1)$ independent of X_{1} and σ_{H}^{2} given by (21). We prove also an equivalent of (13), at the global level:

$$
n^{3 H-1 / 2} \sup _{k \in\{0, \ldots, n\}}\left|\widehat{X}_{k / n}^{n}-X_{k / n}\right| \xrightarrow{\mathcal{L}} \sigma_{H} \frac{a}{12} \sup _{t \in[0,1]}\left|\sigma\left(X_{t}\right) W_{t}\right|
$$

with W a standard Brownian motion independent of X.
Compared to the above result for the Euler scheme, the convergence to a mixing law obtained here is classical in the semimartingale framework. In the fBm framework, such a phenomenon was already obtained in two recent papers for $1 / 2<H<3 / 4$: in [4], the authors study the asymptotic behavior of the power variation of processes of the form $\int_{0}^{T} u_{s} d B_{s}$, while, in [11] the asymptotic behavior of $\int_{0}^{t} f\left(\bar{X}_{s}^{n}\right) G\left(\dot{\bar{X}}_{s}^{n} n^{H-1}\right) d s$ is studied, where \bar{X}^{n} denotes the broken-line approximation with stepsize $1 / n$ of the solution X of (8) and $\dot{\bar{X}}^{n}$ its derivative.

The paper is organized as follows. In Section 2, we recall a few facts about the Malliavin calculus with respect to the $\mathrm{fBm} B$. Section 3 contains the results concerning the exact rates of convergence for the Euler and the Crank-Nicholson schemes associated to (4) and (8) respectively. The proofs of the results for the Euler scheme are postponed to Section 4.

2 Recalls of Malliavin calculus with respect to a fBm

Let us give a few facts about the Gaussian structure of fBm and its Malliavin derivative process, following Section 3.1 in [19] and Chapter 1.2 in [18]. Let \mathcal{E} be the set of stepfunctions on $[0,1]$. Consider the Hilbert space \mathcal{H} defined as the closure of \mathcal{E} with respect to the scalar product

$$
\left\langle\mathbf{1}_{[0, t]}, \mathbf{1}_{[0, s]}\right\rangle_{\mathcal{H}}=R_{H}(t, s), \quad s, t \in[0,1] .
$$

More precisely, if we set

$$
K_{H}(t, s)=\Gamma(H+1 / 2)^{-1}(t-s)^{H-1 / 2} F(H-1 / 2,1 / 2-H ; H+1 / 2,1-t / s)
$$

where F denotes the standard hypergeometric function, and if we define the linear operator K_{H}^{*} from \mathcal{E} to $L^{2}([0,1])$ by

$$
\left(K_{H}^{*} \varphi\right)(s)=K_{H}(T, s) \varphi(s)+\int_{s}^{T}(\varphi(r)-\varphi(s)) \frac{\partial K_{H}}{\partial r}(r, s) d r, \quad \varphi \in \mathcal{H}, s \in[0,1]
$$

then \mathcal{H} is isometric to $L^{2}([0,1])$ due to the equality

$$
\begin{equation*}
\langle\varphi, \rho\rangle_{\mathcal{H}}=\int_{0}^{T}\left(K_{H}^{*} \varphi\right)(s)\left(K_{H}^{*} \rho\right)(s) d s, \quad \varphi, \rho \in \mathcal{H} \tag{14}
\end{equation*}
$$

The process B is a centered Gaussian process with covariance function R_{H}, hence its associated Gaussian space is isometric to \mathcal{H} through the mapping $\mathbf{1}_{[0, t]} \mapsto B_{t}$.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function with compact support and consider the random variable $F=f\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ (we then say that F is a smooth random variable). The derivative process of F is the element of $L^{2}(\Omega, \mathcal{H})$ defined by

$$
D_{s} F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \mathbf{1}_{\left[0, t_{i}\right]}(s), \quad s \in[0,1] .
$$

In particular $D_{s} B_{t}=\mathbf{1}_{[0, t]}(s)$. As usual, $\mathbb{D}^{1,2}$ is the closure of the set of smooth random variables with respect to the norm

$$
\|F\|_{1,2}^{2}=\mathrm{E}\left[|F|^{2}\right]+\mathrm{E}\left[\|D \cdot F\|_{\mathcal{H}}^{2}\right]
$$

The divergence operator δ is the adjoint of the derivative operator. If a random variable $u \in L^{2}(\Omega, \mathcal{H})$ belongs to the domain of the divergence operator, then $\delta(u)$ is defined by the duality relationship

$$
\mathrm{E}(F \delta(u))=\mathrm{E}\langle D F, u\rangle_{\mathcal{H}}
$$

for every $F \in \mathbb{D}^{1,2}$.
Finally, let us recall the following result proved in [16]:

Proposition 3 Let $H>1 / 2, \sigma \in \mathcal{C}_{b}^{2}$ and $b \in \mathcal{C}_{b}^{1}$. Then we have for the unique solution $X=\left(X_{t}, t \in[0,1]\right)$ of equation (4) that $X_{t} \in \mathbb{D}^{1,2}$ for any $t \in(0,1]$ and

$$
\begin{equation*}
D_{s} X_{t}=\sigma\left(X_{s}\right) \exp \left(\int_{s}^{t} b^{\prime}\left(X_{u}\right) d u+\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d^{-} B_{u}\right), \quad 0 \leq s \leq t \leq 1, \quad t>0 \tag{15}
\end{equation*}
$$

3 Exact rates of convergence

In the sequel, we will assume that [0,1] is partitioned by $\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$ with $t_{k}=k / n, 0 \leq k \leq n$. Rates of convergence will thus be given relative to this partition scheme. For simplicity, we write $\Delta B_{k / n}$ instead of $B_{(k+1) / n}-B_{k / n}$. For the usage of non-equidistant discretization in the simulation of fBm , see Remark 3, point 2.

3.1 Euler scheme

In this section, we assume that $H>1 / 2$ and we consider equation (4), i.e., the integral with respect to B is defined by (2). The Euler scheme \bar{X}^{n} for equation (4) is defined by (10). The following theorem shows that the exact rate of convergence of the Euler scheme is in general $n^{-2 H+1}$ for the error at the single point $t=1$.

Theorem 1 Let $b \in \mathcal{C}_{b}^{2}$ and $\sigma \in \mathcal{C}_{b}^{3}$. Then, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
n^{2 H-1}\left[\bar{X}_{1}^{n}-X_{1}\right] \xrightarrow{\text { a.s. }}-\frac{1}{2} \int_{0}^{1} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{1} d s . \tag{16}
\end{equation*}
$$

Proof. We postpone it to Section 4.

Remark 2 1. The asymptotic constant of the error does not vanish, e.g., for the linear equation with constant coefficients, i.e.,

$$
\begin{equation*}
X_{t}=x_{0}+\gamma \int_{0}^{t} X_{s} d^{-} B_{s}+\beta \int_{0}^{t} X_{s} d s, \quad t \in[0,1] \tag{17}
\end{equation*}
$$

with $\gamma, \beta \in \mathbb{R}, \gamma \neq 0$ and $x_{0} \neq 0$.
2. The appearance of the Malliavin derivative in the asymptotic constant seems to be due to the fact that $\left(D_{t} X_{1}\right)_{t \in[0,1]}$ measures the functional dependency of X_{1} on the driving fBm, see [21].
3. Assume that $b \in \mathcal{C}_{b}^{2}, \sigma \in \mathcal{C}_{b}^{3}$ and that additionally b and σ are bounded with $\inf _{x \in \mathbb{R}}|\sigma(x)|>0$. Under these stronger assumptions, which are a priori only of technical nature, we can show - by applying the same techniques - that Theorem 10 is also valid with respect to the mean square error, i.e.,

$$
n^{2 H-1}\left(\mathrm{E}\left|\bar{X}_{1}^{n}-X_{1}\right|^{2}\right)^{1 / 2} \longrightarrow \frac{1}{2}\left(\mathrm{E}\left|\int_{0}^{1} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{1} d s\right|^{2}\right)^{1 / 2}
$$

as $n \rightarrow \infty$. Note that under the above assumptions on b and σ equation (7) simplifies to

$$
A_{t}^{\prime}=\frac{b\left(\phi\left(A_{t}, B_{t}\right)\right)}{\sigma\left(\phi\left(A_{t}, B_{t}\right)\right)}, \quad A_{0}=x_{0}, \quad t \in[0,1]
$$

which allows us to control the integrability of the remainder terms in the error expansions made in the Proof of Theorem 1]. For $H=1 / 2$, it is shown in [2] that

$$
n \mathrm{E}\left|\bar{X}_{1}^{n}-X_{1}^{\mathrm{It} \hat{o}}\right|^{2} \longrightarrow \int_{0}^{1} \mathrm{E} G_{t} d t
$$

as $n \rightarrow \infty$. The process $\left(G_{t}\right)_{t \in[0,1]}$ is explicitly known and depends in particular on b, σ and the Malliavin derivative of $\left(X_{t}^{\mathrm{It} \hat{o}}\right)_{t \in[0,1]}$.
4. For equation (17) and when $H<3 / 4$, it is possible to go further and to obtain a convergence in law for the third term in the asymptotic development of \bar{X}_{1}^{n}, see also Theorem 3: We have, as $n \rightarrow+\infty$,

$$
\begin{align*}
\bar{X}_{1}^{n} & \xrightarrow{\text { a.s. }}
\end{aligned} X_{1}, \begin{aligned}
n^{2 H-1}\left[\bar{X}_{1}^{n}-X_{1}\right] & \xrightarrow{\text { a.s. }} \tag{18}
\end{align*}-\frac{\gamma^{2}}{2} X_{1},
$$

with G a centered Gaussian random variable. For $H=3 / 4$ the last convergence is again valid if one replaces $n^{2 H-1 / 2}$ by $n^{2 H-1 / 2}(\log n)^{-1 / 2}$. Indeed, we have

$$
\bar{X}_{1}^{n}=x_{0} \exp \left(\gamma B_{1}+\beta-\frac{1}{2} \gamma^{2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{2}+R_{n}\right)
$$

with $n^{2 H-1 / 2}\left|R_{n}\right| \xrightarrow{\text { a.s. }} 0$ as $n \rightarrow \infty$. Thus it holds, as $n \rightarrow+\infty$,

$$
\bar{X}_{1}^{n}-X_{1}+\frac{\gamma^{2}}{2} X_{1} n^{1-2 H} \approx-\frac{\gamma^{2}}{2 n^{2 H}} X_{1} \sum_{k=0}^{n-1}\left[\left(n^{H} \Delta B_{k / n}\right)^{2}-1\right] .
$$

Hence Theorem 3 (or Theorem 6 for the case $H=3 / 4$) in [4] allows us to obtain the convergence in law in (18). When $H>3 / 4$, it seems to be hard to derive a result in law since, in this case, arguments used in the proof of Theorem 3 in (4) are not valid anymore. Indeed, in this case, we do not work in a Gaussian framework, see, e.g., Theorem 8 in [4].

For the global error on the interval $[0,1]$, we obtain the following result.
Theorem 2

$$
\begin{equation*}
n^{2 H-1}\left\|\bar{X}^{n}-X\right\|_{\infty} \xrightarrow{\text { a.s. }} \frac{1}{2} \sup _{t \in[0,1]}\left|\int_{0}^{t} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{t} d s\right| \tag{19}
\end{equation*}
$$

Proof. We postpone it to Section 4.
Hence the Euler scheme obtains the same exact rate of convergence for the global error on the interval $[0,1]$ as for the error at the single point $t=1$. Moreover we have a.s.

$$
\sup _{t \in[0,1]}\left|\int_{0}^{t} \sigma^{\prime}\left(X_{s}\right) D_{s} X_{1} d s\right|=0
$$

if and only if a.s.

$$
X_{t} \in\left(\sigma \sigma^{\prime}\right)^{-1}(\{0\}) \quad \text { for all } \quad t \in[0,1]
$$

Remark 3 1. If $b=0$, Theorem 1 and 2 are again valid under the weaker assumption that $\sigma \in \mathcal{C}_{b}^{1}$. Since in this case

$$
D_{s} X_{t}=\sigma\left(X_{s}\right) \exp \left(\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d^{-} B_{u}\right)=\sigma\left(X_{t}\right) \quad s \in[0, t]
$$

which is an obvious consequence of the change of variable formula for fBm , we have here

$$
n^{2 H-1}\left[\bar{X}_{1}^{n}-X_{1}\right] \xrightarrow{\text { a.s. }}-\frac{1}{2} \sigma\left(X_{1}\right) \int_{0}^{1} \sigma^{\prime}\left(X_{s}\right) d s
$$

and

$$
n^{2 H-1}\left\|\bar{X}^{n}-X\right\|_{\infty} \xrightarrow{\text { a.s. }} \frac{1}{2} \sup _{t \in[0,1]}\left|\sigma\left(X_{t}\right) \int_{0}^{t} \sigma^{\prime}\left(X_{s}\right) d s\right|,
$$

respectively.
2. For $H \neq 1 / 2$ the increments of fractional Brownian motion are correlated. Therefore the exact simulation of $B\left(t_{1}\right), \ldots, B\left(t_{n}\right)$ is in general computationally very expensive. The Cholesky decomposition method, which is to our best knowledge the only known exact method for the non-equidistant simulation of fractional Brownian, requires $O\left(n^{3}\right)$ operations. Moreover the covariance matrix, which has to be decomposed, is ill-conditioned. If the discretization is equidistant, i.e., $t_{i}=i / n, i=1, \ldots, n$, the computational cost can be lowered considerably, making use of the stationarity of the increments of fractional Brownian motion. For example, the Davies-Harte algorithm for the equidistant simulation of fractional Brownian motion has computational cost $O(n \log (n))$, see, e.g., n. For a comprehensive survey of simulation methods for fractional Brownian motion, see, e.g., [3].
3. In the Skorohod setting, it is in general difficult to write an Euler type scheme associated to equation (1]), even if $H>1 / 2$ and $b=0$. Indeed, in this case, by using the integration by parts rule $\delta(F u)=F \delta(u)-\langle D F, u\rangle_{\mathcal{H}}$ for the Skorohod integral and by approximating $X_{(k+1) / n}$ by $X_{k / n}+\int_{k / n}^{(k+1) / n} \sigma\left(X_{k / n}\right) \delta B_{s}$ (as in the case $H=1 / 2$), one obtains

$$
\bar{X}_{(k+1) / n}^{n}=\bar{X}_{k / n}^{n}+\sigma\left(\bar{X}_{k / n}^{n}\right)\left(B_{(k+1) / n}-B_{k / n}\right)-\sigma^{\prime}\left(\bar{X}_{k / n}^{n}\right)\left\langle D \bar{X}_{k / n}^{n}, 1_{[k / n,(k+1) / n]}\right\rangle_{\mathcal{H}} .
$$

The problem is that the Malliavin derivative $D \bar{X}_{k / n}^{n}$ appears, which is difficult to compute directly. Moreover, the error analysis of such an approximation seems also to be very difficult, because the L^{2}-norm of the Skorohod integral involves the first Malliavin derivative of the integrand. Thus, for analyzing such an approximation scheme, we need also to control the difference between the Malliavin derivative of the solution and the Malliavin derivative of the approximation. But this involves the second Malliavin derivative etc. and we cannot have closable formulas. It is one of the reasons for which we preferred here to work within the Russo-Vallois framework, instead of the Skorohod one. Another reason is that the Russo-Vallois framework is, from our point of view, simpler in the one-dimensional case than the Skorohod one, as it is shown in (15).

3.2 Crank-Nicholson scheme

In this section, we assume that $1 / 6<H<1 / 2$ and we consider equation ((8). Let \widehat{X}^{n} be the Crank-Nicholson scheme defined by (12), which is the canonical scheme associated to equation (8), since the integral with respect to the driving $\mathrm{fBm} B$ is defined by the symmetric integral. It is an implicit scheme, but it is nevertheless well-defined, since for n sufficiently large, $x \mapsto x-\frac{1}{2} \Delta B_{k / n} \sigma(x)$ is invertible. Although (12) seems to be rather close to (10) with $b=0$, the situation is in fact here significantly more difficult. That is why we study only the particular case of diffusion coefficients σ that satisfy $\sigma(x)^{2}=a x^{2}+b x+c$ for some $a, b, c \in \mathbb{R}$. This has the advantage of simplifying, in a significant way, several quantities appearing naturally in computations related to our study (see [15], Remark 3.1). Unfortunately, we are not able to study the case of general σ. It remains an open question!

As for the Euler scheme in the previous section we study the exact rate of convergence for the Crank-Nicholson scheme. Compared to Theorem 1, we have here a convergence in law. Moreover, the limit of the error is expressed as a mixed law between B_{1} and an independent standard Gaussian random variable G, see also Remark 目, point 4.

Theorem 3 Assume that $\sigma \in \mathcal{C}^{1}$ satisfies $\sigma(x)^{2}=a x^{2}+b x+c$ for some $a, b, c \in \mathbb{R}$. Then, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
n^{3 H-1 / 2}\left[\widehat{X}_{1}^{n}-X_{1}\right] \xrightarrow{\mathcal{L}} \sigma_{H} \frac{a}{12} \sigma\left(X_{1}\right) G . \tag{20}
\end{equation*}
$$

Here $G \sim \mathrm{~N}(0,1)$ is independent of X_{1} and

$$
\begin{equation*}
\sigma_{H}^{2}=4 / 3+1 / 3 \sum_{\ell=1}^{\infty} \theta(\ell)^{3}, \text { where } 2 \theta(\ell)=(\ell+1)^{2 H}+(\ell-1)^{2 H}-2 \ell^{2 H} \tag{21}
\end{equation*}
$$

In fact, we have also a result at a functional level:
Theorem 4 Assume that $\sigma \in \mathcal{C}^{1}$ satisfies $\sigma(x)^{2}=a x^{2}+b x+c$ for some $a, b, c \in \mathbb{R}$. Then, as $n \rightarrow \infty$, we have

$$
\begin{equation*}
n^{3 H-1 / 2} \sup _{k \in\{0, \ldots, n\}}\left|\widehat{X}_{k / n}^{n}-X_{k / n}\right| \xrightarrow{\mathcal{L}} \sigma_{H} \frac{a}{12} \sup _{t \in[0,1]}\left|\sigma\left(X_{t}\right) W_{t}\right| \tag{22}
\end{equation*}
$$

Here W is a standard Brownian motion independent of X and $\sigma_{H}>0$ is once again given by (21).

Remark 4 1. In (15], equation (8) is also studied and it is shown that \widehat{X}_{1}^{n} converges in probability if and only if $H>1 / 6$ and that, in this case, the limit is X_{1}, the solution of equation ($\mathbb{8}$) at $t=1$. Of course, this fact is also an obvious consequence of Theorem 3.
2. Let us show how the constant in (21) appears. Set $Y_{n}=n^{-1 / 2} \sum_{k=0}^{n-1}\left(n^{H} \Delta B_{k / n}\right)^{3}$. We claim that $\operatorname{Var}\left[Y_{n}\right] \rightarrow \sigma_{H}^{2}$ as $n \rightarrow+\infty$. Indeed, using $\left(n^{H} B_{t / n}\right)_{t \in[0, \infty)} \stackrel{\mathcal{L}}{=}\left(B_{t}\right)_{t \in[0, \infty)}$, we have

$$
\operatorname{Var}\left[Y_{n}\right]=n^{-1} \sum_{k, \ell=0}^{n-1} \mathrm{E}\left[\left(B_{k+1}-B_{k}\right)^{3}\left(B_{\ell+1}-B_{\ell}\right)^{3}\right]
$$

Since $x^{3}=H_{3}(x)+3 H_{1}(x)$, where $H_{1}(x)=x$ and $H_{3}(x)=x^{3}-3 x$ denote the first and third Hermite polynomial, we can write, by using the well-known identity $\mathrm{E}\left[H_{i}(X) H_{j}(Y)\right]=0$ for $i \neq j$ and $\mathrm{E}\left[H_{i}(X) H_{i}(Y)\right]=\mathrm{E}[X Y]^{i} / i$! for a centered Gaussian vector (X, Y) with $\operatorname{Var}[X]=\operatorname{Var}[Y]=1$ (see, e.g., 18], Lemma 1.1.1):

$$
\operatorname{Var}\left[Y_{n}\right]=(6 n)^{-1} \sum_{k, \ell=0}^{n-1} \theta(\ell-k)^{3}+9 n^{-1} \sum_{k, \ell=0}^{n-1} \theta(\ell-k)
$$

with
$2 \theta(\ell-k)=2 \mathrm{E}\left[\left(B_{k+1}-B_{k}\right)\left(B_{\ell+1}-B_{\ell}\right)\right]=|\ell-k+1|^{2 H}+|\ell-k-1|^{2 H}-2|\ell-k|^{2 H}$.
On the one hand, let us remark that $n^{-1} \sum_{k, \ell=0}^{n-1} \theta(\ell-k)=n^{-1} \mathrm{E}\left(\sum_{k=0}^{n-1} B_{k+1}-B_{k}\right)^{2}=$ $n^{2 H-1} \longrightarrow 0$ as $n \rightarrow+\infty$, if $H<1 / 2$. On the other hand, we can write

$$
\sum_{k, \ell=0}^{n-1} \theta(\ell-k)^{3}=\sum_{k=0}^{n-1} \theta(0)^{3}+2 \sum_{k=0}^{n-1} \sum_{\ell=k+1}^{n-1} \theta(\ell-k)^{3}=8 n+2 \sum_{k=0}^{n-1} \sum_{\ell=1}^{n-k-1} \theta(\ell)^{3}
$$

Consequently, since $\theta(\ell)<0$ for $H<1 / 2$, we deduce by using Cesaro's theorem that $\operatorname{Var}\left[Y_{n}\right] \longrightarrow \sigma_{H}^{2}$ given by (21), as $n \rightarrow+\infty$.
3. In [f], in particular the approximation of fBm by its piecewise linear interpolation

$$
\widetilde{B}_{t}^{n}=B_{k / n}+(n t-[n t])\left(B_{(k+1) / n}-B_{k / n}\right), \quad t \in[k / n,(k+1) / n]
$$

is studied. It is shown that the correct renormalization of $\left\|B-\widetilde{B}^{n}\right\|_{\infty}$ converges to the Gumbel distribution, i.e.,

$$
P\left(\left\|\widetilde{B}^{n}-B\right\|_{\infty} \leq \sigma_{n}\left(\nu_{n}+x / \nu_{n}\right)\right) \longrightarrow \exp (-\exp (-x))
$$

as $n \rightarrow$ for $x \in \mathbb{R}$, where $\sigma_{n} \approx c_{H} n^{-H}$ with $c_{H}>0$ and ν_{n} is in terms of $\log (n)$. Since $3 H-1 / 2>H$ for $H>1 / 4$, the analogue of Theorem 2 in the setting of Theorem 4, i.e.,

$$
n^{3 H-1 / 2}\left\|\widehat{X}^{n}-X\right\|_{\infty} \xrightarrow{\mathcal{L}} \sigma_{H} \frac{a}{12} \sup _{t \in[0,1]}\left|\sigma\left(X_{t}\right) W_{t}\right|,
$$

as $n \rightarrow \infty$, can not hold without further restriction of the Hurst parameter.
For the proof of Theorem 3, we need the following Lemma.
Lemma 1 i) We have, for $H<1 / 2$,

$$
\begin{equation*}
\left(B_{1}, n^{3 H-1 / 2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}\right) \xrightarrow{\mathcal{L}}\left(B_{1}, G\right) \text {, as } n \rightarrow+\infty, \tag{23}
\end{equation*}
$$

where G is a centered Gaussian random variable with variance σ_{H}^{2} given by (21), independent of B_{1}.
ii) We have

$$
n^{5 H-1 / 2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{5} \xrightarrow{\mathcal{L}} G^{\prime}, \text { as } n \rightarrow \infty,
$$

where G^{\prime} is a centered Gaussian random variable.
iii) We have

$$
n^{6 H-1} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{6} \xrightarrow{\text { Prob }} 15 \text {, as } n \rightarrow+\infty \text {. }
$$

Proof of Lemma n. The second and the third point are classical: we refer to [1]. Thus we have only to prove the first point. Let us denote by $H_{1}(x)=x$ and $H_{3}(x)=x^{3}-3 x$ the first and third Hermite polynomial. Since $H<1 / 2$, we have

$$
n^{-1 / 2} \sum_{k=0}^{n-1} H_{1}\left(n^{H} \Delta B_{k / n}\right)=n^{H-1 / 2} B_{1} \xrightarrow{\text { Prob }} 0
$$

and we deduce that the convergence in law (23) will hold if and only if

$$
\begin{equation*}
\left(B_{1}, n^{-1 / 2} \sum_{k=0}^{n-1} H_{3}\left(n^{H} \Delta B_{k / n}\right)\right) \xrightarrow{\mathcal{L}}\left(B_{1}, G\right), \tag{24}
\end{equation*}
$$

as $n \rightarrow+\infty$. In []], it is shown that $n^{-1 / 2} \sum_{k=0}^{n-1} H_{3}\left(n^{H} \Delta B_{k / n}\right) \xrightarrow{\mathcal{L}} G$. See also the second point of Remark (1). Then, the proof (24) is finished by the following Proposition, which is an obvious consequence of the main result contained in (22].

Proposition 4 Let $\left(F_{1}^{n}, F_{3}^{n}\right)$ be a random vector such that, for every n, $F_{i}^{n}(i=1,3)$ is in the i-th Wiener chaos associated to the fBm B. If $F_{1}^{n} \xrightarrow{\mathcal{L}} G_{1}$ and $F_{3}^{n} \xrightarrow{\mathcal{L}} G_{3}$ with G_{i} $(i=1,3)$ some Gaussian variables, then $\mathcal{L}\left(F_{1}^{n}, F_{3}^{n}\right) \longrightarrow \mathcal{L}\left(G_{1}\right) \otimes \mathcal{L}\left(G_{3}\right)$.

Proof of Theorem 3. In 15], the second-named author proved

$$
\begin{equation*}
\widehat{X}_{1}^{n}=\phi\left(B_{1}+\frac{a}{12} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}+\frac{a^{2}}{80} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{5}+O\left(\sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{6}\right), x_{0}\right) . \tag{25}
\end{equation*}
$$

Note that $X_{1}=\phi\left(x_{0}, B_{1}\right)$ and $\frac{\partial \phi}{\partial x_{2}}\left(x_{1}, x_{s}\right)=\sigma\left(\phi\left(x_{1}, x_{2}\right)\right)$. Consequently by a Taylor expansion $\widehat{X}_{1}^{n}-X_{1}$ equals

$$
\frac{a}{12} \sigma\left(X_{1}\right) \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}+\frac{a^{2}}{80} \sigma\left(X_{1}\right) \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{5}+O\left(\left|X_{1}\right| \times \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{6} \wedge\left(\sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}\right)^{2}\right)
$$

By the second point of Lemma [1, we deduce that $n^{3 H-1 / 2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{5} \longrightarrow 0$ in law, hence in probability. By the third point of Lemma [1, and since $H>1 / 6$, we have that $n^{3 H-1 / 2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{6}=n^{1 / 2-3 H} \times n^{6 H-1} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{6} \longrightarrow 0$ in probability. By the first point of Lemma 11, and since $H>1 / 6$, we have that $n^{3 H-1 / 2}\left(\sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}\right)^{2}=$ $n^{1 / 2-3 H}\left(n^{3 H-1 / 2} \sum_{k=0}^{n-1}\left(\Delta B_{k / n}\right)^{3}\right)^{2} \longrightarrow 0$ in probability. Then, using again the first point of Lemma 1 and Slutsky's Lemma, we obtain (20).

Proof of Theorem 4. Exactly as in the proof of Theorem 3 in (4), we can prove

$$
\left(B_{t}, n^{3 H-1 / 2} V_{3}^{n}(B)_{t}\right) \xrightarrow{\mathcal{L}}\left(B_{t}, \sigma_{H} W_{t}\right), \text { as } n \rightarrow+\infty,
$$

in the space $\mathcal{D}([0,1])^{2}$ equipped with the Skorohod topology. Here, W is a standard Brownian motion independent of B and $V_{3}^{n}(B)$ is defined by $V_{3}^{n}(B)_{t}=\sum_{\ell=0}^{[n t]-1}\left(\Delta B_{\ell / n}\right)^{3}$. To obtain Theorem $\boxed{4}$, it suffices then to adapt the proof of Theorem ${ }^{3}$ below.

4 Proof of Theorems $\mathbb{1}$ and 2

Throughout this section we assume that $b \in \mathcal{C}_{b}^{2}, \sigma \in \mathcal{C}_{b}^{3}$ and $H>1 / 2$. For $g:[0,1] \rightarrow \mathbb{R}$ and $\lambda \in(0,1)$ we will use the usual notations

$$
\|g\|_{\infty}=\sup _{t \in[0,1]}|g(t)|, \quad\|g\|_{\lambda}=\sup _{s, t \in[0,1], s \neq t} \frac{|g(t)-g(s)|}{|t-s|^{\lambda}}
$$

Moreover positive constants, depending only on b, σ, their derivatives, x_{0} and H, will be denoted by c, regardless of their value. We will write Δ instead of $1 / n$.

The following properties of the function ϕ are taken from Lemma 2.1 in [26].
Lemma 2 Let ϕ given by (6). Then we have
(a) $\quad \phi\left(x_{1}, x_{2}\right)=\phi\left(\phi\left(x_{1}, y\right), x_{2}-y\right), \quad x_{1}=\phi\left(\phi\left(x_{1}, x_{2}\right),-x_{2}\right)$
(b) $\frac{\partial \phi}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\sigma\left(x_{1}\right) \frac{\partial \phi}{\partial x_{1}}\left(x_{1}, x_{2}\right)$
(c) $\quad \sigma^{2}\left(x_{1}\right) \frac{\partial^{2} \phi}{\partial x_{1}^{2}}\left(x_{1},-x_{2}\right)-2 \sigma\left(x_{1}\right) \frac{\partial^{2} \phi}{\partial x_{1} \partial x_{2}}\left(x_{1},-x_{2}\right)+\left(\sigma \sigma^{\prime}\right)\left(x_{1}\right) \frac{\partial \phi}{\partial x_{1}}\left(x_{1},-x_{2}\right)$

$$
+\frac{\partial^{2} \phi}{\partial x_{2}^{2}}\left(x_{1},-x_{2}\right)=0
$$

(d)

$$
1=\frac{\partial \phi}{\partial x_{1}}\left(\phi\left(x_{1}, x_{2}\right),-x_{2}\right) \frac{\partial \phi}{\partial x_{1}}\left(x_{1}, x_{2}\right)
$$

(e) $\quad \frac{\partial \phi}{\partial x_{1}}\left(x_{1}, x_{2}\right)=\exp \left(\int_{0}^{x_{2}} \sigma^{\prime}\left(\phi\left(x_{1}, s\right)\right) d s\right)$
for all $x_{1}, x_{2}, y \in \mathbb{R}$.

The following is well known and easy to prove.

Lemma 3 Let $n \in \mathbb{N}$ and $a_{i}, b_{i} \in \mathbb{R}$ for $i=1, \ldots, n$.
(a) For $x_{j}, j=0, \ldots, n$ given by the recursion

$$
x_{j+1}=x_{j} b_{j}+a_{j}, \quad j=0, \ldots, n-1
$$

with $x_{0}=0$, we have

$$
x_{j}=\sum_{i=0}^{j-1} a_{i} \prod_{k=i+1}^{j-1} b_{k}, \quad j=1, \ldots n
$$

(b) If

$$
\left|x_{j+1}\right| \leq\left|x_{j}\right|\left|b_{j}\right|+\left|a_{j}\right|, \quad j=0, \ldots, n-1
$$

with $x_{0}=0$ and $\left|b_{j}\right| \geq 1$ for all $j=0, \ldots, n-1$, then

$$
\max _{j=0, \ldots, n}\left|x_{j}\right| \leq \sum_{i=0}^{n-1}\left|a_{i}\right| \prod_{k=1}^{n-1}\left|b_{k}\right|
$$

We will also require that the Euler approximation of the solution and the process $\left(A_{t}\right)_{t \in[0,1]}$ given by (7) can be uniformly bounded in terms of the driving fBm .

Lemma 4 We have

$$
\begin{array}{rlr}
\sup _{n \in \mathbb{N}} \sup _{k=0, \ldots, n}\left|\bar{X}_{k / n}^{n}\right| & \leq \exp \left(c \exp \left(c\left(\|B\|_{\infty}+\|B\|_{1 / 2}^{2}\right)\right)\right) \\
\|A\|_{\infty} & \leq \exp \left(c \exp \left(c\|B\|_{\infty}\right)\right) & \text { a.s., } \tag{27}
\end{array}
$$

Proof. We prove only the first assertion, following the proof of Lemma 2.4. in [26]. The second assertion can be obtained by a straightforward application of Gronwall's Lemma to equation (7). By Lemma 2 (a) we have

$$
\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)=\phi\left(\phi\left(\bar{X}_{k / n}^{n}, \Delta B_{k / n}\right),-B_{(k+1) / n}\right) .
$$

Using this, we obtain by the mean value theorem

$$
\phi\left(\bar{X}_{(k+1) / n}^{n},-B_{(k+1) / n}\right)-\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)=\left[\bar{X}_{(k+1) / n}^{n}-\phi\left(\bar{X}_{k / n}^{n}, \Delta B_{k / n}\right)\right] \frac{\partial \phi}{\partial x_{1}}\left(\xi_{k},-B_{(k+1) / n}\right)
$$

with ξ_{k} between $\bar{X}_{(k+1) / n}^{n}$ and $\phi\left(\bar{X}_{k / n}^{n}, \Delta B_{k / n}\right)$. Moreover

$$
\phi\left(\bar{X}_{k / n}^{n}, \Delta B_{k / n}\right)=\phi\left(\bar{X}_{k / n}^{n}, 0\right)+\Delta B_{k / n} \frac{\partial \phi}{\partial x_{2}}\left(\bar{X}_{k / n}^{n}, 0\right)+\frac{1}{2}\left(\Delta B_{k / n}\right)^{2} \frac{\partial^{2} \phi}{\partial x_{2}^{2}}\left(\bar{X}_{k / n}^{n}, \zeta_{k}\right)
$$

with $\left|\zeta_{k}\right| \leq\left|\Delta B_{k / n}\right|$. Thus we get

$$
\phi\left(\bar{X}_{k / n}^{n}, \Delta B_{k / n}\right)=\bar{X}_{k / n}^{n}+\sigma\left(\bar{X}_{k / n}^{n}\right) \Delta B_{k / n}+\frac{1}{2}\left(\sigma \sigma^{\prime}\right)\left(\phi\left(\bar{X}_{k / n}^{n}, \zeta_{k}\right)\right)\left(\Delta B_{k / n}\right)^{2}
$$

by the definition of ϕ. So we finally obtain

$$
\begin{aligned}
& \phi\left(\bar{X}_{(k+1) / n}^{n},-B_{(k+1) / n}\right)-\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \\
& \quad=\left[b\left(\bar{X}_{k / n}^{n}\right) \Delta-\frac{1}{2}\left(\sigma \sigma^{\prime}\right)\left(\phi\left(\bar{X}_{k / n}^{n}, \zeta_{k}\right)\right)\left(\Delta B_{k / n}\right)^{2}\right] \frac{\partial \phi}{\partial x_{1}}\left(\xi_{k},-B_{(k+1) / n}\right) .
\end{aligned}
$$

Since

$$
\frac{\partial \phi}{\partial x_{1}}\left(x_{1}, x_{2}\right)=\exp \left(\int_{0}^{x_{2}} \sigma^{\prime}\left(\phi\left(x_{1}, s\right)\right) d s\right)
$$

by Lemma 2 (e), we have

$$
\left|\frac{\partial \phi}{\partial x_{1}}\left(\xi_{k},-B_{(k+1) / n}\right)\right| \leq \exp \left(c\|B\|_{\infty}\right) .
$$

Due to the assumptions, the drift and diffusion coefficients satisfy a linear growth condition, i.e.,

$$
|b(x)| \leq c(1+x), \quad|\sigma(x)| \leq c(1+x)
$$

for $x \in \mathbb{R}$. Hence we get

$$
\begin{aligned}
\left|\phi\left(\bar{X}_{(k+1) / n}^{n},-B_{(k+1 / n)}\right)\right| \leq & \left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right|+c \exp \left(c\|B\|_{\infty}\right)\left(1+\left|\bar{X}_{k / n}^{n}\right|\right) \Delta \\
& +c \exp \left(c\|B\|_{\infty}\right)\left(1+\left|\phi\left(\bar{X}_{k / n}^{n}, \zeta_{k}\right)\right|\right)\left(\Delta B_{k / n}\right)^{2} .
\end{aligned}
$$

Since by Lemma 2 (a)

$$
\bar{X}_{k / n}^{n}=\phi\left(\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right), B_{k / n}\right),
$$

and $\phi(0,0)=0$, we have by Lemma (b) and (e)

$$
\left|\bar{X}_{k / n}^{n}\right| \leq c \exp \left(c\|B\|_{\infty}\right)\left(\left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right|+\|B\|_{\infty}\right)
$$

and furthermore, since $\left|\zeta_{k}\right| \leq\left|\Delta B_{k / n}\right|$

$$
\begin{aligned}
\left|\phi\left(\bar{X}_{k / n}^{n}, \zeta_{k}\right)\right| & \leq c \exp \left(c\|B\|_{\infty}\right)\left(\left|\bar{X}_{k / n}^{n}\right|+\|B\|_{\infty}\right) \\
& \leq c \exp \left(c\|B\|_{\infty}\right)\left(\left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right|+\|B\|_{\infty}\right)
\end{aligned}
$$

Together with

$$
\left|\Delta B_{k / n}\right| \leq\|B\|_{1 / 2} \Delta^{1 / 2}
$$

this yields

$$
\begin{aligned}
\left|\phi\left(\bar{X}_{(k+1) / n}^{n},-B_{(k+1 / n)}\right)\right| \leq\left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right| & {\left[1+c \exp \left(c\|B\|_{\infty}\right)\left(1+\|B\|_{1 / 2}^{2}\right) \Delta\right] } \\
& +c \exp \left(c\|B\|_{\infty}\right)\left(1+\|B\|_{1 / 2}^{2}\right) \Delta .
\end{aligned}
$$

Setting $M=\|B\|_{\infty}+\|B\|_{1 / 2}^{2}$ it follows by Lemma 3

$$
\begin{aligned}
\left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right| & \leq \sum_{k=1}^{n} c \exp (c M) \Delta \prod_{j=1}^{n}(1+c \exp (c M) \Delta) \\
& \leq \exp (c \exp (c M))
\end{aligned}
$$

Thus with

$$
\bar{X}_{k / n}^{n}=\phi\left(\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right), B_{k / n}\right),
$$

we get the estimate

$$
\left|\bar{X}_{k / n}^{n}\right| \leq \exp \left(c\|B\|_{\infty}\right)\left|\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\right|+c \exp \left(c\|B\|_{\infty}\right)\|B\|_{\infty} \leq \exp (c \exp (c M))
$$

Now we will state some Lemmas, which will be needed to determine the asymptotic constant of the error of the Euler scheme. The following Lemma 5 can be shown by straightforward calculations.

Lemma 5 Denote

$$
f(x, y)=\exp \left(-\int_{0}^{x} \sigma^{\prime}(\phi(y, s)) d s\right) b(\phi(y, x)), \quad x, y \in \mathbb{R}
$$

Then we have $f \in \mathcal{C}^{1,2}$ and in particular

$$
f_{y}(x, y)=b^{\prime}(\phi(y, x))-f(x, y) \int_{0}^{x} \sigma^{\prime \prime}(\phi(y, s)) \frac{\partial \phi}{\partial x_{1}}(y, s) d s, \quad x, y \in \mathbb{R}
$$

Lemma 6 We have a.s.

$$
\begin{aligned}
& \exp \left(\int_{s}^{t} b^{\prime}\left(X_{u}\right) d u+\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d^{-} B_{u}\right)= \\
& \frac{\partial \phi}{\partial x_{1}}\left(A_{t}, B_{t}\right) \frac{\partial \phi}{\partial x_{1}}\left(X_{s},-B_{s}\right) \exp \left(\int_{s}^{t} f_{y}\left(B_{u}, A_{u}\right) d u\right), \quad 0 \leq s \leq t \leq 1
\end{aligned}
$$

Proof. By Lemma 2 (d) and (e) we have

$$
\begin{aligned}
\frac{\partial \phi}{\partial x_{1}}\left(A_{t}, B_{t}\right) & =\exp \left(\int_{0}^{B_{t}} \sigma^{\prime}\left(\phi\left(A_{t}, u\right)\right) d u\right) \\
\frac{\partial \phi}{\partial x_{1}}\left(X_{s},-B_{s}\right) & =\exp \left(-\int_{0}^{B_{s}} \sigma^{\prime}\left(\phi\left(A_{s}, u\right)\right) d u\right)
\end{aligned}
$$

Using the notation

$$
g(x, y)=\int_{0}^{x} \sigma^{\prime}(\phi(y, u)) d u
$$

we get by Lemma 5

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x_{1}}\left(A_{t}, B_{t}\right) \frac{\partial \phi}{\partial x_{1}}\left(X_{s},-B_{s}\right) \exp \left(\int_{s}^{t} f_{y}\left(B_{u}, A_{u}\right) d u\right) \\
& =\exp \left(g\left(B_{t}, A_{t}\right)-g\left(B_{s}, A_{s}\right)+\int_{s}^{t} f_{y}\left(B_{u}, A_{u}\right) d u\right) \\
& =\exp \left(\int_{s}^{t} b^{\prime}\left(X_{u}\right) d u\right) \exp \left(g\left(B_{t}, A_{t}\right)-g\left(B_{s}, A_{s}\right)\right) \\
& \quad \exp \left(-\int_{s}^{t} \int_{0}^{B_{u}} \sigma^{\prime \prime}\left(\phi\left(A_{u}, \tau\right)\right) \frac{\partial \phi}{\partial x_{1}}\left(A_{u}, \tau\right) d \tau f\left(B_{u}, A_{u}\right) d u\right) .
\end{aligned}
$$

Since

$$
g_{x}(x, y)=\sigma^{\prime}(\phi(y, x))
$$

and

$$
g_{y}(x, y)=\int_{0}^{x} \sigma^{\prime \prime}(\phi(y, s)) \frac{\partial \phi}{\partial x_{1}}(y, s) d s
$$

we have by the change of variable formula for Riemann-Stieltjes integrals, see e.g., [8],

$$
\begin{aligned}
g\left(B_{t}, A_{t}\right)-g\left(B_{s}, A_{s}\right)=\int_{s}^{t} \sigma^{\prime}(& \left.\phi\left(A_{u}, B_{u}\right)\right) d^{-} B_{u} \\
& +\int_{s}^{t} \int_{0}^{B_{u}} \sigma^{\prime \prime}\left(\phi\left(A_{u}, v\right)\right) \frac{\partial \phi}{\partial x_{1}}\left(A_{u}, v\right) d v d A_{u}
\end{aligned}
$$

Since $A_{t}^{\prime}=f\left(B_{t}, A_{t}\right)$ we finally get

$$
\begin{aligned}
& g\left(B_{t}, A_{t}\right)-g\left(B_{s}, A_{s}\right)-\int_{s}^{t} \int_{0}^{B_{u}} \sigma^{\prime \prime}\left(\phi\left(A_{u}, v\right)\right) \frac{\partial \phi}{\partial x_{1}}\left(A_{u}, v\right) d v f\left(B_{u}, A_{u}\right) d u \\
& \quad=\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d^{-} B_{u}
\end{aligned}
$$

which shows the assertion.

The next Lemma can be shown by a density argument.

Lemma 7 Let $g, h \in \mathcal{C}([0,1])$ and denote $\Delta h_{k / n}=h((k+1) / n)-h(k / n)$ for $k=0 \ldots, n-1$, $n \in \mathbb{N}$. If

$$
\sup _{t \in[0,1]}\left|n^{2 H-1} \sum_{k=0}^{n-1} \mathbf{1}_{[0, t]}(k / n)\left(\Delta h_{k / n}\right)^{2}-t\right| \longrightarrow 0
$$

as $n \rightarrow \infty$, then it follows

$$
\sup _{t \in[0,1]}\left|n^{2 H-1} \sum_{k=0}^{n-1} g(k / n) \mathbf{1}_{[0, t]}(k / n)\left(\Delta h_{k / n}\right)^{2}-\int_{0}^{t} g(s) d s\right| \longrightarrow 0
$$

as $n \rightarrow \infty$.

Now we finally prove Theorem 1 and 2. In the following we will denote by C random constants, which depend only on b, σ, their derivatives, $x_{0}, H,\|B\|_{\infty}$ and $\|B\|_{\lambda}$ with $\lambda<H$, regardless of their value. We start with the proof of Theorem 2 .

Proof of Theorem 2. (1) We first establish a rough estimate for the pathwise error of the Euler scheme. For this, we follow the lines of the proof of Theorem 2.6. in [26]. Set

$$
\widehat{A}_{k}^{n}=\phi\left(\bar{X}_{k / n}^{n},-B_{k / n}\right), \quad k=0, \ldots, n
$$

for $n \in \mathbb{N}$. By a Taylor expansion, the properties of ϕ and Lemma \square^{\square} we have

$$
\begin{aligned}
\widehat{A}_{k+1}^{n}-\widehat{A}_{k}^{n}=\frac{\partial \phi}{\partial x_{1}}(& \left.\bar{X}_{k / n}^{n},-B_{k / n}\right)\left(\bar{X}_{(k+1) / n}^{n}-\bar{X}_{k / n}^{n}\right)-\frac{\partial \phi}{\partial x_{2}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \Delta B_{k / n} \\
& +\frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{1}^{2}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \sigma\left(\bar{X}_{k / n}^{n}\right)^{2}\left(\Delta B_{k / n}\right)^{2} \\
& +\frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{2}^{2}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\left(\Delta B_{k / n}\right)^{2} \\
& -\frac{\partial^{2} \phi}{\partial x_{2} \partial x_{1}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \sigma\left(\bar{X}_{k / n}^{n}\right)\left(\Delta B_{k / n}\right)^{2}+R_{k}^{(1)}
\end{aligned}
$$

with

$$
\begin{equation*}
\left|R_{k}^{(1)}\right| \leq C\left(\left(\Delta B_{k / n}\right)^{3}+\Delta \cdot \Delta B_{k / n}+\Delta^{2}\right) \tag{28}
\end{equation*}
$$

Since

$$
\begin{aligned}
& -\frac{1}{2} \frac{\partial \phi}{\partial x_{1}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)\left(\sigma \sigma^{\prime}\right)\left(\bar{X}_{k / n}^{n}\right) \\
& \quad=\frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{1}^{2}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \sigma\left(\bar{X}_{k / n}^{n}\right)^{2}+\frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{2}^{2}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right)-\frac{\partial^{2} \phi}{\partial x_{2} \partial x_{1}}\left(\bar{X}_{k / n}^{n},-B_{k / n}\right) \sigma\left(\bar{X}_{k / n}^{n}\right)
\end{aligned}
$$

by Lemma 2 (c), we have

$$
\widehat{A}_{k+1}^{n}=\widehat{A}_{k}^{n}+b\left(\bar{X}_{k / n}^{n}\right) \frac{\partial \phi}{\partial x_{1}}\left(\bar{X}_{k}^{n},-B_{k / n}\right) \Delta+\widehat{Q}_{k}+R_{k}^{(1)},
$$

for $k=0, \ldots, n-1, n \in \mathbb{N}$, with

$$
\widehat{Q}_{k}=-\frac{1}{2}\left(\sigma \sigma^{\prime}\right)\left(\bar{X}_{k / n}^{n}\right)\left(\Delta B_{k / n}\right)^{2} \frac{\partial \phi}{\partial x_{1}}\left(\bar{X}_{k}^{n},-B_{k / n}\right), \quad k=0, \ldots, n .
$$

Since $\bar{X}_{k / n}^{n}=\phi\left(\widehat{A}_{k}^{n}, B_{k / n}\right)$ and using Lemma 2 (d) and (e) we get

$$
\widehat{A}_{k+1}^{n}=\widehat{A}_{k}^{n}+f\left(B_{k / n}, \widehat{A}_{k}^{n}\right) \Delta+\widehat{Q}_{k}+R_{k}^{(1)}
$$

for $k=0, \ldots, n-1, n \in \mathbb{N}$, with the function f given in Lemma 5 . Note that

$$
\sup _{n \in \mathbb{N} k=0, \ldots, n} \sup _{k=1}\left|\widehat{A}_{k}^{n}\right| \leq \exp \left(c \exp \left(c\left(\|B\|_{\infty}+\|B\|_{1 / 2}^{2}\right)\right)\right)
$$

as a consequence of Lemma 4. Now set

$$
e_{k}=A_{k / n}-\widehat{A}_{k}^{n}, \quad k=0, \ldots n
$$

We have $e_{0}=A_{0}-\phi\left(x_{0}, 0\right)=0$ and

$$
\left|e_{k+1}\right| \leq\left|e_{k}\right|(1+C \Delta)+\left|Q_{k}\right|+\left|R_{k}^{(1)}\right|+\left|\int_{k / n}^{(k+1) / n} f\left(B_{\tau}, A_{\tau}\right)-f\left(B_{k / n}, A_{k / n}\right) d \tau\right|
$$

Since

$$
\left|\int_{k / n}^{(k+1) / n} f\left(B_{\tau}, A_{\tau}\right)-f\left(B_{k / n}, A_{k / n}\right) d \tau\right| \leq C \int_{k / n}^{(k+1) / n}\left|B_{\tau}-B_{k / n}\right| d \tau+C \Delta^{2}
$$

we can rewrite the above recursion as

$$
\left|e_{k+1}\right| \leq\left|e_{k}\right|(1+C \Delta)+\left|Q_{k}\right|+\left|R_{k}^{(2)}\right|
$$

with

$$
\begin{equation*}
\left|R_{k}^{(2)}\right| \leq C\left(\|B\|_{H-\varepsilon}^{3} \Delta^{3 H-3 \varepsilon}+\|B\|_{H-\varepsilon} \Delta^{H+1-\varepsilon}+\Delta^{2}\right) \leq C \Delta^{H+1-\varepsilon} \tag{29}
\end{equation*}
$$

Since also

$$
\left|\widehat{Q}_{k}\right| \leq C\left(\Delta B_{k / n}\right)^{2} \leq C \Delta^{2 H-2 \varepsilon}
$$

we get by Lemma 3

$$
\begin{equation*}
\max _{k=0, \ldots, n}\left|e_{k}\right| \leq \prod_{i=0}^{n-1}(1+C \Delta) \sum_{j=0}^{n-1}\left(\left|\widehat{Q}_{j}\right|+\left|R_{j}^{(2)}\right|\right) \leq C \Delta^{2 H-1-2 \varepsilon} \tag{30}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\max _{k=0, \ldots, n}\left|X_{k / n}-\bar{X}_{k / n}^{n}\right| \leq C \Delta^{2 H-1-2 \varepsilon} \tag{31}
\end{equation*}
$$

due to $X_{t}=\phi\left(A_{t}, B_{t}\right), t \in[0,1]$, and $\bar{X}_{k / n}^{n}=\phi\left(\widehat{A}_{k}^{n}, B_{k / n}\right), k=0, \ldots, n$.
(2) Now we derive the exact asymptotics of the error of the Euler scheme. We can write the recursion for the error $e_{k}=A_{k / n}-\widehat{A}_{k}^{n}$ as

$$
e_{k+1}=e_{k}+f_{y}\left(B_{k / n}, A_{k / n}\right) e_{k} \Delta+\widehat{Q}_{k}+R_{k}^{(2)}+\frac{1}{2} f_{y y}\left(B_{k / n}, \eta_{k}\right) e_{k}^{2} \Delta
$$

with η_{k} between $A_{k / n}$ and \widehat{A}_{k}^{n}. Put

$$
Q_{k}=-\frac{1}{2}\left(\sigma \sigma^{\prime}\right)\left(X_{k / n}\right)\left(\Delta B_{k / n}\right)^{2} \frac{\partial \phi}{\partial x_{1}}\left(X_{k / n},-B_{k / n}\right)
$$

By (30) we have

$$
\left|Q_{k}-\widehat{Q}_{k}\right| \leq C \Delta^{4 H-1-4 \varepsilon} .
$$

Since moreover

$$
\left|\int_{k / n}^{(k+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t-f_{y}\left(B_{k / n}, A_{k / n}\right) \Delta\right| \leq C \Delta^{H+1-\varepsilon}
$$

we get by (29) and (31)

$$
e_{k+1}=e_{k}+e_{k} \int_{k / n}^{(k+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t+Q_{k}+R_{k}^{(3)}
$$

with

$$
\left|R_{k}^{(3)}\right| \leq C \Delta^{\min \{4 H-1-4 \varepsilon, H+1-\varepsilon\}}
$$

Applying Lemma 3 yields

$$
A_{k / n}-\widehat{A}_{k}^{n}=\sum_{i=0}^{k-1} Q_{i} \prod_{j=i+1}^{k-1}\left(1+\int_{j / n}^{(j+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t\right)+R_{k}^{(4)}
$$

with

$$
\begin{aligned}
\sup _{k=0, \ldots, n}\left|R_{k}^{(4)}\right| & =\sup _{k=1, \ldots, n}\left|\sum_{i=0}^{k-1} R_{i}^{(3)} \prod_{j=i+1}^{k-1}\left(1+\int_{j / n}^{(j+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t\right)\right| \\
& \leq C \Delta^{\min \{4 H-2-4 \varepsilon, H-\varepsilon\}}
\end{aligned}
$$

Thus it remains to consider the term

$$
\sum_{i=0}^{k-1} Q_{i} \prod_{j=i+1}^{k-1}\left(1+\int_{j / n}^{(j+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t\right)
$$

Now set

$$
a_{j}=\int_{j / n}^{(j+1) / n} f_{y}\left(B_{t}, A_{t}\right) d t, \quad j=0, \ldots, n-1
$$

Since

$$
\begin{aligned}
& \left|\prod_{j=i+1}^{k-1}\left(1+a_{j}\right)-\exp \left(\sum_{j=i}^{k-1} a_{j}\right)\right| \\
& \quad \leq \exp \left(-\sum_{j=0}^{i-1} a_{j}\right)\left|\exp \left(\sum_{j=0}^{i-1} a_{j}\right) \prod_{j=i+1}^{k-1}\left(1+a_{j}\right)-\exp \left(\sum_{j=0}^{k-1} a_{j}\right)\right|
\end{aligned}
$$

we get

$$
\sup _{0 \leq j<k-1 \leq n}\left|\prod_{j=i+1}^{k-1}\left(1+a_{j}\right)-\exp \left(\sum_{j=i}^{k-1} a_{j}\right)\right| \leq C \Delta
$$

by a straightforward application of Lemma 3. Hence we have

$$
\begin{equation*}
A_{k / n}-\widehat{A}_{k}^{n}=\sum_{i=0}^{k-1} Q_{i} \exp \left(\int_{i / n}^{k / n} f_{y}\left(B_{s}, A_{s}\right) d s\right)+R_{k}^{(5)} \tag{32}
\end{equation*}
$$

with

$$
\sup _{k=0, \ldots, n}\left|R_{k}^{(5)}\right| \leq C \Delta^{\min \{4 H-2-4 \varepsilon, H-\varepsilon\}}
$$

Moreover, since $X_{t}=\phi\left(A_{t}, B_{t}\right), t \in[0,1]$ and $\bar{X}_{k / n}^{n}=\phi\left(\widehat{A}_{k}^{n}, B_{k / n}\right), k=0, \ldots, n$ we have

$$
X_{k / n}-\bar{X}_{k / n}^{n}=\frac{\partial \phi}{\partial x_{1}}\left(A_{k / n}, B_{k / n}\right)\left(A_{k / n}-\widehat{A}_{k}^{n}\right)+\frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{1}^{2}}\left(\theta_{k}, B_{k / n}\right)\left(A_{k / n}-\widehat{A}_{k}^{n}\right)^{2}
$$

with θ_{k} between $A_{k / n}$ and \widehat{A}_{k}^{n}. It follows by (30) and (32)

$$
X_{k / n}-\bar{X}_{k / n}^{n}=\frac{\partial \phi}{\partial x_{1}}\left(A_{k / n}, B_{k / n}\right) \sum_{i=0}^{k-1} Q_{i} \exp \left(\int_{i / n}^{k / n} f_{y}\left(B_{s}, A_{s}\right) d s\right)+R_{k}^{(6)}
$$

with

$$
\left|R_{k}^{(6)}\right| \leq C \Delta^{\min \{4 H-2-4 \varepsilon, H-\varepsilon\}}
$$

Since finally by Lemma 6

$$
\begin{gathered}
\frac{\partial \phi}{\partial x_{1}}\left(A_{k / n}, B_{k / n}\right) Q_{i} \exp \left(\int_{i / n}^{k / n} f_{y}\left(B_{s}, A_{s}\right) d s\right) \\
=-\frac{1}{2} \frac{\partial \phi}{\partial x_{1}}\left(A_{k / n}, B_{k / n}\right)\left(\sigma \sigma^{\prime}\right)\left(X_{i / n}\right) \frac{\partial \phi}{\partial x_{1}}\left(X_{i / n},-B_{i / n}\right) \\
\exp \left(\int_{i / n}^{k / n} f_{y}\left(B_{s}, A_{s}\right) d s\right)\left(\Delta B_{i / n}\right)^{2} \\
=-\frac{1}{2} \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{k / n}\left(\Delta B_{i / n}\right)^{2}
\end{gathered}
$$

we have

$$
\begin{equation*}
X_{k / n}-\bar{X}_{k / n}^{n}=-\frac{1}{2} \sum_{i=0}^{k-1} \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{k / n}\left(\Delta B_{i / n}\right)^{2}+R_{k}^{(6)} \tag{33}
\end{equation*}
$$

Define $\widetilde{X}_{t}^{n}=X_{k / n}$ for $t \in[k / n,(k+1) / n[$. Since clearly

$$
\left\|X-\widetilde{X}^{n}\right\|_{\infty} \leq C \Delta^{H-\varepsilon}
$$

we have

$$
\left\|X-\bar{X}^{n}\right\|_{\infty}=\max _{k=0, \ldots, n}\left|X_{k / n}-\bar{X}_{k / n}^{n}\right|+R_{k}^{(7)}
$$

with

$$
\left|R_{k}^{(7)}\right| \leq C \Delta^{H-\varepsilon}
$$

Thus it follows

$$
\lim _{n \rightarrow \infty} n^{2 H-1}\left\|X-\bar{X}^{n}\right\|_{\infty}=\lim _{n \rightarrow \infty} \max _{k=0, \ldots, n} n^{2 H-1}\left|X_{k / n}-\bar{X}_{k / n}^{n}\right|
$$

and we get by (33)

$$
\lim _{n \rightarrow \infty} n^{2 H-1}\left\|X-\bar{X}^{n}\right\|_{\infty}=\lim _{n \rightarrow \infty} \max _{k=0, \ldots, n} \frac{n^{2 H-1}}{2}\left|\sum_{i=0}^{k-1} \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{k / n}\left(\Delta B_{i / n}\right)^{2}\right|
$$

Furthermore it holds

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \max _{k=0, \ldots, n} & \frac{n^{2 H-1}}{2}\left|\sum_{i=0}^{k-1} \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{k / n}\left(\Delta B_{i / n}\right)^{2}\right| \\
& =\lim _{n \rightarrow \infty} \sup _{t \in[0,1]} \frac{n^{2 H-1}}{2} Z_{t}\left|\sum_{i=0}^{n-1} \mathbf{1}_{[0, t]}(i / n) \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{1}\left(\Delta B_{i / n}\right)^{2}\right|
\end{aligned}
$$

with

$$
Z_{t}=\exp \left(-\int_{t}^{1} b^{\prime}\left(X_{u}\right) d u-\int_{t}^{1} \sigma^{\prime}\left(X_{u}\right) d^{-} B_{u}\right), \quad t \in[0,1]
$$

This is due to the fact that the sample paths of Z are Hölder continuous of any order $\lambda<H$. It is well known that

$$
n^{2 H-1} \sum_{k=0}^{n-1} \mathbf{1}_{[0, t]}(k / n)\left(\Delta B_{k / n}\right)^{2} \xrightarrow{\text { a.s. }} t
$$

as $n \rightarrow \infty$ for all $t \in[0,1]$. Since $n^{2 H-1} \sum_{k=0}^{n-1} \mathbf{1}_{[0, t]}(k / n)\left(\Delta B_{k / n}\right)^{2}$ is monotone in t, the exceptional set of the almost sure convergence can be chosen independent of $t \in[0,1]$. Thus we get by Dini's second theorem that a.s.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{t \in[0,1]}\left|n^{2 H-1} \sum_{k=0}^{n-1} \mathbf{1}_{[0, t]}(k / n)\left(\Delta B_{k / n}\right)^{2}-t\right|=0 \tag{34}
\end{equation*}
$$

Hence it follows by Lemma 7

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sup _{t \in[0,1]} n^{2 H-1} Z_{t}\left|\sum_{i=0}^{n-1} \mathbf{1}_{[0, t]}(i / n) \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{1}\left(\Delta B_{i / n}\right)^{2}\right| \\
=\sup _{t \in[0,1]} Z_{t}\left|\int_{0}^{t} \sigma^{\prime}\left(X_{u}\right) D_{u} X_{1} d u\right| \text { a.s., }
\end{gathered}
$$

which finally shows the assertion.

Proof of Theorem 1. By (33) we have

$$
X_{1}-\bar{X}_{n}^{n}=-\frac{1}{2} \sum_{i=0}^{n-1} \sigma^{\prime}\left(X_{i / n}\right) D_{i / n} X_{1}\left(\Delta B_{i / n}\right)^{2}+R_{n}^{(6)}
$$

with

$$
\left|R_{n}^{(6)}\right| \leq C \Delta^{\min \{4 H-2-4 \varepsilon, H-\varepsilon\}}
$$

The assertion follows then by (34) and Lemma 7, as in the previous proof.

References

[1] P. Breuer and P. Major (1983): Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (3), 425-441.
[2] S. Cambanis and Y. Hu (1996): Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stoch. Stoch. Rep. 59, 211-240.
[3] J.F. Coeurjolly (2000): Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. Journal of Statistical Software. 5, 1-53.
[4] J.M. Corcuera, D. Nualart and J.H.C. Woerner (2005): Power variation of some integral long-memory processes. Preprint.
[5] P.F.Craigmile (2003): Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. J. Time Ser. Anal. 24 (5), 505-511.
[6] H. Doss (1977): Liens entre équations différentielles stochastiques et ordinaires. Ann. IHP 13, 99-125.
[7] J. Hüsler, V. Piterbarg and O. Seleznjev (2003): On convergence of the uniform norms for Gaussian processes and linear approximation problems. Ann. Appl. Probab. 13 (4), 1615-1653.
[8] F. Klingenhöfer and M. Zähle (1999): Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (4), 1021-1028.
[9] P.E. Kloeden and E. Platen (1999): Numerical Solution of Stochastic Differential Equations. Berlin, Springer. 3rd edition.
[10] T.G. Kurtz and P. Protter (1991): Wong-Zakai corrections, random evolutions and simulation schemes for SDEs. Stochastic analysis, Academic Press, Boston, MA, 331346.
[11] J.R. León and C. Ludeña (2004): Stable convergence of certain functionals of diffusions driven by fBm. Stochastic Analysis and Applications 22 (2), 289-314.
[12] G.N. Milstein (1995): Numerical Integration of Stochastic Differential Equations. Kluwer, Doordrecht.
[13] A. Neuenkirch (2005): Optimal approximation of SDEs with additive fractional noise. Preprint TU Darmstadt.
[14] I. Nourdin (2005): Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire. C.R. Acad. Sci. Paris, Ser. I 340 (8), 611-614.
[15] I. Nourdin (2005): A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Preprint PMA Paris 6.
[16] I. Nourdin and T. Simon (2005): On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. To appear in Statistics and Probability Letters.
[17] I. Nourdin and T. Simon (2005): Correcting symmetric integral by a Lévy area. Preprint PMA Paris 6.
[18] D. Nualart (1995): The Malliavin Calculus and Related Topics. Springer-Verlag.
[19] D. Nualart and Y. Ouknine (2003): Stochastic differential equations with additive fractional noise and locally unbounded drift. Progress in Probability 56, 353-365.
[20] D. Nualart and A. Rǎsçanu (2002): Differential equations driven by fractional Brownian motion. Collect. Math. 53 (1), 55-81.
[21] D. Nualart and B. Saussereau (2005): Malliavin Calculus for Stochastic Differential Equations driven by Fractional Brownian Motion. Preprint.
[22] G. Peccati and C.A. Tudor (2004): Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités, Lecture Notes in Mathematics XXXIII, 247-262.
[23] F. Russo and P. Vallois (1993): Forward, backward and symmetric stochastic integration. Probab. Theory Relat. Fields 97, 403-421.
[24] F. Russo and P. Vallois (2005): Elements of stochastic calculus via regularisation. Preprint Paris 13.
[25] H. J. Sussmann (1977): An interpretation of stochastic differential equations as ordinary differential equations which depend on a sample point. Bull. Amer. Math. Soc. 83, 296-298.
[26] D. Talay (1983): Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9, 275-306.

