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BOUNDS ON REGENERATION TIMES AND LIMIT

THEOREMS FOR SUBGEOMETRIC MARKOV CHAINS

BORNES DES TEMPS DE REGENERATION ET

THEOREMES LIMITES POUR DES CHAINES DE MARKOV

SOUS-GEOMETRIQUES

RANDAL DOUC *;, ARNAUD GUILLIN, AND ERIC MOULINES

ABSTRACT. This paper studies limit theorems for Markov Chains with gen-
eral state space under conditions which imply subgeometric ergodicity. We
obtain a central limit theorem and moderate deviation principles for addi-
tive not necessarily bounded functional of the Markov chains under drift
and minorization conditions which are weaker than the Foster-Lyapunov
conditions. The regeneration-split chain method and a precise control of
the modulated moment of the hitting time to small sets are employed in the

proof.

AMS 2000 MSC 60J10

Stochastic monotonicity; rates of convergence; Markov chains

RESUME. Nous établissons dans ce papier des théorémes limites pour des
chaines de Markov & espace d’état général sous des conditions impliquant
Iergodicité sous géométrique. Sous des conditions de dérive et de minorisa-
tion plus faibles que celles de Foster-Lyapounov, nous obtenons un théoreme
de limite centrale et un principe de déviation modérée pour des fonction-
nelles additives non nécessairement bornées de la chaine de Markov. La
preuve repose sur la méthode de régénération et un controéle précis du mo-

ment modulé de temps d’atteinte d’ensembles petits.
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1. INTRODUCTION

This paper studies limit theorems and deviation inequalities for a positive
Harris recurrent Markov chain {Xj}r>0 on a general state space X equipped

with a countably generated o-field X. Results of this type for geometrically er-

odic Markov chains are now well established: see for instance
, Chapter 17) for the central limit theorem and the law of iterated loga-

rithm, Id.LAmsLa_a.n.dllhﬂ] (IJ.QQEI), IQh.et] (|l9_9.d) for moderate deviations re-

sults. However, the more subtle subgeometrical case is not nearly as well un-

derstood (see for instance hl,].&lbl].t_andﬁmlbd (IZODJI))

These results can be obtained by using the regeneration method constructed

via the splitting technique on returns to small sets. These methods typically
require bounds for modulated moments of the excursions between two regen-
erations. In practice, one most often control the corresponding modulated
moment of the excursion between two small set return times rather than re-
generation times. Our first result in section B relate these two bounds, ex-
tending to subgeometrical case results reported earlier in the geometric case
by IB.Ob.&Lts_an.dMJﬁl (IlQQd) We then apply these bounds in sections Bl H
and B In section Bl we establish a CLT and Berry-Esseen bounds, sharpening
estimates given in B.cﬂ.‘rb.a.us.&d (Il%d) In section Bl we establish a Moderate

Deviation Principle for possibly unbounded additive functionals of the Markov

chains, extending results obtained earlier for bounded functionals and atomic

chains by I]l].d]m}.t_a.ndi}mlb.d (IZ&).OJI) Finally, in section B, we give deviation

inequality for unbounded additive functionals of the Markov Chain.
Following INJ.Lm.m.elm_a.n.d_'DJ.ommﬂt] (Il%d), we denote by Ag the set of se-

quences such that r(n) is non decreasing and logr(n)/n | 0 as n — oo and by

A the set of sequences for which r(n) > 0 for all n € N and for which there

exists an rg € Ag which is equivalent to r in the sense that

0 < liminf r(n) and limsup r()
n—oo 1o(n) n—oo To(n)

< 0.

Without loss of generality, we assume that 7(0) = 1 whenever r € Ag. Examples
of subgeometric sequences include: polynomial sequences r(n) = (n + 1)° (§ >
0), or subexponential sequences, r(n) = (n + 1)% (§ > 0, ¢ > 0 and v €
(0,1)).

Denote by P the transition kernel of the chain and for n > 1, P™ the n-
th iterate of the kernel. For any signed measure p on (X,X), we denote by

|| ¢ et sup|g<s [#(g)| the f-total variation norm. Let f : X — [1,00) be
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a measurable function and {r(k)} € A. We shall call {X;} (f,r)-ergodic (or
f-ergodic at rate {r(k)}) if P is aperiodic, ¢-irreducible and positive Harris
recurrent Markov chain and

lim r(n)||P"(z,-) — 7| f <oo, forallzeX. (1.1)

n—~00

where 7 is the unique stationary distribution of the chain. If (1) holds for
f =1, then we call {X}} rergodic (or ergodic at rate r). For positive Har-

ris recurrent Markov chain i ,|l9_9.EL Chapter V) there exists
some (and indeed infinitely many) small sets satisfying for some constant m
and some probability measure v, the minorisation condition: P™(x,-) > ev(-),
x € C. In what follows, for simplicity of exposition, we shall consider the

”strongly aperiodic case” m = 1, that is

A 1. There exist € € (0, 1], a probability measure v on (X, X) such that v(C) =
land forallz € C, Ae X, P(x,A) > ev(A).

The general m case can be straightforwardly, but to the price of heavy no-
tations and calculus (considering for example easy extensions of i.i.d. theorem
to the 1-dependent case), recovered from the proofs presented here. Funda-
mental to our methodology will be the regeneration technique (see ,
@, chapter IV). The existence of small sets enables the use of the split-
ting construction to create atoms and to use regeneration methods, similar
to those on countable spaces. In particular, each time the chain reaches C,
there is a possibility for the chain to regenerate. Kach time the chain is at
x € C, a coin is tossed with probability of success €. if the toss is success-
ful, then the chain is moved according to the probability distribution v, oth-
erwise, according to (1 — ¢)"!{P(z,) — ev(:)}. Overall, the dynamic of the
chain is not affected by this coin toss, but at each time the toss is success-
ful, the chains regenerates with regeneration distribution v independent from
x. We denote by 7 = inf{k > 1,X; € C} and 0 = inf{k > 0, X € C} the
first return and hitting time to C and by 7 = inf {k > 1, (X}, d;) € C x {1}}
and & = inf{k >0, (Xy,dr) € Xx {1}}. Let f be a non-negative function
and r € A a subgeometric sequence and p a probability measure on (X, X).
Our main result gives a bound to the (f,r)-modulated expectation of moments
Ex [2221 r(k)f (Xk)} of the regeneration time (where E; is the expectation
associated to the split chain; see below) in terms of the corresponding moment

of B, [37_o7(k)f(X1)] and constants depending only and explicitly on e and
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v and on the sequence r. Here, Eu denotes the expectation associated to a
Markov chain with initial distribution p and moving according to P outside C
and the residual kernel (1 — €)~{P(x,-) — ev(-)} inside C.

Because finding bounds for E,, [327_,7(k)f(X})] is not always easy, we will

consider bounds for this quantity derived from a ”subgeometric” condition re-

cently introduced in ), which might be seen, in the subgeomet-
rical case, as an analog to the Foster-Lyapunov drift condition for geometrically
ergodic Markov Chains. We obtain, using these drift conditions, explicit bounds
for the (f,r)-modulated expectation of moments of the regeneration times in
terms of the constants in Al the sequence r and the constants appearing in
the drift conditions. With these results, we obtain limit theorems for addi-
tive functionals and deviations inequalities, under conditions which are easy to
check.

2. BOUNDS FOR REGENERATION TIME

We proceed by recalling the construction of the split chain (INJ.]_m_m_Q]j_d, I]_%J,
Chapter 4). For x € C and A € X define the kernel @ as follows,

0o, A) = (1 —ele(z) " H{P(z, A) — elo(z)v(A)} 0<ele(z) <1, 21)
62 (A) elo(z) =1

Define now, on the product space X = X x {0,1} equipped with the product

o-algebra X ® P(0,1) where P(0,1) o {0,{0},{1},{0,1}} the split kernel as

follows:
P(x,0; A x {0}) = /AQ(%dy){l —elo(y)} Pz,0;4 x {1}) = eQ(z, AN C)

P(z,1; A x {0}) = /Au(dy){l —ele(y)} Pz, 1;Ax {1}) = ev(ANC) .

For p be a probability measure on (X,X’), define the split probability ;i on
(X x {0,1}, ¥ ® P({0,1}) by

A(A x {0}) = /A {1 - ele@)huldy) | Aex, (22
A(A x {1}) = ew(ANC) . (2.3)

We denote by Pj; and E,, the probability and the expectation on (XN x {0, 1}V,
XN @ PEN({0,1})) associated to the Markov chain {X,,d, }n>0 with initial

distribution /i and transition kernel P. The definition of the split kernel implies
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that
P <Xn+1 e A|FX fof_l) — P(X,, A) (2.4)
P (dn —1|FXv fg_1> = ele(X,) (2.5)
P <Xn+1 e A|FXVFL_ . d, = 1) — u(A), (2.6)

where for n > 0, F¢ = o(dy, k < n) and by convention F¢, = {,2). Condition
(E3) simply states that {X,,},>0 is a Markov chain w.r.t. the filtration (F.X Vv
Fd 'n > 0). Condition ([ZH) means that the probability of getting a head
(d, = 1) as the n-th toss is equal to el(X,), independently of the previous
history FX ; and of the n— 1 previous toss. Condition (0 says that, if head is
obtained at the n-th toss (d,, = 1), then the next transition obeys the transition
law v independently of the past history of the chain and of the tosses. This
means in particular that X x {1} is a proper atom. From conditions Z4), [Z3)
and (ZHl), we have

i (Xn+1 e A|FXVFL_:d, = o) = Q(Xn, A) .

We denote respectively by ]fl’u and I~EM the probability and the expectation on
(XN, x=N) of a Markov chain with initial distribution p and transition kernel
Q.

Denote by {0;};>0 are the successive hitting times of {X,,} to the set C

0o dof inf{n>0,X,€C} and o;=inf{n>0;_1,X,€C}, j>1,
(2.7)
and by N,, the number of visits of {X,,} to the set C before time n,

Np = Z ]lC(Xn) = Z ]l{ajgn} (2.8)
i=0 =0

Define by & the hitting time of the atom of the split chain X x {1},

¢ ¥ k>0,d, =1} . (2.9)
The stopping time ¢ is a regeneration time and v is a regeneration measure,
i.e. the distribution of X,, conditional to & = n is v independently of the past
history of the chain. The following proposition relates the functionals of the
regeneration time under the probability associated to the split chain Pp to the

corresponding functionals of the chain {X,,} under the probability P,.
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Proposition 1. Assume All Let p a probability measure on (X, X). Let {&,}
be a non-negative FX -adapted process and let S be a FX -stopping time. Then,

Ej [€sls<sy] = Eu [€s(1 = )N 1i5c00y] (2.10)
By (651 freoe)) = €D (1= By [€0, 115,00} - (2.11)
7=0

The proof is given in the Appendix [Al

We will now apply the proposition above to functionals of the form &, :=
Y r—oT(k)g(Xk) where g is a non-negative function and r € A is a sequence, to
relate the bounds of the (g, r)-modulated expectation of moments of regenera-

tion time to the (f,r)-modulated expectation of moments of the hitting time.

Proposition 2. Assume Al Let {r(n)},>0 be a sequence such that, for some
K, r(n+m) < Kr(n)r(m), for all (n,m) € NxN. Let g : X — [1,00) be a

measurable function. For x € X, define

Wig(a) € E,

)

T(k)g(Xk)] : (2.12)
Then, for any x € X,

Es

Zr(k‘)g(Xk)] <

k=0

r(0)g(z) + Wy g(z)Lce () + etl-eK (Sgp Wr7g> IVESZ [r(5)] . (2.13)

If g = 1 and r(n) = (", this proposition may be seen as an extension of

id, , Theorem 2.1), which relates the generating func-
tion of the regeneration time to that of the hitting time to C. Subgeometric
sequences r € Mg also satisfies the inequality 7(n + m) < r(n)r(m). There is
however a striking difference with geometric sequence. Whereas for a geometric
sequence liminf, ... r(n)/ > ;_,r(k) > 0, for subgeometric sequence we have
on the contrary limsup,,_,. r(n)/> p_,r(k) = 0. This implies that, whereas
Es [ZZ:O r(k)g(Xk)} and ESI [r(5)] are of the same order of magnitude in the
geometric case, the second is negligible compared to the first one in the subge-

ometric case. In particular,
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Corollary 3. Assume Al For any function g : X — [0,00), there exists a
constant by (depending only and explicitly on € and supg W1 4) such that

[29 X ] (z) + Wi g(z)lee(2) + by - (2.14)

For any r € Ay and § > 0, there exists a constant b, (depending only and
explicitly on €, §, r and supc W, 1) such that

E;. [ij r(k)] < (14 6)Wy1(2)Lee () + by . (2.15)

k=0
In general, of course, sups W1 4 and supg W, 1 is not easy to find analytically
and, as in other approaches to this problem, we will consider bounds on these

quantities using "subgeometric drift” conditions as introduced in

), generalising a condition implying rieamnnian convergence stated in

(IZD_OJ') (see also Mﬁmmmmsl (IZ.0.0.d)) This condi-

tion may be seen as an analogue for subgeometrically ergodic Markov chain of

the Foster-Lyapunov condition for geometrically ergodic Markov chain.

A 2. There exist a concave, non decreasing, differentiable function ¢ : [1, +00) —
RT, a measurable function V : X — [1,00) and positive constants b satisfying

(1) > 0, lim,_ 00 p(v) = 00, limy_ ¢’ (v) = 0, sup,cc V(x) < oo and
PV <V —goV+blg,

where the set C' is given in Al

This drift condition has been checked in a large number of examples arising

for example in queueing theory, Markov Chain Monte Carlo, time-series analysis

(see for example llam.er_a.rLd_B.o.b_er_th (IZQ.OJ')JD.QJ.LL&L&]J (IZ.QO_Z‘)) Examples of

functions ¢ satisfying ARlinclude of course polynomial functions p(v) = (v+1)%

for aw € (0,1) but also more general functions like p(v) = log®(v + 1) for some

a >0, or p(v) = (v+d)/log(v + d)¢, for some a > 0 and sufficiently large

constant d. We refer to ) for precise statements giving both

drift functions and rate ¢ for these examples. Define

o(v) < /lv | (2.16)

()
The function ® : [1,00) — [0,00) is increasing and lim, .., ®(v) = oo (see
(IDm.u‘_eLa.l] |ZOD_4 Sectlon 2)). Define, for u € [1, 00),

ro(u) € 0o @7 (u)/p 0 d71(0), (2.17)
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where 7! is the inverse of ®. The function u — 7,(u) is log-concave and
thus the sequence {r,(k)} is subgeometric. Polynomial functions ¢(v) = v®,
a € (0,1) are associated to polynomial sequences 7, (k) = (14 (1 —a)k)®/ (1=,
Functions like ¢(v) = ¢(v + d)/log®(v 4+ d) (o € (0,1) and sufficiently large d)

are associated to subexponential sequences,
ro(n) < n~/ (%) exp ({c(l + a)n}l/(1+°‘)) .
where for two sequences {uy} and {vi} of positive numbers, uy =< vy if

0< lim inf 2% < hmsup— < 00.
k—oo U k—oo Uk

(I]l).l.u”_ﬁt_a.].l, |20.O_Z‘, Proposition 2.2) shows that, under ADH2 for all = € X,

E. CZ: poV(Xg)| <V(x)+ble(z), (2.18)
L k=0
[Tc—1

B | 3 rolh)| < (Vi) — 1+ braic@)} o). (2.19)
=0

L k
This implies, using I:Dmnﬂn_am&fﬂﬁ d]_&&é‘) that a Markov Chain sat-
isfying AlH2l is both (1,7,)- and (f,1)-ergodic. Denote by G(y) the set of

measurable functions satisfying:

G(p) dof {1 : [1,00) — R, is non decreasing, )/ is non increasing} .
(2.20)
Similarly to @I4), for all ) € G(y), define the function
By i v / Y (w)du . (2.21)
1 P

The function ®, is concave, non decreasing and, because [1/¢](u) < [1/¢](1),
Oy(u) < [W/¢](1) (u—1) for all uw > 1. The results of the previous section are

used to derive explicit bounds for

D o V(Xy)

k=0

and E 3.

Z Tso(k’)]

k=0
where 1) is any function in G(p). The following theorem, proved in section [B
establishes bounds for the modulated moment of the excursion of the split chain

to the atom X x {1} as a function of the drift condition.

Theorem 4. Assume AOHA Then, there exists finite constant By, (depending

only and explicitly on the constants appearing in the assumptions) such that for
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al z e X, ¥ € G(p),

D o V(Xp)| < OyoV(w)lee(x) + By, (2.22)

k=0

Es

For any § > 0, there exists a finite constant By, (depending only and explicitly

on the constants appearing in the assumptions and § > 0) such that

E(;x [Zo: w(kz)] <(1+40)V(x)Llee(x) + By , (2.23)
k=0

For any ¢ € (0,1) and K > 1, there exists a finite constant k (depending only
and explicitly on the constants appearing in the assumptions) such that for any
P €G(p), and xz € X,

B 6 1 Oy (K)+1
i (gmm") - M) =" {¢‘1{6M/¢(K)} * (1¢_< c))MK Vi),

(2.24)

The rates of convergence for the tail of the excursions may be obtained by
optimizing the choice of the constant K with respect to M. As an illustration,

consider first the case where ¢ = 1. Since lim,_.~ ¢(s) = oo, then

(K 1[5 ds
f}i&%:f}@w?/l o "
Therefore, by letting K — oo in the right hand side of ([ZZ4]) and then, taking
c=1,
Ps (6> M) < kV(x)/® (M) .

Note that this bound could have been obtained directly by using the Markov
inequality with the bound [ZZ3]) of the f-modulated moment of the excursion.
Consider now the case: ¢ = ¢. By construction, for any K > 1, ($,(K) +
1)/K <1 and for any positive u, ®~!(u) > ¢(1)u + 1. Taking K = 1 in (24,

Theorem Hl shows that, for some constant «,

P, <i¢ o V(X}) > M> < kV(x)/M ,

k=0
which could have been again deduced from the Markov inequality applied to the
bound for the excursion ([ZZZ). The expression [ZZ) thus allows to retrieve
these two extreme situations. Eq. (Z2Z4]) also allows to interpolate the rates for
functions growing more slowly than o V.
We give now two examples of convergence rates derived from the previous

theorem by balancing the two terms of the right hand side appearing in (H).
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Polynomial ergodicity. By Eqs [ZI0) and ZI1), if p(v) = v (with « €
(0,1)), then r,(k) = (1+ (1 — )k)*17% and &1 (u) =< (1 — )/ (1-a)yl/(1-a)
as u — 00. Choose 3 € (0,a) and set ¥(u) = u’. Then, ®,(v) = (1 +
B — )" (v'P~* — 1) and the optimal rate in the right hand side of [Z24)) is
obtained by setting K = M FH@-m-a, With this choice of K , 24)) implies
that

S VAXk) = M| < KV (2)M TR0
k=0

This bound shows how the rate of convergence of the tail depends on the tail

Ps.

behavior of the function g and of the mixing rate of the Markov Chain.
Subexponential ergodicity. Assume that p(v) = ¢(v + d)(log(v + d))~ for
some positive constants ¢ and « and sufficiently large d. Then ®~1(k) =<
e+ aoose for example 1(v) = |log [?(1 + v), v € RF. By op-
timising the bound w.r.t. K, ([Z24]) yields:

Egr 1
]IVD&C [ |log |°[V (Xy)] > M] < e CM TP Vi),
k=0

for some constants ¢ and C' which does not depend of 3 or M. Similarly, for
P(v) = (1 +v)P with 8 € (0,1), there exists a constant & < oo,
d —1 2a8—1+B—«a
> VOXy) = M] <KkM? log 7 (M)V(x).
k=0

Ps.

3. CENTRAL LIMIT THEOREM AND BERRY-ESSEEN BOUNDS

As a first elementary application of the results obtained in the previous sec-
tion, we will derive conditions upon which a Central Limit Theorem holds for
the normalized sum S,,(f) et =172 Yo (f(Xg) —7(f)) where 7 is the station-
ary distribution for the chain. For u, v two vectors of R?, denote by (u,v) the

standard scalar product and ||ul| = ((u,u))"? the associated norm.

Theorem 5. Assume AOHA. Let v be a function such that ¥ and ¥®,;, belong
to G(v). Then, for any function f: X — R such that supy 1/%'/ < 00,

[ Fam e (1713014 = w()id < .
k=1

If in addition o(f) > 0, where

o2 (f) / {f —n(f))2dm +2 / PP a(f)Ydn . (31)
k=1
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then, for any initial probability measure p on (X, X) satisfying p(®y) < oo,
VnSy(f) converges in distribution to a zero-mean Gaussian variable with vari-

ance o*(f).

Polynomial ergodicity: Assume that ¢(v) = v® for some o € (1/2,1) and
choose ¥(v) = v” for some B € [0,a]. Then, ®(v) = (143 —a) (v P> —1)
and the conditions of theorem H are satisfied if & > 1/2 and 8 € [0, — 1/2].
This is equivalent to the condition used in the CLT (I.la.m.&r_a.n.d_B_o.bﬂ_tEI, |20.0J.|,

Theorem 4.4) for polynomially ergodic Markov chains. Note that, if o < 1/2,
then the moment of order two of the hitting time & is not necessarily finite, and
the CLT does not necessarily holds in this case.
Subexponential ergodicity: Theorem H allows to derive a CLT under con-
ditions which imply subexponential convergence. Assume that p(v) = (d +
v)log=*(d + v), for some o > 0 and sufficiently large d. The condition of
Theorem [ are satisfied for ¥(v) o v*/?{log(v)} =@+ for § > 0.

By strengthening the assumptions, it is possible to establish a Berry-Esseén

Theorem with an explicit control of the constants.

Theorem 6. In addition to the assumptions of Theorem [, suppose that the
functions V3, ¢2<I>¢ and Py, belong to G(p). Let u be a probability measure
on (X, X) such that u(®y) < oo. Then, there exist a constant r depending
only and explicitly on the constants appearing in the assumptions (AOMA) and
on the probability measure p such that, for any function f : X — R such that

supy w‘f"/ < o0 and a?(f) >0,
sgp ‘IP’M (n_l/zsn(f)/a(f) < t) — G(t)‘ < k2 , (3.2)
where G is the standard normal distribution function.

Berry-Esseen theorems have been obtained for Harris-recurrent Markov chains
under moment and strongly mixing conditions by |BQJIb.ﬁJJ.SﬂJ (Il%d) The use

of the results obtained above allow to check these conditions directly from the

drift condition. A side result, which is not fully exploited here because of the
lack of space, is the availability of an explicit computable expression for the
constant x, which allows to investigate to assess deviation of the normalized
sum for finite sample. This provides an other mean to get "honest” evalua-

tion of the convergence of the Markov chain, under conditions which are less

stringent than the ones outlined in I,]Q_n.es_a.nd_HQ_bﬂ_tl (|2&)_0_]I), based on total
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variation distance. It is interesting to compare our conditions with those de-
rived in dBQJIhaus_ed, I;L%_d, Theorem 1), in the polynomial case, i.e. p(v) = v®
a € (0,1). Tt is straightforward to verify that the conditions of the Theorem
are satisfied by ¥(v) = v% if @ > 2/3 and 3 € [0,a — 2/3]. On the other

hand, the strong mixing rate of this chain is r(n) = n=%0-% (see

) and the maximum value of p such that 7(VP?) < oo is p = a/3. The
Bolthausen condition Y 22, EW+3)/(P=3)p(n) < 0o, is therefore satisfied again if
a>2/3 and B € [0,a —2/3), the value a — 2/3 being this time excluded.

4. MODERATE DEVIATIONS

The main goal of this section is to generalize the MDP result of Djellout-

Guillin IDJ.dJQJ.Lt_a.D.dﬁmJJJJJ (IZODJ') from the atomic case to the 1l-small set

case. We will indicate in the proof the easy modifications needed to cover the

general case.

4.1. Moderate deviations for bounded functions. We first consider MDP
for bounded mapping, including non separable case (the functional empirical

process and the trajectorial case).

Theorem 7. Assume conditions AIHA. Then, for all sequence {b,} satisfying,

for any e > 0,
(VA by
1 -—+— | = 4.1
nl_)ngo<bn +- ) (4.1)
. n n
g log <W> =%, (42)

for all initial measure p satisfying u(V') < 0o, for all bounded measurable func-
tion f : X — R? such that w(f) = 0 and for all closed set F C R?, we have

n—00 b% el

n—1
lim sup ! log P, (bi Zf(Xk) € F) < — inf Jy(z) ,
" k=0

where Jy is a good rate function, defined by
def

Jr(x) = sup, (A 2) = (1/2)a*(\, f)) (4.3)

and a? is defined by (E1).

The proof is given in section Id_(LAmsLeJ (I_LQQYI) proved that the moderate
deviation lower bound holds for all bounded function and all initial measure

provided that the chain is ergodic of degree 2, i.e. for all set B € X such
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that 7(B) > 0, [ Ez[r3]m(dz) < oo, where 75 © inf{k > 1,X,, € B} is the

return-time to the set B. It turns out that, under the assumptions ADHZ, the
condition (ET)-(E2) implies that the Markov chain is ergodic of degree 2. Note
indeed that the conditions ([EI)-EZ) implies that limy_.o k/7,(k) = 0. The
definition (ZIT) of {r,(k)} implies that for some positive ¢, p(v) > c\/v, for
any v € [1,00) and Lemma [[Z (stated and proved in section [J) shows that
this condition implies that the chain is ergodic of degree two. Thus, Theorem
[@ together with (Id_(LAms_mJ, I]_QMI, Theorem 3.1) establish the full MDP for

bounded additive functionals.

Condition EI)-EZ) linking ergodicity and speed of the MDP may be seen
(@j) for the
MDP of i.i.d. random variable linking the tail of this random variable with the

as the counterpart for Markov chains of the condition of

speed of the MDP. Let us give examples of the range of speed of the MDP
allowed as the function of the ergodicity rate.

Polynomial ergodicity: By Eqs [ZI0) and @I7), if ¢(v) = v (with a €
(0,1)), then r,(k) < k*/0=%) and ®~!(k) = k(=) Therefore, condition
(ET)-E2) is fulfilled as soon as for any a € (1/2,1) by any sequence {b,}
satisfying

lim {g + nblog"} =

Subexponential ergodicity: Assume that p(v) = (v + d)(log(v + d))™“ for

o pokl/(H)

some a > 0 and sufficiently large d. Then, ®~1(k) for some constant

c¢. The condition [J)-(E2) is fulfilled by any speed sequence {b,} satisfying

br,
lim {?Jr - }:0.

n—oo n nit2a

The result can be extended to the empiral measure of a Markov chain. As-
sume that X is a Polish space and denote by M(X) the set of finite Borel signed
measures on X. Denote by B(X) the collection of bounded measurable func-
tions on X. We equip M(X) with the smallest topology such that the maps
V= fx fdv are continuous for each f € B(X), commonly referred to as the 7-
topology. The o-algebra M(X) on M(X) is defined to be the smallest o-algebra
such that for each f € B(X), the map v — fdv is measurable. Define the

empirical measure L, as

i
L

1
" k=0

B
Il
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For any B € M(X), we denote by int,(B) and clos,(B) the interior and the
closure of the set B w.r.t. the T-topology.

Theorem 8. Under the assumptions of Theorem [}, for every probability mea-
sure p € M(X) satisfying u(V') < oo, and any B € M(X)

lim supbﬁ2 loglP, (L, € B) < T Clll(g - In(vy) ,

lim 1nf loglP,(L, € B) > — inf Iy(y)
b2 y€int, (B)

where for v € X, setting f = f —n(f),

Io(y :f:gl(ax [/fdv—— (/f2d7+2/fZPkfd7r)] . (4.4)

The proof can be directly adapted from the proof of (Id_e;AmaLel, I]_9_9_7|, The-

orem 3.2) and is omitted for brevity. An explicit expression of the good rate

function can be found in , I].Q&ﬂ, Theorem 4.1). Other MDP princi-

ples (for instance, for the supremum of the empirical process) can be obtained,

using the results obtained previously by IDj illi ). To save

space, we do not pursue in this direction.

4.2. Moderate deviations for unbounded functionals of Markov chains.
We give here conditions allowing to consider unbounded functions. These con-
ditions make a trade-off between the ergodicity of the Markov Chain, the range
of speed for which a moderate deviation principle may be established and the

control of the tails of the functions.

Theorem 9. Assume AHZA and that there exist a function ¥ € G(p) and a

sequence {K,} such that lim, .~ K, = oo and, for any positive ¢,

n
li 1 = — 4.
nroo B2 8 <<I>—1(abn/zp(Kn))> o (4:5)
1 n®y(Kn)\

Then, for any initial distribution p satisfying p(V') < oo and any measurable
function f : X — R such that supy || f|| /¢ oV, the sequence {o2(\, f, 1)} where

2
o2\ fop) ©E, (Z{ka—w >}> :



LIMIT THEOREMS FOR SUBGEOMETRIC MARKOV CHAINS 15

has a limit o2(\, f) (which does not depend on u) and P, [L,(f) € -] satisfies a
moderate deviation principle with speed b2 /n and good rate function J, t

Jp(x) = sup [\ z) — (1/2)0* (A, f)] -

AeRd

Moreover, if 1% + Y@y, € G(p), then a*(\ f) = o*((\, f)) and Jp=Jg.

Polynomial ergodicity: By Eqs [ZI0) and ID), if p(v) = v (with a €
(1/2,1)), then r,(k) < k0= and &~ (k) =< k(=) Choose ¢ (v) = v?
with 8 < a — 1/2. Then the MDP holds for for any sequence {b,} such that
limnqoo{\b/—f 4+ —=bn_1 = (. It is worthwhile to note that the speed which can

vnlogn
be achieved are the same than in the bounded case.

Subexponential ergodicity: Assume now that p(v) = (v + d)(log(v + d))
for some a > 0 and sufficiently marge d. Then Letting ¢(v) = (log(1 +v))? for
some (8 > 0, then Theorem M shows the MDP with speed b, = n® for a such

that
1 b+1+4+«

2SS 1120

Letting 1 (v) = (1 + v)? with 8 < 1/2, then Theorem Hl shows that the MDP

principle holds for any sequence {b,} such that lil(nn_)oo{bii1 + wf’ffm} =0.

5. DEVIATION INEQUALITIES

We now investigate some exponential deviation inequalities for P, (>~ f(X;) >
en) valid for each n where f is a bounded and centered function w.r.t. 7. This
is to be compared to Bernstein’s inequality for i.i.d. variables or more precisely

to the Mﬁgﬁﬂj (Ilﬂ]l) inequality adapted to Markov chains, (as done

in a previous work of [Clé )) except that in this paper, the Markov

chain is not geometrically but sub-geometrically ergodic. Extensions to the case

of unbounded functions can be tackled using result of Theorem HEl

Theorem 10. Assume that f is bounded and centered with respect to ™ and the
assumptions of Theorem 1. Then, for any initial measure p satisfying p(V) <
o0, for any positive € > 0 and n > ngy(e), there exists L, K (independent of n
and €) such that, for all positive y

n—1 )
L L _ ne
Py ( > AR > En> < z + " + e KifiZtey
k=0 <I>—1( en ) -1 <L
1 Flles [l £lloo
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The proof is given in section [El Let us give a few comments on the obtained

rate in some examples: with || f||c < 1, for n > n;

(1) p(v) = (14 v)* for a € (1/2,1), then there exists K

( log(n) &

(2) ¢(v) = (1 +wv)log(c+v)~« for positive «, then there exists K, L

5‘1 anl—a
m(

The polynomial rate shown in the first case is better than the one derived

LS

k=0

>€n><K

n—1

> F(Xk)

k=0

> 6n) < K e Lne)?re

by Rosenthal’s inequality, and considering that we in fact only consider inte-
grability assumptions, are not so far from optimal when considering stronger
assumptions as weak Poincare inequalities. The subgeometric case is less sat-
isfactory in the sense that when « is near 0, we hope to achieve a n in the
exponential (obtained for example via Cramer argument) whereas we obtained
instead \/n. The gap here, due to Fuk-Nagaev’s inequality, is fullfilled only
asymptotically via the moderate deviations result, and is left for deviation in-

equalities for further study.

APPENDIX A. PROOF OF PROPOSITIONS [Il AND

Proof of the Proposition . We first prove by induction that for all n > 0 and
all functions fo, ..., fn € FT(X),

[Hfz ) ligony| = Hfz )(1—¢) ] : (A1)

We first establish the result for n = 0. For f € F*(X) we have

Ealf (X0)Liss0y] = Ealf (X0) Ligy=0}] =
-9 | f@ [ rantan) = [ (1= @} (),
Assume now that the result holds up to order n, for some n > 0. Similarly, for
any f € FT(X),
E[f (Xnt1)Lia,pa=0y | Fi V Fitl L, —o}
= E[f (Xnt){1 — elo(Xng1)} | Fl V FL{g,=0)
= E[f(Xps){1 — elo(Xn11)} | Xnllig,—0)
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Therefore, by the recurrence assumption,

fn+1 n+1 Hfl ]]-{a>n+1}]

Ei | Elfnt1(Xns1){1 = €le(Xns1)} | X Hfz ]l{m}]

L =0

:Eu [fn-i—l( Xpp1){1 — ele(Xn+1)} | X Hfz 1_5) ]
L =0
:EM Jrn1 (X Hfz 1_5) K
=0

showing (A]). Therefore, the two measures on (X", X®(+1)) defined respec-
tively by

A E[L []].A(X(], ce )Xn)]l{&Zn}] and
A—E, [14(Xo,.... X1)(1 — )]

are equal on the monotone class C def {A,A=Agx - x Ay, A; € X} for any
n, and thus these two measures coincide on the product o-algebra. The proof
of (2I0) follows upon conditioning upon the events {S = n}. We now prove
([ZTT). By definition of the hitting time & to the atom X x {1}, &1 (5o} may

be expressed as

§6 1500t = EooL{dyy=1} L{dyy<oo} T Z €5 11dy, =1} Loj_1 <6} Loj<oo}-
=1

Note that

E | Lay,-1)e, | 35| Lioy<oet = €B |0, | 75| Loy <o)

and (1—¢)™7s Lig <oy = (1 )i+ 1{s,<o0}- The proof follows from the identity

Eiléo; 1o, <00} Lo, 1 <6}] = BalBlEo, Lo, <o} | Foy , VFa. 1]]1{d =0}, y<ay) =
EM[E[€0j1{0j<oo} ‘ f‘c}f,l](l - E)NUJ;I ]l{O'j71<OO}] (1 - 6) [é‘ag]l{aj<oo}]
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Proof of the Proposition . Without loss of generality we assume that supo W, 4 <
oo (otherwise the inequality is trivial). In the case € = 1, Proposition B is ele-
mentary since by Proposition [0, it then holds that
5
Es, [Z T(k)g(Xk)] = Wi g(x)lce ().

k=1

Consider now the case € € (0,1). By applying Proposition [l we obtain:

Es, Zv‘(k)g(Xk)] =
k=1
Wig(@)lee(z) +€ > (1— ), r(k)g(Xp)|. (A2)
j=1 k=1
For j > 1, write
o j—1 Ot+1
E, [Zr(k:)g(Xk)] =Wrg(x)loe(z) + Y Eo | Y r(k)g(Xy)
k=1 =0 k=041

Under the stated assumptions, for all n,m > 0, r(n +m) < Kr(n)r(m). This
and the strong Markov property imply, for z € {W, , < oo} :

Or41 T00%¢
Eo | Y r(k)g(X)| =E, [Z r(k‘i'o-f)g(Xk-i-Ue)]

k)=0’e+l k=1

< KE, (o)W g(Xs,)] < K (Slép Wr,g> Ew[r(ag)],

where 6 is the shift operator. Plugging this bound into (A2 and using again

Proposition [Ml, we obtain,

—1

B, [Z r<k>g<xk>] < Wig(@)loe(z) + K (S‘ép W) > =y 3 Eulr(ov)]

k=1 j=1 =0

=W, q4(x)loe(x) + K (Slép Wr,g> Z(l — )L E,[r(oy)]

=W, g(z)1lce(x) + el -eK <Sgp an) IVESZ [r(a)].
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Proof of corollary @ For any r € A, lim,_.oc7(n)/ > j_,; (k) =0. As a conse-
quence, for any r(n) € A and any 6 > 0, N, 5 defined by

N5 < sup {n > 1,r(n)/§n:r(k:) > 5} , (A.3)
k=1

is finite. For any n > 0, the definition of N, 5 implies r(n) < d ,_, r(k) +
r(Nys5) . Hence, for any x € X,

B, [r(0)] < 0B, |y (k)| +7(Nrs)
k=1
The proof of ([ZI) then follows by choosing ¢ sufficiently small so that (1 —
e Y1 —€)supe Wp10)"t < 1+46. O

APPENDIX B. PROOF OF THEOREM Ml

We preface the proof by the following elementary lemma.

Lemma 11. Assume A@A Then, for any ¢ € G(p) there exists by, (depending
only and explicitly on b, ¥ and @) such that, for all x € X,

Q(z,®y 0 V) < By o V(z) —1ho V(x) + byle(x) (B.1)

Proof. Since @, is concave, differentiable, non decreasing, the Jensen inequality

implies, for x ¢ C'
Pl®y o V] < Py(PV) < Py(V —¢poV)
§(I)¢OV+(I)£/,(V)(—<,DOV) <OyoV —9yoV
and
Slép Q(z, Py o V) < Py, [(1 — )7t {sgp PV — EV(V)H .
The proof follows. O

Proof. By Corollary B, we may write

4 T—1
Es, [Z YoV (Xy)| <E, [Z o VI(Xi)| Lee(x) + supgyo V +bg . (B.2)
k=0 k=0

On the other hand, the comparison Theorem (IMQLU_a.Dd_TJMQﬂiiA, I;LQQEL Theo-

rem 11.3.1) and the drift condition (B implies that

T—1

j{:¢M>V(A%)

k=0

INEI ]lcc(x) < @w o V(x)]lcc(x) .
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The proof of ([ZZZ) follows. The proof of [ZZJ) is along the same lines using

I3 instead of I4).
We now consider (ZZ4]). Define n o inf{k > 0,V (X)) > K}. We consider

first the event {22:01/’ oV(Xk) > M,n> 6}, on which 9 o V(X}) remains
bounded by 1 (K). Therefore, on {n > &}, S-9_o¢ o V(Xy) < (¢ + 1)(K),
which implies that

{Zzzow o V(Xy) > M,n > &} C {6 > M/y(K)} .

We now consider the complementary event: {Zk g YoV(Xy) > M,n< a}
<

We take ¢ € (0,1), Note that, if & < ¢M/4(K), then, Zn_0¢ o V(Xy)
mp(K) < ¢M which implies that $°7_ a Yo VI(Xy) = (1—c¢)M. Therefore,

(37 woV(Xe) > My <o} C {5 cM/p(K)}
U{n< o < eMpp(K) ,ZZ YoV(Xy) > (1-c)M} .

Therefore,

B; <ZZ:0¢ o V(X)) > M) <2P; (5> cM/Y(K))+
]EVDSZ <77 <6 < eM/Y(K) ’ZU

L, boV(Xy) 2 (1—C)M). (B.3)

The first term of the right hand side of (B3) is bounded using the Markov
inequality with (Z23]),

E;, {ZZ:O Tso(k)} - V(z)loe(w) +1
O {cM/P(K)} ~ o1 {cM/y(K)}

for some finite constant xg. Similarly, the Markov inequality and the strong

Markov property imply, using Eq. Z2Z2),

P5, {6 > eM/$(K)} <

Ps {n<6<cM/Y(K Zwv (Xp) > (1—c)M
k=n
1 5 3 I
< mﬂz& (]1{,7<&}IE { > o V(Xy) f;f}
k=n

K1 ~
< m% [(®y 0 V(X)) + Dlgssny]
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for some constant 1. The function u — @, (u)/u is non-increasing. Therefore,
(Py 0 VI(Xy) + 1) Ljycooy < K 1Py (K) + 1)V (X;) 100}, which implies that

Es, [(By 0 V(Xy) + Do) < (Py(K) +1)

7B, [V Lpzn] -

We now prove that there exists a constant ko such that, for any = € X,

ES [V(Xn)]l{ngé}] § HQV(x) . (B4)

x

Since n is F X _stopping time, using proposition [, &Id), we may write

ES,C [V(Xﬁ)]l{n<fr}] = Ex [V(Xn)(l - 6)Nn]l{n<oo}] .

By conditioning upon the successive visit to the set C', the RHS of the previous

equation may be expressed as

Ex [V(X) (1= " yeo] =

Eo [V(Xp)Lipeony] +> (1 —¢ JE[ )ﬂ{gjflgnqj}] . (B.5)
j=1

Because V(X)) 1 ;<501 < V(Xyag,) and nAop is a FX_stopping time, the com-

parison Theorem (| id, , Theorem 11.3.1)) implies that,
under AR

B [V(Xy)1lin<oot] < V() +ble(x) . (B.6)
Similarly, for any j > 1, we may write
V(Xn)]l{ajflﬁn«fj} = V(XUjAn)]l{ijlﬁn} < V(Xrpn) o 903-71]1{0_]_7677} )
and the comparison Theorem and the strong Markov property imply that
E, [V(Xn)l{0j71§n<aj}] < <sng + b) . (B.7)

By combining the relations (BX), (BE) and (BJ), we therefore obtain the
bound

By [V(X)(1 = Y Leny] < V(@) + blo(a) + & = 2 {Sgpv N b} |

showing (B4l and concluding the proof. O
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APPENDIX C. PROOF OF THEOREM

Proof of Theorem[d. By (Ih@m_aﬁnd_’l‘ﬂmxl, I]_9_Qd, Theorem 17.3.6), we only

. ; 2
need to check that I = E; { (ZZZO |f|(Xk)> } < 0co. We may write [ = I1+21

where the two terms Iy and I5 are respectively defined by

L<E, fjf%Xk)]
Lk=0

[oW
@]
[

LBy | D IR Y \f\(Xe)]
Lk=0 l=k+1
=E; [Z |F1(Xk)Ex, d, {Z \f\(Xe)}]
k=0 (=0
The proof follows using Theorem Hl O

APPENDIX D. PROOF OF THEOREM [1

Lemma 12. Assume that AOHZA hold for some function ¢ such that inf, ¢ o)

w\ﬁqi) > 0. Then, the chain is ergodic of degree two.

Proof. Recall that for a phi-irreducible Markov Chain, the stationary distribu-
tion 7 is a maximal irreducibility measure (see for instance i€,

, Proposition 10.4.9)), Therefore any set C' € X such that 7(B) > 0 is
accessible. In addition, for any non-negative measurable function f, n(f) =
[ m(dx)E (ZTB Ly (Xk)) A direct calculation shows that

T5—1

Z Ex,[7B]

Therefore, the Markov chain is ergodic of degree 2 if and only if for any B € X

E.[r5] = 2E, E.[mB] .

E;i 7(dz)E,[T5] < co. The Jensen inequality (see for instance

, Lemma 3.5)) shows that there exists two positive constants ¢y and by

such that PVV < V'V —¢g+byle, and by w,hﬂﬂi Theorem

14.2.3), for any = € X, and any B such that 7(B) > 0, there exists a constant
¢(B) such that, for ny z € X,

8] < VV(z)+ (B

Applying to the inequality PV + ¢V < V + bl shows that 7(v/V) < oo,
which concludes the proof. O
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We will only give here the scheme of the proof generalizing the approach

of Dj illi (|2&)_0_]I), based on the renewal method introduced (for
discrete Markov chains) by Doeblin. Let us first recall the following crucial
result due to Arcones-Ledoux: suppose that {U;} are i.i.d. random variables,
then b, Y"7_, Uy satisfies a MDP if and only if

. n
Tim 22 log (n P (U] 2 b)) = —o

and the rate function is the natural quadratic one. Note that by an easy ap-
proximation argument (at least in the finite dimensional case) and thus gener-
alizing result by (m), the previous condition gives also the MDP for a
1-dependent sequence {U;}.

The renewal approach consists in splitting the sum S,, & 2?201 (X;) into

four different terms:

e(n) i(n)— e(n)
Sn = &+ Ssorn + Z @—ka + Z F(X5) (D.1)
k=1 J=(U(n)+1)

where &g 4 5 and o = inf{n > dp_1;d, = 1} are the successive return times
to the atom of the split chain, i(n) o il 0 1(dg = 1) is the number of visits
the atom before n, e(n) = |en(C)n] is the expected number of visits to the
atom before n, I(n) e F(i(n)—1)r0 18 the index of the last visit to the chain
to the atom and & = Z] s 11 f(X;) is the f-modulated moment of the
excursion between two successive visits to the atom.

The general idea is to show that only the first term contributes to the mod-
erate deviation principle. To this end we make the following remark: it can be
easily checked that {&;} is a sequence of i.i.d. random variables with common

distribution

P(& - Zf

Note that, when m > 1 in (Al) then the sequence becomes 1-dependent but
essentially the same argument can be carried out. Under [E3)-(EH), it is easily

lim b—log{ l;( an>}:_

> F(Xk)
so that the first term satifies a MDP, the identification of the rate function
being easily handled.

seen that
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Consider now the three remaining terms of the right hand side of ([O.l). We

have to show that, for any positive

lim sup % 10g P, (| Ssonnl| > eby) = —o0, (D.2)
n 5 n—1
hgl—?o%p 0 log IP;; Z F(X5)|| = eb, | = —o0, (D.3)
" j=l(n)+1
n § i(n)—1 e(n)
hgl_}s;ip 2 log IP;; Z; & — kZ:l{k > eb, | = —oc. (D.4)
= —

Remark that the condition ensuring the MDP gives directly the first two
needed limits. The last one is more delicate, but as seen from the proof done
in the atomic case it merely resumes to the MDP of (54 — &1 — (em(C)) ™)
(given by Arcones-Ledoux result and (H)) which enables us to prove that in
the sense of moderate deviations the difference |i(n) — e(n)| can be arbitrarily
considered of size [on| (& beeing arbitrary), and the MDP of the sum of |dn|
blocks (£x). This last term being clearly negligible as ¢ is arbitrary.

Proof of the Theorem 8. The proof of Theorem B follows from the projective
limit theorem and from the moderate deviation principle for bounded func-
tions (as stated in Theorem [). The key point consists in checking that the
rate function as expressed in Eq. [3), Theorem [ coincides with the one ob-

tained by the projective limit theorem (see for instance Id:LAmsL‘J (I;LM) and
(1998)). 0

APPENDIX E. PROOF OF THEOREM [0

We will the same decomposition than in the moderate deviations proof, i.e.
decomposition (D)

i(n)—1 n—1

Sp = S(&Q)/\n + Z &k + Z f(X]) (E.1)
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We bound P, (HZZ;& f(Xk)H > En) by S°i, I;, where

hg%(

def en
I By (ISl > )

n—1

> F(Xk)

k=0

> en,o09 > n)

J=(n)+1)

where

by Theorem Hlif (V') < co. Remark also

. en L
,[2 S ]P“ <(5'() > > S I
8 [fllee /)~ @1 < en )

and if (V') is bounded,

- EN
I, <P 5 — Op_1) >
‘e “<£7‘f1(”’f Fk-1) HfHoo>

S(n+1)]?’,;<6o>u;.%—1> <

For the last term, note

I3 < Pp <max

2P, (

where the last step follows by Ottaviani’s inequality for i.i.d.r.v. if for n large

IN

> &

k=1

enough
n
. en
_ | < .
mP<Z 5> 6>—1/2
=1

By Chebyschev’s inequality, independence and zero mean of the (&), it is

sufficient to choose n such that

o AR + 1))
> 2

)
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where E;((6 4 1)2) is finite (and can be easily evaluated) under our drift con-
dition.

By using the Fuk-Nagaev inequality for the remaining term, we get that for
ally >0

(e | : (1n/2) + 1)
Bl | 3 > ) < ARl v oo (Gt

L([n/2] +1) ([n/2] +1)&?
S U bexp )
o1 (W) ( (9EE + ey) >

where Eﬁ% is easily controlled under the drift condition. This concludes the

proof.
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