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Abstract :  
 
The basal ganglia system has been proposed as a possible neural substrate for action selection in 

the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and 

demonstrate the capacity of this system to generate adaptive switching between several acts when 

embedded in a robot that has to ‘survive’ in a laboratory environment. A comparison between 

this brain-inspired selection mechanism and classical `winner-takes-all' selection highlights some 

adaptive properties specific to the model, such as avoidance of dithering and energy-saving. 

These properties derive, in part, from the capacity of simulated basal ganglia-thalamo-cortical 

loops to generate appropriate ‘behavioural persistence’.  
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1.Introduction 

 

Computer simulation is one approach to gain insight into the details of the understanding of 

biological mechanisms. It can be useful for predicting the activations of cells or biological 

circuits but, as far as behaviour is concerned, it cannot replace real world experiments in 

evaluating sensorimotor systems. Biorobotics is a recent field at the intersection of biology and 

robotics that designs the architectures of robots as models of specific biological mechanisms 

(Webb and Consi, 2001). The realization of these artificial systems can be used to evaluate and 

compare biological hypotheses, as well as to estimate the efficiency of biological mechanisms 

within a robot control setting.  

The objective of the current paper is to evaluate, on a robotic platform, the hypothesis that the 

vertebrate basal ganglia provide a possible neural substrate for action selection (Chevalier & 

Deniau, 1990; Mink, 1996). Action selection concerns the issue of solving conflicts between 

multiple sensorimotor systems so as to display relevant behavioural sequences. Several 

computational models of decision-making involving these neural structures have been 

investigated in a variety of simulation tasks, like trajectories control, multi-armed bandit or 

Wisconsin card sorting tasks (for reviews see Houk et al., 1995; Beiser et al., 1997; Prescott et al. 

1999; Redgrave et al., 1999, Gillies & Abruthnott, 2000), but few have been faced with the 

reality of a robotic device. An exception is the computational model of Gurney et al. (2001 a,b), 

which has been embedded in a Khepera robot (©Kteam) and used to simulate the behavioural 

sequences of a hungry rat placed in a novel environment (Montes Gonzalez et al. 2000). In the 

current paper, our objective is to test the same model with a more classical action selection task—

a 'two-resource' survival problem, which is well-known as the minimal scenario for evaluating 
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this kind of mechanism (Spier and McFarland, 1996). This investigation, which uses alternative 

robot platform (©Lego Mindstorms), requires the embedded basal ganglia model to select 

efficiently between several actions to allow the robot to ‘survive’ in an environment where it can 

find `ingesting places' and `digesting places'. A key requirement is that the control architecture 

should be sufficiently adaptive to generate a chaining of actions allowing it to remain as long as 

possible in its so-called viability zone (Ashby, 1952). This entails, at each time step, maintaining 

its essential state variables above minimal thresholds.  

--Insert Fig.1 about there -- 

As illustrated on Fig.(1), the basal ganglia (BG) is a group of interconnected sub-cortical nuclei. 

In the rat brain, the principle basal ganglia structures are the striatum, the globus pallidus (GP), 

the entopeduncular nucleus (EP), the subthalamic nucleus (STN), and the substantia nigra pars 

reticulata (SNr). The striatum receives somatotopic cortical input from the sensory, motor, and 

association areas. The major output structures are EP and SNr. They maintain a tonic inhibition 

on thalamic nuclei that project on the frontal cortex, in particular on motor areas. The internal 

connectivity of the BG has long been interpreted as a dual pathway (Albin et al., 1989), a direct 

pathway, consisting of inhibitory striatal efferents which projects to the EP/SNr, and a parallel 

excitatory indirect pathway, projecting to EP/SNr by way of GP and STN.  This interpretation 

has been shown to have several shortcomings, in particular, it fails to account for several 

anatomically important pathways within the BG and to accommodate recent clinical data.  

The model proposed by Gurney, Prescott and Redgrave (2001a,b) (henceforth the GPR model) 

reinterprets the basal ganglia anatomy as a set of neural mechanisms for selection in a new, dual-

pathway functional architecture. A selection pathway, including D1 striatum (i.e., striatal neurons 

with D1 dopamine synaptic receptors) and STN, operates through disinhibition of the output 
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nuclei (EP/SNr). A control pathway, involving D2 striatum (i.e., striatal neurons with D2 

dopamine synaptic receptors) and STN, modulates the selection process in the first pathway via 

innervations from GP. Moreover, Humphries and Gurney (2002) embedded the two circuits into a 

wider anatomical context that included a thalamo-cortical excitatory recurrent loop whereby the 

output of the basal ganglia can influence its own future input. 

 

The current work, which is an extension of previous experiments (Girard et al., 2002), will 

specifically investigate whether the GPR model implements more than a simple `winner-takes-all' 

(WTA) mechanism, a classical selection mechanism proposed long ago by engineers and 

ethologists (Atkinson & Birch, 1970). The WTA is based on selecting for execution the action 

that corresponds to the highest `motivation' (integration of internal and external factors), whilst 

inhibiting all competitors. Although the GPR model has a superficially similar property of 

selecting (albeit by disinhibition) the most highly motivated action, it is modulated by the effects 

of the control and feedback circuits, potentially resulting in different patterns of behavioural 

switching, compared to simple WTA. In particular, the GPR feedback loops can induce 

‘behavioural persistence’. The importance of persistence as an adaptive process for animals has 

long been recognised by ethologists (e.g. McFarland, 1971, Wiepkema, 1971) due to its 

functional role in allowing an activity to endure in spite of a rapid decrease in its drive. Some 

authors have also speculated about the possible mechanisms that could generate behavioural 

persistence such as positive feedback (Houston and Sumida, 1985) or reciprocal inhibition 

between multiple motivational systems (Ludlow, 1976; Blumberg, 1994). In the current paper we 

investigate the possibility, proposed by Redgrave et al. (1999), that basal ganglia-thalamocortical 

control loops may serve as a neural substrate for a behavioural persistence effect. A comparison 

of the two control architectures GPR and WTA, embedded in the same robot in the same 
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environment, should therefore demonstrate precisely if and how the GPR control circuits can 

bring benefits to the action selection process.  

 

Following a description of the GPR computational model, we will detail how this model was 

implemented within the control architecture of the Lego Mindstorms robot. The results obtained 

with the model will be presented and compared with those of a WTA, and these will be discussed 

from the perspective of biological plausibility.  

 

 

2.Method 

 

2.1. The GPR computational model 

 
The details of the computational model and its correspondence with the neural anatomy and 

electrophysiology have been fully described in Gurney et al. (2001a,b) and Humphries and 

Gurney (2002), therefore we will introduce here only its main characteristics. As shown in 

Fig.(2), the selection and control pathways will be designated for conciseness by BGI and BGII 

respectively and the thalamus part of the thalamo-cortical loop  will be designated as TH. 

--Insert Fig.2 about there – 
 
 
The GPR model is an artificial neural network made of leaky-integrator neurons which is the 

simplest neural model incorporating the notion of a dynamic membrane potential (Yamada et al., 

1989; Arbib, 1995). Each nucleus of the BG is modelled by a single layer of neurons, each 

neuron representing a segregated channel (Fig. 2), i.e. a distinct group of real neurons. 
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The inputs for the GPR model are speculative variables called ‘saliences' that represent the 

commitment toward displaying a given action. The saliences allow the representation of actions 

at the initial stage of the model in terms of a ‘common currency’ (McFarland & Sibly, 1975). 

Each action is associated with a given salience, which is supposed to be computed in the 

sensorimotor cortex as a weighted function of all the external information and internal needs 

relevant for this action. The values of the saliences are provided as inputs to STN, D1 and D2 

striatum through the segregated parallel channels. 

 

BGI circuit 

The BGI selection effect is mediated by two mechanisms. The first one concerns local recurrent 

inhibitory circuits within D1 striatum, which select a single winner salience – the highest one – 

and generate an output value proportional to that winner. This value is given as an inhibitory 

input to the corresponding channel into EP/SNr. The EP/SNr channels are tonically active and 

direct a continuous flow of inhibition at neural centres that generate the actions. When the signal 

emanating from D1 striatum inhibits a particular inhibitory channel in EP/SNr, it thereby 

removes the inhibition from the corresponding action.  

EP/SNr affords a second selection mechanism with an ‘off-centre on-surround’ feedforward 

network, in which the `on-surround' is supplied by a diffuse excitation of all channels from STN, 

and the `off-centre' by the inhibitory signal from D1 striatum. With such a mechanism, every 

channel inhibits its output –to remove the inhibition of the corresponding action - and excites its 

neighbours - to ensure its exclusive selection. This mechanism serves to reinforce the 

discrepancies between the winning EP/SNr channel value and all the others.  
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BGII circuit 

The properties of this selection pathway are modulated by control signals computed by the BGII 

circuit, in which an arrangement similar to BGI prevails: local recurrent inhibitory circuits within 

D2 striatum and an ‘off-centre on-surround’ feedforward network, in which the `on-surround' is 

supplied by a diffuse excitation of all the GP channels from STN, and the `off-centre' by the 

inhibitory signal from D2 striatum. Outputs from GP inhibit the EP/SNr and STN channels. The 

role of this control pathway appears to be three-fold.  

First, the output GP signal directed to EP/SNr enhances the selectivity under inter-channel 

competition. Second, the inhibition from GP to STN serves to automatically regulate STN 

activity allowing for effective selection irrespective of the number channels in the model. 

Without this mechanism, as the number of active channels is increased, the STN diffuse 

excitation will also increase, eventually shutting down all the output channels of the model. The 

negative feedback provided by GP is therefore just sufficient to automatically scale this excitation 

in such a way as to ensure appropriate selection. The third role of BGII concerns the dopamine 

effect: the concentration of dopamine enhances the transmission from cortex to striatum D1 and 

decreases the transmission from cortex to striatum D2. These modulations proceed synergistically 

to increase the inter-channel output activation interval.  

 

TH circuit 

In the thalamic excitatory recurrent loop (Humphries and Gurney, 2002), the thalamus (TH on 

Fig.(2)) is decomposed into the thalamic reticular nucleus (TRN) and the ventro-lateral thalamus 

(VL). Both structures have the same segregated channels as BGI and BGII.  This loop fulfils a 

positive feedback - from the BG outputs back to their inputs – which reinforces the salience of 

selected actions, thereby fostering persistence of their state of being selected.  
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The outputs of the whole model, provided by the EP/SNr channels, are disinhibitions assigned to 

each action. At this stage, there can be partial disinhibitions of the motor components associated 

to more than one channel. As a consequence, the behaviour eventually displayed can be a 

combination of several actions, by weighting each one according to its degree of disinhibition. 

This kind of selection is called ‘soft switching’, in contrast to ‘hard switching’ denoting the 

selection of a single action (Gurney et al., 2001a). 

 

 

2.2. The robot and its environment 

 

The environment is a 2m x 1.60m flat surface surrounded by walls (Fig.(3), left). It is covered by 

40cm x 40cm tiles of three different kinds: 16 uniformly grey tiles (neutral-grey representing 

`barren' locations), 2 tiles with a circular grey to black gradient (‘ingesting' locations, with 

inexhaustible resource), and 2 tiles with a circular grey to white gradient (‘digesting' locations).  

 
--Insert Fig.3 about there – 

 
 

Depending on the experimental settings, the robot has to select efficiently among the following 

actions:  

- ReloadOnDark (ROD):  the robot stops on a dark place in order to ‘ingest’ a virtual food (i.e., it 

reloads a ‘potential energy’ that it cannot consume). 

- ReloadOnBright (ROB):  the robot stops on a white place in order to ‘digest' the eaten food (i.e., 

it transforms its amount of potential energy into an amount of actual energy that it can consume). 
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- Wander(W): The robot wheels randomly in the environment (i.e., forward and turning acts of 

random duration).  

- AvoidObstacles (AO) : the robot achieves a backward movement followed by a  45°  rotation 

when one bumper is activated or a  180°  rotation when  both are.  

- Rest (R) : the robot stops for ‘resting’.  

- Grooming (G) : the robot stops and displays a ‘virtual grooming' (without moving any effector). 

 

External and internal variables contribute to the calculation of the saliences associated to these 

actions.  

External variables are provided by four sensors. The robot (Fig.(3), right) has two frontal light 

sensors, one behind the other, pointed to the ground. The mean of both values produced by these 

sensors is used to compute two variables, Brightness and Darkness (resp. LB and LD). The 

variable  LB (resp.  LD) is null for all colours darker (resp. brighter) than the neutral-grey, and 

increases linearly with brighter (resp. darker) colours, reaching 1 for the central white (resp. 

black) spots. Two bumpers, situated on the front-right and the front-left, produce each a binary 

value (resp.  BL and BR) set to 1 when the robot hits an obstacle on the left, or right respectively.  

The robot has a ‘virtual metabolism' based on the two internal variables: Potential Energy (EPot) 

and Energy (E). The procedure to reload Potential Energy is to display ReloadOnDark. The gain 

Delta EPot in EPot is proportional to the duration TIngest (in seconds) of the ingesting behaviour and 

to the Darkness of the ground. The parameter 7 determines the duration of a complete reload on a 

perfectly dark place (approx. 36s).  

  ∆ EPot  = 7* TIngest * LD        (1) 
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Then, the variable Potential Energy increases when the robot is on a dark place, but it decreases 

when it is converted into Energy. 

The procedure to transform Potential Energy into Energy is to display ReloadOnBright. The 

changes in Energy and Potential Energy are proportional to the assimilation duration TDigest and 

to the Brightness of the ground:   

  ∆ E = TDigest  (7* LB – 0.5 )          (2) 

  ∆ EPot = - 7*TDigest* LB          (3) 

When the variable Potential Energy is not null, the display of ReloadOnBright produces Energy. 

Otherwise, it consumes it at a rate of 0.5 units/s. The other actions consume Energy at a rate of 

0.5 units/s, with the exception of Rest, which consumes half less (0.25 units/s). 

Initially, Potential Energy and Energy take on values between 0 and 255. Then, these variables 

are normalized to lie between 0 and 1 before being used for salience computation (note that the 

Energy consumption rate is 2e-3 per second and the Rest consumption rate is 1e-3 per second 

after normalization). When E reaches zero, the robot `dies'.  

 

A third internal variable, Dirtiness, is used in only one experiment and has no effect on the 

metabolism. It increases at a rate of 1 unit/s and is lowered by the activation of the action 

Grooming at a rate of 4 units/s. 

 

2.3.Details of the GPR model implementation  

 

As mentioned before, the level of commitment toward displaying a given action is expressed by a 

specific salience value, which will be given as an input for a specific channel in BGI and BGII. 

For each action, the salience is computed as a function of the involved external variables (LB, LD, 
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BL or BR) and internal variables (EPot, E or Dirtiness), with the addition of the Persistence signal 

(P), coming from the positive feedback of the TH circuit, for the corresponding channel. Transfer 

functions are applied to the sensory inputs, in order to allow, for instance, salience dependencies 

on lack of energies (Table II). 

Because some salience values depend on a coupling between two variables, Sigma-Pi units - 

allowing non-linear combinations of inputs conveying interdependencies between variables 

(Feldman & Ballard, 1982) - were also added (examples in salience computations are given in 

Table II). For instance, in our setting, ReloadOnDark should be activated when Darkness and 

Potential Energy are low. Activating it on non-dark places or if Potential Energy is high just 

wastes Energy without any benefit. This situation can eventually lead to ‘death’, because the 

salience corresponding to this channel is reinforced by its feedback persistence and prevents other 

behaviour from taking control of the robot. The computation by Sigma-Pi units is more than an 

engineering solution, as Mel (1993) argues that the dendritic trees of neocortical pyramidal cells 

can compute complex functions of this type. Thus it is at least plausible to assume that second-

order functions of the relevant contextual variables could be extracted by the neurons in either the 

cortex or the striatum that compute action salience.   

 
--Insert Table I about there – 

 

Concerning the computation of all the channel values within BGI, BGII and TH, we used the 

same parameters - registered on Fig.(2) and Table II - as in Montes-Gonzalez’ work (2000), 

except that the dopamine concentration was kept constant. For the output computations, the 

modality proposed in the original GPR model was modified, for the sake of the comparison with 

a WTA mechanism. Initially, the outputs of all actions were combined, leading to a ‘soft 

switching’. However, a WTA mechanism allows for only one winner, a situation that can be 
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termed ‘hard switching'. In our experiments, the ‘soft switching' of the GPR output was disabled, 

in order to compare the selection of the winning act, and not the way this winning act is displayed 

after this selection. Accordingly, the motor output of the most fully disinhibited action was 

always enacted, and that of any partially disinhibited competitors always ignored.  

 

2.4. Hardware details  

 

The controller (The RCX) for the Lego Mindstorms robot has only 32 KB of memory, some of 

which being used by the LegOS operating system. This limited the computation available on-

board the robot to the sensory, metabolism and action sub-systems. A Linux-based PC performed 

all  the GPR model-specific computations, calculating and returning inhibitory output signals 

based on the sensory inputs received from the RCX. 

The RCX-PC communication occurred through the Lego Mindstorms standard IR transceivers at 

roughly 10 Hz. This low communication rate required that the GPR model be allowed to compute 

up to four cycles with the same sensory data in order to have the GPR model working at 

equilibrium. 

 

2.5. The experiments 

 

The GPR and the WTA architectures are embedded in the same robot. Both ‘GPR robot’ and 

‘WTA robot’ have to achieve the same task independently, in the same environment. The input 

saliences are computed alike for both conditions, with the exception of the persistence signal P 

which is only included in the GPR saliences (Table II). For all experiments, the parameters were 

`hand-tuned' in an attempt to find settings that were close to optimal.  
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As an output, the GPR robot will display at each time step the least inhibited action, and the 

WTA will display the action associated with the highest salience. If, in either architecture, there 

are multiple winning outputs, the action previously selected remains active.  

 

 
--Insert Table II about there – 

 

Experiment 1 compares both architectures with the smallest set of actions enabling 

survival (i.e., Wander, ReloadOnDark, ReloadOnBright and  AvoidObstacle), in order to 

determine their efficiency in selecting a chaining of actions for this minimal two-resource task. 

Two further experiments were also performed to explore the potential of the GPR architecture. 

Experiment 2 compares the capacity of both architectures to avoid the so-called ‘dithering 

effect’, a classical issue in action selection corresponding to a rapid oscillation between two acts 

(Minsky, 1986; McFarland, 1989; Tyrrell, 1993). For this purpose, a competing action, 

Grooming, is added to the behavioural repertoire used for Experiment 1. This action does not 

influence the robot’s metabolism, but its salience is weighted in order to enhance the competition 

between this action and a current winning act. 

Experiment 3 compares the capacity of both architectures to save energy, by having the 

opportunity to display a low-energy cost act, i.e., Rest. This action, added to the behavioural 

repertoire used in Experiment 1, can only be exhibited when the robot does not need either to 

reload Energy or Potential Energy, or to Wander. 

 

All these experiments are composed of a set of runs for each architecture. At the beginning of a 

run, Energy is set to 1 and Potential Energy to 0.5, which allows less than 9 minutes of survival 

without appropriate reloading behaviours. The robot operates as long as its Energy is above 0 and 
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its real batteries are loaded (up to 5 hours of continuous functioning). An action selection 

mechanism will be considered as successful if it is able to ensure at least 1 hour of survival per 

run. 

Data describing internal variables and active behaviours is recorded approximately 15 times per 

second. For each run, this data is used to compute the following value sets: 

⋅ Medians of Energy, Potential Energy and acts duration 

⋅ Frequencies of activation of each act 

⋅ Average amount of Potential Energy extracted per second from the inexhaustible resources. 

This value is computed by adding up the variations of Potential Energy during ROD 

activations and by dividing the result by the total duration of the run.  

For each experiment, all the value sets per run obtained for the GPR and WTA will be compared 

using the non-parametric U Mann-Whitney test.  

 

3. Results 

 

3.1. Experiment 1 (GPR: 9 runs; WTA: 10 runs) 

With both GPR and WTA architectures, the robot achieved efficient action selection. All runs 

were successful, as all of them lasted more than one hour. Both architectures clearly succeeded in 

keeping the robot’s essential variables within the viability zone. This first result prompted us to 

further analyze the structure of the behavioural sequences generated in the two conditions. 

Fig. (4) illustrates the way the WTA and the GPR perform action selection. Graphs (a) (b) and (c) 

show the input saliences, the inhibitory outputs (EP/SNr) of the GPR model and the 

corresponding behavioural sequence displayed by the GPR robot, graphs (d) and (e) show the 
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input salience and corresponding behavioural sequence displayed by the WTA robot. While the 

WTA directly selects the behaviour with the highest salience (Fig. (4d,e)), the GPR processes its 

input saliences (Fig. (4a)), increasing the contrast between the highest one and its competitors, 

and then selects it by disinhibition (Fig. 4(b)). For example, between time steps 1200 and 1400, 

both ReloadOnDark and Wander have high saliences but ReloadOnDark has the highest. 

However, ReloadOnDark is clearly disinhibited (inhibition close to 0), while Wander is as much 

inhibited as the other behaviours. 

 
--Insert Fig.4 about there – 

 
 
As shown in Table III, ROB, ROD and AO bouts generally last longer with the GPR architecture 

than with the WTA. This can be explained by effects of persistence, allowing an action to remain 

active for some time after its 'raw' salience has fallen below that of other actions. Although bouts 

of `ingesting’ and `digesting’ are shorter in the WTA condition, their frequencies are 

correspondingly higher. One may then ask whether these behavioural differences are reflected in 

the way the energies are collected. 

--Insert Tables III & IV about there – 
 

Table IV indicates that the higher frequencies of acts of the WTA robot serve to substantially 

compensate for their shorter durations, to the point that the medians of Potential Energy and 

Energy between both architectures end up having similar values. The histogram of Fig.(5), which 

depicts the percentages of overall time (on y-axis) during which Potential Energy is maintained 

at the levels shown on x-axis, also reveals a similarity in reloading, except for the last class: the 

GPR robot maintains EPot at over 95% of the maximum charge during 25% of time, compared to 

less than 13% for the WTA robot. This observation suggests that the GPR robot could reach this 
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‘state of comfort’ for a longer time than the WTA. However, it does not seem to take full 

advantage of this efficient reloading strategy, as both EPot medians are similar (Fig. (5) and Table 

IV). Since the transformation from EPot to E is dissipative (see Eq. (2) and (3)), the EPot extracted 

from the environment is just larger (2.2e-3) than the rate of Energy consumption. In this 

experiment, this value is similar for both systems, because all the available behaviours consume 

Energy at the same rates. 

 

 

--Insert Fig.5 about there – 
 

Experiment 1 has shown that both models can display relevant switching between actions, but 

with different survival strategies. The purpose of the following experiments is to explore some 

consequences of such behavioural discrepancies. 

 

3.2. Experiment 2 

 

The main differences between the behaviour of the GPR and WTA robots derive from the 

duration of their activity bouts. Specifically, in the GPR robot, the bout duration of a given action 

- due to the BGI selection - is extended by both the positive feedback of TH and the control of 

BGII. The persistence value computed by TH increases the winning salience, favouring the 

selection of the corresponding act for the forthcoming time steps. In parallel, the inhibitory 

signals coming from BGII to STN and EP/SNr decrease the global activation of the model. 

Without this control, a winning act could reinforce itself endlessly preventing itself from being 

deselected.  
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Figure (6) illustrates the persistence effect on an example involving ReloadOnDark. The salience 

of ReloadOnDark is proportional to the lack of Potential Energy, and while the robot reloads, its 

salience decreases. With the WTA architecture, the salience of ReloadOnDark is computed 

without persistence, thus another salience can easily interrupt this action before Potential Energy 

has been fully reloaded. In contrast, if correctly tuned, the GPR robot is able to completely 

reload, because the salience for ReloadOnDark is reinforced by the persistence signal which 

therefore increases the duration of the bout. 

--Insert Fig.6 about there – 
 

One of the advantages of having a persistence effect is to prevent ‘dithering’, that is, switching 

frequently between different actions. As mentioned before, avoiding this oscillation is an issue 

for most of the engineering-designed architectures for action selection. Dithering may be 

particularly deleterious where there are significant costs associated with unnecessary switching 

between one action and another. However, in other situations, frequent interruptions of a selected 

action may actually be appropriate. For example, if an animal eats in a dangerous area, it should 

break away from its meal on a regular basis to check for predators. As a consequence, an efficient 

action selection system should be able to control the level of behavioural persistence according to 

circumstances. The following will show that it is the case for the GPR architecture, not for the 

WTA one.  

In order to demonstrate the importance of appropriate persistence, the Grooming act was added to 

the previous behavioural repertoire of the robot. Note that this act has no effect on the robot’s 

metabolism, but that it can compete with other actions. For example, as shown on Fig.(7), a robot 

that is currently starved of EPot and has a high Dirtiness value may dither between displaying 
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ReloadOnDark or Grooming, when situated on a black tile (potential energy source). By 

appropriate tuning of the Persistence weights, the GPR robot can overcome this difficulty for 

both actions. Lacking this possibility, the WTA robot necessarily oscillates between these 

behaviours. As a consequence, the GPR robot can show persistence or rapid switching as 

required by circumstances.  The existence of the feedback loop - between the outputs and inputs 

of the BG, through the TH -  mainly accounts for the limitations of dithering. Additional effects, 

deriving from the intrinsic inertia of the leaky integrator neurons, and from the combination of 

lateral inhibitions and leaky integrator neurons in the striatum, enhance the inertia of the selection 

process.  

 
 

--Insert Fig.7 about there – 

 

3.3. Experiment 3 (GPR: 5 runs; WTA: 6 runs) 

 

Despite its lack of persistence, the WTA robot was able to survive during Experiment 1 by 

increasing the frequency of its reloading actions. However, the short duration of these bouts and 

the low percentage of time during which it is completely reloaded suggest that it spends less time 

than the GPR robot in a ‘comfort zone’ well away from the boundary of viability. The conditions 

of Experiment 1 did not allow the GPR robot to make use of this benefit. Indeed, when the GPR 

robot had both high Energy and Potential Energy levels, none of its four actions were relevant to 

its situation, however, it was nevertheless required to choose one. The addition of Rest – a low 

energy cost act – to the behavioural repertoire of the robots in Experiment 1 will test the 
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capability of both selection architectures to save energy when other actions are not particularly 

relevant, that is, when their saliences are close to zero.  

 

--Insert Tables V & VI about there – 

 

In this experiment, all runs for both robots were successful and lasted more than one hour. As in 

Experiment 1, both architectures clearly succeeded in keeping the robot’s essential variables 

within the viability zone.  

The results of Table V show that both robots activate Rest with a similar frequency per hour. 

However, as expected, the duration of a Rest bout is significantly longer for the GPR robot. As a 

consequence, it consumes less Energy than the WTA and needs to perform fewer reloading 

actions (Table V) than in Experiment 1, in which Rest was not available. In this situation, it can 

extract from the environment significantly less EPot than the WTA (Table VI). 

The more frequent reloading actions displayed by the WTA robot allow it to maintain a higher 

level of Energy, but the conjunction of more frequent conversions of EPot into E and incomplete 

reloads prevent it from reaching a higher level of Potential Energy (Fig. (8) and Table V). On the 

contrary, the GPR robot can maintain a high level because, on the one hand, it can take advantage 

of its ability to save Energy and, on the second hand, it can display more efficient reloading 

actions. Indeed, as illustrated by Fig.(8), the GPR is now able to maintain EPot at over 95% of the 

maximum charge during more than 45% of the time. 

 

--Insert Fig.8 about there – 
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4. Discussion 

 

Building on the work of Gurney et al. (2001, a & b) and Montes-Gonzalez et al. (2000), our 

objective was to evaluate the vertebrate basal ganglia as a possible neural substrate for action 

selection. We have shown that the model is able to generate adaptive switching between several 

acts when embedded in a robot that has to ‘survive’ in a real environment. The comparison with 

WTA served to highlight some adaptive properties specific to the GPR model, such as the 

avoidance of dithering and energy-saving that derives from its capacity to generate appropriate 

behavioural persistence. This property derives mainly from the positive feedback loop between 

the output and the input of the GPR, with some additional inertia caused by the  intrinsic dynamic 

of the leaky-integrator neurons.  Though it is possible to add persistence to the WTA architecture 

via a simple feedback loop - like TH loop in GPR -, a control mechanism - like BGII in GPR - is 

then mandatory to avoid overload.  

One adaptive effect of persistence is that it can maintain the robot internal variables at more 

comfortable levels, helping it to survive any temporary upset in the availability of resources 

(Experiments 1 and 3). Another effect is that it serves to avoid dithering, the main issue of most 

engineering architectures of action selection (Experiment 2). It also allows the GPR robot to save 

energy with a longer display of a low-cost act when other actions are not contextually relevant 

(Experiment 3). A final less intuitive adaptive effect is that persistence can `prime' the robot to 

anticipate forthcoming opportunities for action. For instance, due to the low communication 

frequency between the robot and the PC, we noticed that the WTA robot often stops after it has 

driven past the central brightest (or darkest) patch on the gradient tiles, whereas the GPR robot 

generally manages to stop closer to the patch centre. What happens is that the corresponding 

salience increases slightly as the GPR robot enters the brighter (or darker) area. Although this is 
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not enough, in itself, to prompt a change in the selected action, the positive feedback begins to 

build up the salience so that, when the robot eventually reaches the centre, it is able to select the 

appropriate action more rapidly. This increased responsiveness is possible because the brightness 

(or darkness) gradient serves to prime the appropriate action.  

This work lends additional weight to the proposal that the basal ganglia control loops 

implemented by the GPR model may serve as a neural substrate for the adaptive benefits of 

persistence. It also suggests some improvements to the model. In particular, as stated by 

physiologists and ethologists, we know that persistence varies accordingly to various contextual 

factors. For example, McFarland (1971) pointed out that the duration of feeding bouts in rats 

could be diversely triggered by the stimulation of oral or of gut receptors. In Le Magnen (1985) 

and Guillot (1988), the persistence effect on feeding and drinking bouts in rats was shown to 

depend on learning, diurnal and nocturnal conditions. According to McFarland and Lloyd (1973) 

and the 'time-sharing' hypothesis, an action may also show a 'hidden' persistence, even after its 

execution has been interrupted. For example, a 'dominant' act may be temporarily suspended to 

allow an alternative behaviour to be expressed, only later resuming its performance. In this case, 

the 'salience' of the dominant act persists even though the behaviour itself is deselected for a short 

while. 

In the GPR model, the duration of behavioural persistence could also be sensitive to contextual 

variables, since salience is a function of many factors of which positive feedback is only one.  

But the persistence weights - together with the salience weights –  are still tuned ‘by hand’ to suit 

different environmental situations. One way to improve the model is to consider biological 

hypotheses on learning in the basal ganglia that have already been implemented in various 

computational models (see Joel et al., 2002, for a review). The activation patterns of dopamine 

neurons within the striatum - e.g., shifting back from responding to a primary reward to a reward-
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predicting stimulus (Schultz, 1998) - has been shown to be very similar to that generated by 

machine learning algorithms, in particular Temporal Difference (TD) models (Barto, 1995). 

These models distinguish an ‘actor’, which learns to display actions so as to maximize the 

weighted sum of future rewards, and a ‘critic’, which computes this sum on line. The GPR model 

can be assimilated to an ‘actor’ – with details usually neglected by the preceding models –, to 

which a critic should be added to exhibit efficient learning capabilities. Although, according to 

Pennartz et al. (2000) and Joel et al. (2002), TD learning inspired models of the basal ganglia are 

built on suppositions that are incompatible with observed features in the basal ganglia anatomy 

and physiology, some of them have succeeded in closely simulating the observed activations of 

striatal neurons in conditioning responses (e.g., Contreras-Vidal & Schultz, 1999). Accordingly, 

these models - or their alternative (e.g., Pennartz, 1997) - can be a future support for inclusion of 

learning processes in the GPR control architecture.  

This robotic embodiment is part of an ongoing, multi-partner project which aims to synthesize 

Psikharpax, an `artificial rat', in which such biomimetic mechanisms for action selection will be 

combined with biomimetic mechanisms for navigation (Filliat and Meyer, 2002), both inspired 

by existing structures in the rat brain. For that purpose, the current model will be further refined 

to match the particular characteristics of the ventral striatum (nucleus accumbens) in order to 

investigate its role in integrating spatial, sensorimotor and motivational information 

(Groenewegen et al., 1999; Albertin et al., 2000; Cardinal et al., 2002). Preliminary results are to 

be found in Girard (2003). 
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Abbreviations 

AO AvoidObstacle action 

BG basal ganglia 

BGI ‘selection part’ of the GPR 

BGII ‘control part’ of the GPR 

BL left bumper sensor value 

BR right bumper sensor value 

D1 striatal neurons containing D1 dopamine receptors 

D2 striatal neurons containing D2 dopamine receptors 

E energy 

EPot potential energy 

EP entopeduncular nucleus 

G Grooming action 

GP globus pallidus 

GPR Gurney, Prescott and Redgrave model of basal ganglia 

LB brightness sensor value 

LD darkness sensor value 

P persistence 

R Rest action 
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ROB ReloadOnBright action 

ROD ReloadOnDark action 

SNr substantia nigra pars reticulata 

STN sub-thalamic nucleus 

TDigest duration of ROB action 

TH ‘thalamic part’ of the GPR 

TIngest duration of ROD action 

TRN thalamic reticular nucleus 

VL ventro-lateral thalamus 

W Wander action 

WTA winner-takes-all action selection mechanism 
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Table I. Weight parameters for the GPR model  

Module   Threshold        Slope 
D1 striatum 0.2 0.35
D2 striatum 0.2 0.35
STN -0.25 0.35
GP -0.2 1
EP/SNr -0.2 1
Persistence 0 1
TRN 0 0.5
VL -0.8 0.62
 
Neurons parameters 

Time constant (time step-1) K = 3.75 s-1 

Lambda (Dopamine concentration) = 0.2 
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Table II. Salience calculations. The transfert functions Rev(x) and Circ(x) stand respectively for 
(1-x) and the square root of (1-x²). 
 
 
Actions Saliences calculations 

WTA – BL – BR + 0.5 × Rev(EPot) + 0.7 × Rev(E)  Wander 
GPR – BL – BR + 0.8 × Rev(EPot) + 0.9 × Rev(E)  
WTA 3 BL + 3 BR AvoidObstacle 
GPR 2 BL + 2 BR + 0.5 PAO 
WTA –2 LB – BL – BR + 3 LD × Rev(EPot) ReloadOnDark 
GPR –2 LB – BL – BR + 3 LD × Rev(EPot) + 0.4 PROD 
WTA –2 LD – BL – BR + 3 LB × Circ(Rev(EPot)) × Rev(E) ReloadOnBright 
GPR –2 LD – BL – BR + 3 LB × Circ(Rev(EPot)) × Rev(E) + 0.5 PROB 
WTA – BL – BR + 0.1 Rest 

GPR – BL – BR + 0.6 PR 
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Table III.  Experiment 1. Comparison (U Mann-Whitney test) between the GPR and WTA robots 
of all runs cumulated. Top: Act durations (recorded in time steps, approx. 15 per second). 
Bottom: Frequency of activations of each act per hour.  
 
 
Duration W ROD ROB AO 
GPR 

M 50 253 212 34 
range 46 : 52 133.5 : 356 145 : 268 31 : 38 

WTA 
M 46 141 139 20 

range 40 : 48 98 : 246 112 : 152 20 : 20 
U =  24 8 3 3 

 p> 0.05 p< 0.01 p< 0.01 p< 0.01 
 
     
Frequency W ROD ROB AO 
GPR  
M 272.52 28.79 49.98 233.05 
range 259.12 : 294.12 26.57 : 45.58 40.78 : 59.08 220.13 : 257.68 
WTA  
M 433.79 40.58 51.96 331.42 
range 393.37 : 470.97 24.71 : 49.17 48.29 : 61.42 295.20 : 403.69 

U =  0 18 20 0 
 p<0.01 p<0.05 p<0.05 p<0.01 
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Table IV.  Experiment 1. Comparison (U Mann-Whitney test) between the GPR and WTA robots 
of the medians of Energy (E), of Potential Energy (EPot), and of Potential Energy extracted (EPot 
extr.) per run.  
 
 E EPot EPot extr. (10-3) 
GPR        M 0.78 0.75 2.3 

range 0.68 : 0.81 0.65 : 0.86 2.4 : 2.2 
WTA       M 0.77 0.77 2.2 

range 0.72 : 0.81 0.71 : 0.83 2.0 : 2.6 
U =  26 43 27 

 p> 0.05 p> 0.05 p> 0.05 
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Table V. Experiment 3.  Comparison (U Mann-Whitney test) between the GPR and WTA robots 
of all runs cumulated. Top: Act durations (recorded in time steps, approx. 15 per second). 
Bottom: Frequency of activations of each act per hour.  
 
 
Duration W ROD ROB AO R 
GPR       M 52,5 302 294 34 1728 

range 49 : 56 233,5 : 348 233 : 308 33 : 35 1445 : 2116,5 
WTA      M 48 161 150 20 485 

range 48 : 49 132 : 192 120 : 168 20 : 24 340 : 568 
U =  1 0 0 2 0 

 p< 0.01 p< 0.01 p< 0.01 p< 0.05 p< 0.01 
 
      
Frequency W ROD ROB AO R 
GPR       M 195.35 27.20 44.99 143.64 10.06 

range 182.42 : 239.65 16.01 : 32.30 29.61 : 56.94 137.52 : 175.58 9.29 : 12.74 
WTA      M 427.22 52.12 74.22 306.40 8.75 

range 408.67 : 436.53 45.05 : 61.47 57.19 : 81.97 301.41 : 313.96 4.71 : 9.62 
U =  0 0 0 0 13 

 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p> 0.05 
 



38 

Table VI.  Experiment 3. Comparison (U Mann-Whitney test) between the GPR and WTA robots 
of the medians of Energy (E), of Potential Energy (EPot), and of Potential Energy extracted (EPot 
extr.) per run.  
 
 
 E EPot EPot extr. (10-3) 
GPR       M 0.8 0.81 1.8 

range 0.788 : 0.816 0.796 : 0.855 1.7 : 1.9 
WTA      M 0.78 0.937 2.2 

range 0.757 : 0.792 0.875 : 0.973 2.1 : 2.2 
U =  1 0 0 

 p< 0.01 p< 0.01 p< 0.01 
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Figure captions 

 

Figure 1. Basal ganglia (grey areas) in the rat brain (Striatum; GP: Pallidum; EP entopeduncular 
nucleus; STN: subthalamic nucleus; SNr: substantia nigra reticulata). Full arrows: excitatory 
connections; Empty arrows: inhibitory connections. 
 
Figure 2. The GPR model (see text for details). BGI: Selection circuit; BGII: Control of selection 
circuit; TH: Thalamus circuit in the thalamic excitatory recurrent loop. Segregated channels 
(leaky integrator neurons) are represented in all modules by open circles (here only 3 channels 
are illustrated). Weight parameters are shown next to their respective pathways. Full arrows: 
excitatory connections; Empty arrows: inhibitory connections. 
 
Figure 3.  
Left: The environment showing `ingesting zone' (A) and `digesting zone' (B) locations.   
Right: the Lego Mindstorms robot. (A): the light sensors; (B): the bumpers. 
 
Figure 4.  
Left: (a) Input saliences, (b) output EP/SNr signals and (c) the corresponding behavioural 
sequence generated by the GPR model. Note that the outputs of the GPR are inhibitions and that 
the less inhibited behaviour is selected. 

Right:(d) Input saliences (similar to output signals) and (e) the corresponding behavioural 
sequence generated by a WTA. The abscissa shows the number of cycles where 1450 cycles 
correspond to 100 sec.  

 
Figure 5. Percentages of overall time (on y-axis) during which Potential Energy is reloaded at 
the levels shown on x-axis (the maximum charge is 1). GPR: white; WTA: black (all runs 
cumulated). 
 
Figure 6.  Effect of persistence in GPR. From top to bottom:  
`Raw' salience (i.e. without persistence) of ReloadOnDark; Output EP/SNr signals; the 
corresponding behavioural sequence generated by the GPR robot: (A) points where the switch 
would happen without persistence, (B) points where the switch actually takes place. On x-axis:  
number of computation cycles (250 cycles correspond to approx. 17 sec).  
Note that the outputs of the GPR are inhibitions and that the less inhibited behaviour is selected. 

 
Figure 7. Control of dithering: with a GPR architecture (left) it is possible to control the 
oscillation length by adjusting the persistence parameters, while a WTA (right) necessarily 
dithers between acts. (a) and (d) relevant internal and external input variables, (b) output 
inhibitions of the GPR, (e) saliences of the WTA, (c) and (f) selected behaviour. 
 
Figure 8.  Percentages of overall time (on y-axis) during which Potential Energy is reloaded at 
the levels shown on x-axis (the maximum charge is 1). GPR: white and WTA: black (all runs 
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cumulated). The GPR robot maintains its Potential Energy at over 95% of the maximum charge 
during 45% of time (vs 25% in Experiment 1). 
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Fig.2 

  

 

STN

D2 Striatum

Persistence

GP
BG II

BG I

D1 Striatum
EP/SNr

VL

TRN

Dopamine

TH

Dopamine

−0.13−0.13
1

−1

1

1

1

1.2

0.8

−1

−1
−1

−1

−0.4

−0.25

1

1

1

Selected
Behaviour

Saliences
External
Variables

Internal
Variables

 



43 

 

Fig.3 
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Fig.4 
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Fig.5 
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Fig.6 
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Fig.7 
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Fig.8 
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