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Since 1995, numerous Actor-Critic architectures for reggorent learning have been proposed as models of
dopamine-like reinforcement learning mechanisms in the t@sal ganglia. However, these models were
usually tested in different tasks, and it is then clifti to compare their efficiency for an autonomousreati

We present here the comparison of four architectures in antaadnitgperforms the same reward-seeking task.
This will illustrate the consequences of different hypothebesitathe management of different Actor sub-
modules and Critic units, and their more or less autonomaletermined coordination. We show that the
classical method of coordination of modules by mixture of ggpdepending on each module's performance,
did not allow solving the task. Then we address the questiohiohygrinciple should be applied to efficiently
combine these units. Improvements for Critic modeling andracyg of Actor-critic models for a natural task
are finally discussed in the perspective of our Psikhangpaject — an artificial rat having to survive
autonomously in unpredictable environments.

Keywords animat approach - TD learning - Actor-Critic model - SaBkt- taxon navigation
1. Introduction

This work aims at adding learning capabilities in the &echire of action selection introduced by Giratrdl.

in this issue. This architecture will be implementedhia artificial rat Psikharpax, a robot that will exhiat
least some of the capacities of autonomy and adaptationithaicterizats natural counterpart (Filliagt al.,
2004). This learning process capitalizes on Actor-Critibigectures, which have been proposed as models of
dopamine-like reinforcement learning mechanisms in this kmsal ganglia (Houlket al., 1995). In such
models, an Actor network learns to select actions inrdalenaximize the weighted sum of future rewards, as
computed on line by another network, a Critic. The Critic ptedhis sum by comparing its estimation of the
reward with the actual one by means of a Temporal Differ€fD) learning rule, in which the error between
two successive predictions is used to update the synaptbteéSutton and Barto, 1998). A recent review of
numerous computational models, built on this principle since 18ig8lighted several issues raised by the
inconsistency of the detailed implementation of Actor anticCmodules with known basal ganglia anatomy
and physiology (Joedt al., 2002). In the first section of this paper, we will ddes some of the main issues,
updated with anatomical and neurophysiological knowledge. dnstttond section, we will illustrate the
consequences of alternative hypotheses concerning the vagtars@kitic designs by comparing animats that
perform the same classical instrumental learning (8sR)t During the test, the animat freely moves in a plus-
maze with a reward placed at the end of one arm. Thardesite is chosen randomly at the beginning of each



trial and it refers to site-specific local stimulihe animat has to autonomously learn to associate consnu
sensory information with certain values of reward andeiect sequences of behaviors that enable it to reach
the goal from any place in the maze. This experiment i€ mealistic than others used to validate Actor-Critic
models, often characterized by an a priori fixed tempgatarval between a stimulus and a reward (e.g., Suri
and Schultz, 1998), by an unchanged reward location ovés (gay., Strosslin, 2004), or by a discrete state
space (e.g., Baldassarre, 2002).

We will compare, in this task, four different principlenspired by Actor-Critic models trying to tackle the
issues evocated in the first section. The first one isémeinal model proposed by Hoakal. (1995), which
uses one Actor and a single prediction ukibdel AC — one Actor, one Critic), which is supposed to induce
learning in the whole environment. The second principle imphésnene Actor with several Critigd/lodel
AMCL1 - one Actor, Multiple Critics). The Critics are combir®da mixture of experts where a gating network
is used to decide which expert — which Critic — isduseeach region of the environment, depending on its
performance in that region. The principle of mixture of expertinspired from several existing models
(Jacobset al., 1991; Baldassarre, 2002; Dostaal., 2002). The third one is inspired by Suri and Schultz (2001)
and uses also one Actor with several Critic experts. Mewehe decision of which expert should work in each
sub-zone of the environment is independent from the experts’ penfioas, but rather depends on a partition
of the sensory space perceived by the animtidél AMC2 — one Actor, Multiple Critics). The fourth one
(Model MAMC2 — Multiple Actors, Multiple Critics) proposes the samgngiple as the previous Critic,
combined with several Actors, which latter principle is afighe features of Doyat al.'s model (2002),
particularly designed for continuous tasks, and is also arteaf Baldassarre’s model (2002). Here we will
implement these principles in four models using the sarmsigriéor each Actor component. Their comparison
will be made on the learning speed and on their abilityextend learning to the whole experimental
environment.

The last section of the paper will discuss the resultshenbasis of acquired knowledge in reinforcement
learning tasks in artificial and natural rodents
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Figure 1 Schematic illustration of the correspondence betweemtdular organization of the basal ganglia including
both striosomes and matrix modules and the Actor-Caitihitecture in the model proposed by Houk et al, (1985).
columns in the frontal cortex; C, other cortical columnBs,Sspiny neurons striosomal compartments of the striatum;
SPm, spiny neurons in matrix modules; ST, subthalamicosigelDA, dopamine neurons in the substantia nigra pars
compacta; PD, pallidal neurons; T, thalamic neurons. (adapted frokngtail, 1995).



2. Actor-Critic designs: the issues

The two main principles of Actor-Critic models that leadcconsider them as a good representation of the role
of the basal ganglia in reinforcement learning of motor Wiehs are (i): the implementation of a Temporal
Difference (TD) learning rule which leads to translategpessively reinforcement signals from the time of
reward occurrence to environmental contexts that precedewrsd.; (ii): the separation of the model in two
distinct parts, one for the selection of motor behaviocidias) depending on the current sensory inputs (the
Actor), and the other for the driving of the learning proceaslepamine signals (the Critic).

Schultz’s work on the electrophysiology of dopamine neuronsaonkeys showed that dopamine patterns of
release are similar to the TD learning rule (see Schi®@8 for a review). Besides, the basal ganglia are a
major input to dopamine neurons, and are also a privilegegbtt of reinforcement signals sent by these
neurons (Gerferet al., 1987). Moreover, the basal ganglia appears to be condtitditéwo distinct sub-
systems, related to two different parts of the striatuthe major input nucleus of the basal ganglia —, one
projecting to motor areas in the thalamus, the other pnogetd dopamine neurons, influencing the firing
patterns of these neurons at least to some extent (Joel&ndi\2000).

These properties lead the first Actor-Critic modeltloé basal ganglia to propose the matrisomes of the
striatum to constitute the Actor, and the striosomethisfvery structure to be the Critic (Hoekal., 1995,
figure 1). The classical segregation of ‘direct’ and itiedt’ pathways from the striatum to the dopaminergic
system (SNc, substantia nigra pars compacta, and VTAavéagmental area; Albiat al., 1989) was used in
the model to explain the timing characteristics of dopamagons’ discharges.

Numerous models were proposed to improve and complete the madelkEt al. However, most of these
computational models have neurobiological inconsistencies lanks concerning recent anatomical
hypotheses on the basal ganglia (&bel., 2002).

An important drawback is that the Actor part of these modelsften simplistic compared to the known
anatomy of the basal ganglia and does not take into acdéoydrtant anatomical and physiological
characteristics of the striatum. For example, recenksva@howed a distinction between neurons in the
striatum having different dopamine receptors (D1-receptor®receptors; Aizmaret al., 2000). This
implies at least two different pathways in the Actam, which tonic dopamine has opposite effects, going
beyond the classical functional segregation of ‘direct’ andirect’ pathways in the striatum (Gurneyal.,
2001).

Likewise, some constraints deriving from striatal anataestrict the possible architectures for the Critic
network. In particular, the striatum is constitutedoly one layer of medium spiny neurons — completed with
5% of interneurons (Houkt al., 1995). As a consequence, Critic models cannot be condtibfiteomplex
multilayer networks for reward prediction computatiomisTanatomical constraint lead several authors to
model the Critic as a single-neuron (Haalal., 1995; Montaguet al., 1996), which works well in relatively
simple tasks. For more complicated tasks, severaletaaassign one single Critic neuron to each subpart of
the task. These models differ in the computational mechans&d to coordinate these neurons. Baldassarre
(2002) and Doya et al. (2002) propose to coordinate Criadubes with a mixture of experts method: the
module that has the best performance at a certaindimeag the task becomes expert in the learning process
of this subpart of the task. Another model proposes antafifec of experts to subparts of the task (such as



stimuli or events) in an a priori manner, independently fraeheexpert's performance (Suri and Schultz,
2001). It remains to assess the efficiency of each prinagléhey have been at work in heterogeneous tasks
(e.g. Wisconsin Card Sorting Test, Discrete Navigation Tasktrumental Conditioning).

These models also question the functional segregation ofafa anglia in ‘direct’ and ‘indirect’ pathways
(see Joekt al., 2002 for a review). These objections are built on elebirsiplogical data (for review see
Bunneyet al., 1991) and anatomical data (Joel and Weiner, 2000) which staivthiese two pathways are
unable to produce the temporal dynamics necessary to explaimidepaeurons patterns of discharge. These
findings lead to question the localization of the Criticthe striosomes of the dorsal striatum, and several
models capitalized on its implementation in the ventratsin (Brownet al., 1999; Daw, 2003). These works
are supported by recent fMRI data in humans, showing a funattdissociation between dorsal striatum as the
Actor and ventral striatum as the Critic (O’Doheetyal., 2004), but they may be controversial for the rat, as
electrophysiological data (Thierrst al., 2000) showed that an important part of the ventral sinafie
nucleus accumbens core) does not project extensively to the ibepsyatem in the rat brain.

We can conclude that the precise implementation of the Ceiti@ins an open question, if one takes also into
account a recent model assuming that a new functionalaisth of striosomes in the dorsal striatum — based
on differential projections to GABA-A and GABA-B receptars dopamine neurons — can explain the
temporal dynamics expected (Fraatkal., 2001).

Besides these neurobiological inconsistencies, some congmalatequirements on which numerous Actor-
Critic models have focused seem unnecessary for aahatuvard-seeking task. For example, as Heiuk.'s
model could not account for temporal characteristics of dopaméueons firing patterns, most of the
alternative models focused on the simulation of the depressi@opamine at the precise time where the
reward is expected when it eventually does not occur.tii® purpose, they concentrated on the
implementation of a temporal component for stimulus descriptiovhich is computed outside of the model
and is sent as an input to the model via cortical prgjest(Montaguet al., 1996; Schultzt al., 1997). These
models were tested in the same tasks chosen by Sabwdtz (1993) to record dopamine neurons in the
monkey, using a fixed temporal bin between a stimulus aredvard. However, in natural situations where a
rodent needs to find food or any other type of reward, teahpbiaracteristics of the task are rarely fixed but
rather depend on the animal’s behavior and on the environnofat'gyes/evolution.

i pilote.

Quit

Run

Figure 2 Left: the robot in the plus maze environment. A white armeexity indicates the reward location. Other arm
extremities do not deliver any reward and are shown in bldpker right: the robot’s visual perceptions. Lower right:
activation level of different channels in the model.



3. Method

The objective of this work is to evaluate the efficiencythaf main principles on which current Actor-Critic

models inspired by the basal ganglia are designed, whenatieeymplemented in the same autonomous

artificial system. The main addressed issues are:

* The implementation of a detailed Actor, whose structuoellev be closer to the anatomy of the dorsal
striatum, assessing whether reinforcement learninijlip@ssible within this architecture.

* The comparison of the function of one Critic unit, versus sg\aternative ways to coordinate different
Critic modules for solving a complex task where a simglaron is not enough.

e The test of the models in a natural task involving taxon ntigigavhere events are not predetermined by
fixed temporal bins. Instead, the animat perceives a consnseunsory flow during its movements, and
has to reactively switch its actions so as to reasward.

3.1. The smulated environment and task

Figure 2 shows the experimental setup simulated, corgistia simple 2D plus-maze. The dimensions are
equivalent to a 5m * 5m environment with 1m large corridors.his environment, walls are made of
segments colored on a 256 grayscale. The effects of ligbtinditions are not simulated. Every wall of the
maze is colored in black (luminance = 0), except watlthe end of each arm and at the center of the maze,
which are represented by specific colors: the catghe center is gray (191), three of the arm extresiiti
walls are dark gray (127) and the fourth is white (255), insligathe reward location (equivalent to a water
trough delivering two drops — non instantaneous rewardt a priori known by the animat).

The plus-maze task mimicks the neurobiological and behawtudies that will serve as future validation for
the model (Albertiret al., 2000). In this task, at the beginning of each trial, ane extremity is randomly
chosen to deliver reward. The associated wall is colaredhite whereas walls at the three other extremities
are dark gray. The animat has to learn that selectingdii@ndrinking when it is near the white wall (distance
< 30 cm) and faces it (angle < 45 degrees) gives it ardewkere we assume that reward = 1 for n iterations (n
= 2), without considering how the hedonic value of thisameWws determined.

We expect the animat to learn a sequence of context-gpbelfiaviors, so that it can reach the reward site
from any starting point in the maze:

* When not seeing the white wall, face the center of the madenove forward.

« As soon as arriving at the center (the animat canhse@hite wall), turn to the white stimulus.

« Move forward until being close enough to reward location.

» Drink.

The trial ends when reward is consumed: the color of thleatviaeward location is changed to dark gray, and a
new arm extremity is chosen randomly to deliver rewatte animat has then to perform again the learned
behavioral sequence. Note that there is no break betweertdmsecutive trials: trials follow each other
successively.



The more efficiently and fluently the animat performs @heve described behavioral sequence, the less time
it will take to reach the reward. As a consequencectiterion chosen to validate the models is the time to
goal, plotted along the experiment as the learning curve ohtigel.

3.2. The animat

The animat is represented by a circle (30 cm diamdterjranslation and rotation speeds are 40 ¢rarsl

10°.s% Its simulated sensors are:

* An omnidirectional linear camera providing every 10° the colothe nearest perceived segment. This
results in a 36 colors table that constitute the animatisal perception (see figure 2),

« Eight sonars with a 5m range, an incertitude of +5 degomancerning the pointed direction and an
additional £10 cm measurement error,

The sonars are used by a low level obstacle avoidanex reflich overrides any decision taken by the Actor-
Critic model when the animat comes too close to obstacles

The animat is provided with a visual system that compL@sput variable: (Vi€[1; 12],0<Vari<1 )

out of the 36 colors table at each time step. These sewuadaples constitute the state space of the Actor-

Critic and so will be taken as input to both the Actor dedGritic parts of the model (figure 3). Variables are

computed as following:

* seeWhite(resp.seeGray, seeDarkGray) = 1 if the color table contains the value 255 (resp. 197), else
0.

e angleWhite, angleGray, angleDarkGray = (number of boxes in the color table between the animat’'s head
direction and the desired color) / 18.

* distanceWnite,distanceGray, distanceDarkGray = (maximum number of consecutive boxes in the color
table containing the desired color) / 18.

e nearWhite (resp.nearGray, nearDarkGray) = 1 —distanceWhite (resp.distanceGray, distanceDarkGray).

Representing the environment with such continuous variablesnpiy for the model to permanently receive
a flow of sensory information and having to learn automasty the events (sensory contexts) that can be
relevant for the task resolution.

The animat has a repertoire of 6 actiodsnking, moving forward, turning to white perception, turning to

gray perception, turning to dark gray perception, andwaiting. These actions constitute the output of the Actor
model (described below) and the input to a low-level modsl tfanslates it into appropriate orders to the
animat’s engines.

3.3. Themodel: description of the Actor part

The Actor-Critic model is inspired by the rat basal gangha mentioned in section 2, the Actor can be
hypothesized as implemented in the matrix part of the lgasajlia, while striosomes in the dorsal striatum
are considered as the anatomical counterpart for thie.Crhe Critic produces dopamine-like reinforcement



signals that help it learn to predict reward during tidisk, and that make the Actor learn to select appropriate
behaviors in every sensory context experienced duringte t

The architecture implemented in the Actor is a recenteinpdoposed by Gurney, Prescott and Redgrave
(20014a,b) — henceforth called GPR model - that replheesimple winner-takes-all which usually constitutes
Actor models and is supposed to be more biologically plausible.

Like other Actors, the GPR is constituted of a seriepanéllel channels, each one representing an action (in
our implementation, we used 6 channels corresponding to #ttidhs used for the task). This architecture
constitutes an alternative view to the prevailing functi@egregation of the basal ganglia into ‘direct’ and
‘indirect’ pathways discussed in section 1 (Gurmkyal., 2001). All these channels are composed by two
different circuits through dorsal striatum: the first lie tselection’ pathway, implementing action selection
properly via a feed-forward off-center on-surround networkl, rmediated by cells in the dorsal striatum with
D1-type receptors. The second is the ‘control’ pathwagdiated by cells with D2-type receptors in the same
area. Its role is to regulate the selection by enhanbigeélectivity inter-channels, and to control the global
activity within the Actor. Moreover, a cortex-basal gangfialamus loop in the model allows it to take into
account each channel’s persistence in the process ofigelésee Gurnewgt al., 2001, for detailed description
and mathematical implementation of the model). The latiaracteristic showed some interesting properties
that prevented a robot from performing behavioral oswmltat (Montes-Gonzaleet al., 2000; Girardet al.,
2003).

In our implementation, the input values of the Actor modelsaliences — i.e. the strength of a given action —
that are computed out of the 12 sensory variables, a constaletienting a bias, and a persistence factor —
equal to 1 for the action that was selected at previoust@pdfigure 3). At each timestep t (timesteps being
separated by a 1 sec bin in our simulations), the actiom#sathe highest salience is selected to be performed
by the animat, the salience of action i being:

13
sali(t)z Zvarj(t)wl,yj(t) +persisti(t)~wi’14(t) 1)
-1

where varl3(t):1, Yt and the Wi,j(t) are the synaptic weights representing, for each adtidhe

association  strength  with  input variablej. These weights are initiated randomly

(Vij,—0.02 <Wl.,j(f=0 )<0 .02) and the objective of the learning process will be to fisetaof weights

allowing the animat to perform the task efficiently.

An exploration function is added that would allow the aniioatry an action in a given context even if the

weights of the Actor do not give a sufficient tendency togrerfthis action in the considered context.

To do so, we introduce a clock that triggers exploratiotwo different cases:

* When the animat has been stuck for a large number oftéps@me superior to a fixed thresholx) in a
situation that is evaluated negative by the model (wherptédictionP(t) of reward computed by the
Critic is inferior to a fixed threshold).

* When the animat has remained for a long time in a siuathereP(t) is high but this prediction doesn’t
increase that muchR(t+n) — P(t)| <€) and no reward occurs.

If one of these two conditions is true, exploration is trigde one of the 6 actions is chosen randomly. Its

salience is being set to 1 (Note that: when exploratioralse sal (t)<1, Vi’t’wi,j<t)) and is being



maintained to 1 for a duration of 15 timesteps (time reggsfor the animat to make a 180 turn or to run
from the center of the maze until the end of one arm).

3.4.The model: description of the Critic part

For the Critic part of the model, different principles basedexisting techniques are tested. The idea is to test
the hypothesis of one single Critic unit first, but atsoprovide the Critic with enough computational
capacities so that it can correctly estimate the vialoetion over the whole environment of the task. In other
words, the Critic will have to deal with several diffat sensory contexts — corridors, maze center, extremity
of arms, etc. equivalent to different stimuli —, and \wilve to associate a correct reward prediction to these
contexts.
One obvious possibility would be a multilayer perceptrothweveral hidden layers but, as mentioned before
in section 2, there are anatomical constraints whichegmteus from adopting this choice: our Critic is
supposed to be situated in the striosomes of dorsal striathith structure is constituted of only one layer of
medium spiny neurons (Howk al., 1995). Thus we need a more general method that combinealgeridc
modules, each one being constituted of a single neuron atlidgieith a particular part of the problem space.
The method adopted here is the mixture of experts, whichpwasosed to divide a non-linearly separable
problem into a set of linearly separable problems, andfextah different expert to each considered sub-
problem (Jacobet al., 1991).
The Critics tested in this work differ mainly in twdlfawing manners:
* The first Model AMC1) implements a mixture of experts in which a gating netwsrksed to decide
which expert is used in each region.
¢ The secondMlodd AMC2) implements a mixture of experts in which a hand-detexch partition of the
environment based on a categorization of visual perceptiarsedto decide which expert works in each
sub-zone.
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Figure 3 General scheme of the models tested in this work. The Actor isip gfdGPR modules with saliences as inputs
and actions as outputs. The Critic (involving striosomebkéndorsal striatum, and the substantia nigra compacta (SNc



propagates towards the Actor an estimate of the istaaus reinforcement triggered by the selected acfitve
particularity of this scheme is to combine several moduledbdtn Actor and Critic, and to weight the Critic expér
predictions and the Actor modules’ decisions with creidiibdl. These credibilities can be either computed lgating
network (Model AMC1) or in a context-dependent mannkioflels AMC2 and MAMC?2).

Moreover, since the animat has to solve a task in aomis state space, there could be interferences between
reinforcement signals sent by different Critic expertdieosame single Actor. In this way, whereas one model
will employ only one Actor Model AMC2), another one will use one Actor module associated to eqoért
(Model MAMC2). Figure 3 shows the general scheme with different nesdeimployed as suggested by the
models presented here.

Performances oflodels AMC1, AMC2 and MAMC2 will be compared, together with the one of the seminal
Actor-Critic model inspired by the basal ganglia, proposed bykHAdams and Barto (1995), and using a
single cell Critic with a single ActoModel AC).

We will start by the description of the simplest Critize one belonging telodel AC.

3.4.1. Model AC

In this model, at each timestep, the Critic is a sifigiear cell that computes a prediction of reward based on
the same input variables than the Actor, except the persistamiable:

Pll=3 var 1w @

where W'j(f) are the synaptic weights of the Critic.
This prediction is then used to calculate the reinfoea signal by means of the TD-rule:

ilel=rle+gPlt]=Pli—1] ©

where r(t) is the actual reward received by the animat, gnd the discount factor (0 g < 1) which
determines how far in the future expected rewards are tat@eaccount in the sum of future rewards.

Finally, this reinforcement signal is used to update battor’s and Critic’s synaptic weights according to the
following equations respectively:

w,,(t)<—w,,(t—1 )+r]~ff(t)-varj(t—l ) (4)

L] L]

w’j(t)<—w’j(t—l )+r]-?(t)~varj(t—1 ) (5)

where n>0 is the learning rate.
3.4.2. Model AMC1

As this Critic implements N experts, each exfreromputes its own prediction of reward at timestep
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where the w k’j(t) are the synaptic weights of expkrt
Then the global prediction of the Critic is a weighted sfiraxperts’ predictions:

P(t)zg credk(t)-pk(t) @

where Credk(t) is the credibility of experk at timestept. These credibilities are computed by a gating

network which learns to associate, in each sensory xiorike best credibility to the expert that makes the
smaller prediction error. Following Baldassarre’satiggion (2002), the gating network is constituted of N
linear cells which receive the same input variables tharexperts and compute an output function out of it:

o lt]= Zw tl-var o (®

where w k,j(t) are the synaptic weights of gating dell

The credibility of experk is then computed as the softmax activation function obthputs Of(t) :

o,l1

gofm

credk(t)z ©

Concerning learning rules, whereas equation (3) is usddtesmine the global reinforcement signal sent to
the Actor, each Critic's expert has a specific reindonent signal based on its own prediction error:
fk(t)=r(t)+gP(t)—pk(f—1 ) (10)

The synaptic weights of each expledre updated according to the following formula:

W"k’j(t)<—w"k,j(t—1 )+n-fk(t)-varj(t—1 )-hk(t) (11)

where hk(t) is the contribution of expektto the global prediction error of the Critic, and is dalias:

credk(t—l )-corrk(t)

hk(t): N (12)
Z credf(t—l )-corrf(t)

10



where corrk(t) is a measure of the « correctness » of the ekmetined as:

(13)

corrk(t):exp

where g is a scaling parameter depending on the average dritbie eexperts (see parameters table in the
appendix section).
Finally, to update the weights of the gating network, we wsddlowing equation:

w"k’j(t)ew"k,j(t—l )+m-diﬁ‘(t)-varj(t—1 ) (14)

with diff [1]=h [t]~cred [1-1| (15)

wheremis a learning rate specific to the gating network.
So the credibility of expek in a given sensory context depends on its performanégsicdntext.

3.4.3. Model AMC2

The Critic also implements N experts. However, it diffeosn Model AMCL in the way the credibility of each
expert is computed.

The principle we wanted to bring about here is to dissociagdibilities of experts from their performance.
Instead, experts would be assigned to different subregiothe @nvironment — these regions being computed
as windows in the perceptual space —, would remain emhdo their associate region forever, and would
progressively learn to accurate their performance albegxperiment. This principle is declined from Houk
et al. (1995) for the improvement of their model, assuntiag different striosomes may be specialized in
dealing with different behavioral tasks. This proposition inggdemented by Suri and Schultz (2001) in using
several TD models, each one computing predictions for @myevent (stimulus or reward) that occurs in the
simulated paradigm.

To test this principle, we replaced the gating network hared-determined partition of the environment (e.g.
a coarse representation of the sensory space): At timesttiee current zon§ depends on the 12 sensory
variables computed by the visual systé&xample: if (seeWhite = 1 and angleWhite < 0.2 and distanceWhite

> 0.8) then zone = 4 (e.q. B=4). Then Ci’edB (t)zl , Credk(t)=0 for all other experts, and expdfthas

then to compute a prediction of reward out of the 12 isoaus sensory variables. Predictions and
reinforcement signals of the experts are determined byaime equations than Critic ldiodel AMCL.

This was done as a first step in the test of the considmiadiple. Indeed, we assume that another brain
region such as the parietal cortex or the hippocampus wotdtindae the zone (sensory configuration)
depending on the current sensory perception (McNaughton, Beg§esset al., 1999), and would send it to
the Actor-Critic model of the basal ganglia. Here, éngironment was partitioned into N=30 zones, an expert
being associated to each zone. The main difference detthes scheme and the one used by Suri and Schultz
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is that, in their work, training of experts in each subezamas done in separated sessions, and the global model
was tested on the whole task only after training loéxgberts. Here, experts will be trained simultaneousl in
single experiment.

Finally, one should note that this method is different fromyapgla coarse coding of the state space that
constitutes the input to the Actor and the Critic (Arleo @wastner, 2000). Here, we implementedoarse
coding of the credibility space so as to determine which expert is the most credibla given sensory
configuration and kept the 12 continuous sensory variables, plus a obistscribed above, as the state space
for the reinforcement learning process. This means thhirva given zone, the concerned expert has to learn
to approximate a continuous reward value function, basdtle varying input variables.

3.4.4. Model MAMC2

The Critic of this Model is the same ashitodel AMC2 and only differs from its associated Actor.

Instead of using one single Actor, we implementediffémnt Actor modules. Each Actor module has the
same structure than the simple Actor described in@e8t4 and is constituted of 6 channels representing the
6 possible actions for the task. The difference residdseiffiaict that only actions of the Actor associated with
the zone in which the animat is currently are competirdetermine the animat’s current action.

As a consequence, if the animat was in zBnat timet and performed action the reinforcement signal

ff(t+1 ) computed by the Critic at next timestep will be usedipdate only weights of actidnfrom the
Actor B according to the following equation:

wk,[’j(t)hwk‘[‘j(t—l )+n-?(t)-varj(t—1 ) (16)

Other equations are the same than those used for Croddl AMC2. As mentioned above, this principle —
using a specific controller or a specific Actor for emsbdule of the Actor-Critic model — is inspired by the
work of Doyaet al., (2002).

3.5. Results

In order to compare the learning curves of the four simulatedels, and so as to evaluate which models
manage to solve the task efficiently, we adopt the followiitgrion: after 50 trials of training (out of 100 for
each experimentsthe animat has to achieve an equivalent performance hand-crafted model that can
already solve the task (Table 1). To do so, we simuldtedGPR action selection model with appropriate
hand-determined synaptic weights and without any learning moseshat the animat can solve the task as if
it had already learned it. With this model, the animafgoered a 50 trials experiment with an average
performance of 142 iterations per trial. Since eachtitardasted approximately 1 sec, as mentioned above, it
took a little bit more than 2 min per trials to this hamdft animat to reach the reward.

Table 1.Performances of each model.

Model GPR AC AMC1 AMC2 MAMC
Performance | 142 587 | 623 | 3240 97
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Table 1 shows the performance of each model, measurdé as/erage number of iterations per trial after
trial #50 Figure 4 illustrates results to the four experiment$opered in the 2D environment, one per model.
The x-axis represents the successive trials along theiegrags. For each trial, y-axis shows the number of
iterations needed for the animat to reach the rewarcdcansume it. Figure 4.a shows the learning curve of
Model AC. We can first notice that the model increased rapidlgetsormance until trial 7, and stabilized it at
trial 25. However, after trial 50, the average duratiom tfial is still 587 iterations, which is nearly 4 times
higher than the chosen criterion. We can explain this liraiteby the fact thaModel AC is constituted of only
one single neuron in the Critic, which can only solve lilyeaeparable problems. As a consequence, the
model could learn only a part of the task — in the areatheareward location —, but it was unable to extend
learning to the rest of the maze. So the animat hasdddp select appropriate behaviors in the reward area,
but it still performs random behaviors in the rest of ti@renment.

Model AMCL1 is designed to mitigate the computational limitationdvioflel AC, as it implies several Critic
units controlled by a gating network. Figure 4.b shows iteieg curve after simulation in the plus-maze
task. The model has also managed to decrease its ruimiegér trial at the beginning of the experiment.
However, we can notice that the learning process is mostable than the previous one. Furthermore, after
the 5@ trial, the model has a performance of 623 iterations, wisiciot better thatModel AC. Indeed, the
model couldn’t extend learning to the whole maze either.cah explain this failure by the fact that the gating
network did not manage to specialize different expertiffarent subparts of the task. As an example, figure
5 shows the reward prediction computed by each Criéigfgert during the last trial of the experiment. It can
be noticed that the first expert (dark curve) has the highesiction throughout the whole trial. This is due to
the fact that it is the only one the gating network leasrled to consider as credible — its credibility remains
above 90% during the whole experiment. As a consequence,oaelyexpert is involved in the learning
process and the model becomes computationally equivalévibdel AC: it cannot extend learning to the
whole maze, which is confirmed by the absence of anyrcewaediction before the perception of the reward
site (stimulus occurrence) in Figure 5.

Figure 4.c shows the learning curve Miodel AMC2 which implements another principle for experts
coordination. This model cannot suffer from the same limoitatthanModel AMC1, since each expert was a
priori assigned to a specific area of the environmeata&onsequence, it quickly managed to extend learning
to the whole maze. However, the consequence of this procdespi®duce interferences in the Actor’s
computations: the same Actor receives all experts’ teagigr@ls, and it remains unable to switch properly
between reinforced behaviors. For example, when thenachionking’ is reinforced, the Actor starts selecting
this action permanently, even when the animat is famfreward location. These interferences explain the
very bad performances obtained witlodel AMC2.

The last simulated modeMpdel MAMC?2) performed best. Its learning curve is shown on figude %his
model implements several Actor modules (an Actor module cosmhed each Critic expert). As a
consequence, it avoids interferences in the learning gsoaed rapidly converged to a performance of 97
iterations per trial. This good performance cannot beechesawith the multi-Actor only, since we tried to
combined several Actor modules to mo@&lC1l and got a performance of 576 iterations per trial. So the
achievement of the task implies the combination of a Muitér and a good specialization of experts.
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For checking the ability ovlodel MAMC2 to learn the same task in more realistic conditionssiweilated it

a 3D environment, working in real time and implementing m&ysdynamics (Figure 7). This experiment
constituted an intermediary step favoring the implementatitmnan actual Pekee robot (Wany Robotics). The
animat is still able to learn the task in this environnmamd gets good performances after 35 trials (Figure 6;
corresponding average performance of the animat betwiabn35 and 65: 284 iterations per trial).
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Figure 5 Reward prediction computed by each Critic's
expert of Model AMC1 during trial #100 of the experiment.
Time 0 indicates the beginning of the trial. S: perceptd

the stimulus (the white wall) by the animat. R: beginning of
reward delivery. The dark curve represents the prediction of
expert 1. The other experts’ predictions are melted timto
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Figure 4 Learning curves of the four models simulated in
the 2D plus-maze task over 100 trials experiments. X-axis:
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Figure 7 Simulation of the plus-maze task in a 3D environmerke lthe 2D environment, one random arm extremity is
white and delivers reward. The animat has to perform taesigation so as to find and consume this reward. Gray
stripes arising from the animat’s body represent its sonar sensdrbyfs low level obstacle avoidance reflex.

4 .Discussion and future work

In this work, we compared learning capabilities on R &sk of several Actor-Critic models of the basal
ganglia based on distinct principles. Results of simulatiwite models AC, AMC1, AMC2 and MAMC2
demonstrated that:
« A single-component Critic cannot solve the taglodel AC);
« Several Critic modules controlled by a gating netwdikdel AMC1) cannot provide good specialization,
and the task remains unsolved.
« Several Critic modules a priori associated with differetpsirts of the taskv{odel AMC2) and connected
to a single Actor (an Actor component being composed otlaaénels GPR) allow learning to extend to
areas that are distant from reward location, but stitfer from interferences between signals sent by the
different Critic to the same single Actor.
Model MAMC2, combining several Critic modules with the principle Mbédel AMC2, and implementing
several Actor componenfgoduces better results in the task at matter, spredefinging in the whole maze
and reducing the learning duration. However, there amvagfiestions that have to be raised concerning the
biological plausibility and the generalization ability oistmodel.

4.1.Biological plausibility of the proposed model

When using a single GPR Actor, each action is repregent®nly one channel — an Actor module being
constituted of one channel per action (Gureegl., 2001) — and the structural credit assignment problem —
which action to reinforce when getting a reward — bansimply solved: the action that has the highest
salience inhibits its neighbors via local recurrent inhibitoirguits within D1 striatum (Brown and Sharp,
1995). As a consequence, only one channel in the Actor wid Bagugh pre- and post-synaptic activity to be
eligible for reinforcement.

When using several Actor modules, this property is not amyamore: even if only one channel per Actor
module may be activated at a given time, each Actor manilll@ave its own activated channel, and several
concurring synapses would be eligible for reinforcement wittnglobal Actor. To solve this problem, we
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considered in our work that only one channel in the ento®rAis eligible at a given time. However, this
implies for the basal ganglia to have one of the twaWdlg characteristics: it should either exist non-local
inhibition between Actor modules within the striatum, tbere should be some kind of selectivity in the
dopamine reinforcement signals so that even if several clsaareeactivated, only those located in the target
module receives dopamine signals.

To the best of our knowledge, these characteristics werewad fin the basal ganglia, and a few studies tend
to refute the dopamine selectivity (Pennartz, 1996).

4.2. Computational issues

Several computational issues need also to be addregssdtie results presented here show that the learning
process was not perturbed by the fact to use an Actor dgt#ik action selection process in the basal ganglia.
This Actor has the property to take into account some parsestprovided by the cortex-basal ganglia-
thalamus-cortex loops. The way this persistence pigcialuence the learning process in the different
principles compared in this work was not thoroughly studese.hHowever we suspect that persistence could
probably challenge the way different Actors interact withti€s experts, as switching between actions does
not exactly follow switches in sensorimotor contexts with thiedeh This issue should be examined in a
future work.

Generalization ability of the multi-module Actor: Another issue that needs to be addressed here is the
generalization ability of the multi-module Actor model usedthis experiment. Indeed, Model MAMC2
avoids interferences in the Actor because hand-deternsimezbnes of the maze are absolutely disjoint. In
other words, learned stimulus-response associations irea gone cannot be performed in another zone, and
do not interfere with the learning process is this seeamé even if visual contexts associated to each of the
are very similar. However, this leads also to an iitglio generalize from one zone to the other: evehef t
distinction we made between two zones seemed relevatitedfgius-maze task, if these two zones are similar
and would imply similar motor responses in another tdsk,animat would have to learn twice the same
sensorimotor association — one time in each zone. dssequence, the partition we set in this work is task-
dependent.

Instead, the model would need a partitioning method that awmunly classifies sensory contexts
independently from the task, can detect similarities etwtwo different contexts and can generalize learned
behaviors in the first experienced context to the second one.

About the precise time of reward delivery:

In the work presented here, the time of reward deliveryrtepexclusively on the animat’s behavior, which
differs from several other S-R tasks used to validat®rACritic models of the basal ganglia. In these tasks,
there is a constant duration between a stimulus andiadeand several Actor-Critic models were designed
S0 as to describe the precise temporal dynamics of dopangimengiions in this type of task (Montagaieal .,
1996). As a consequence, numerous Actor-Critic models foarséte implementation of a time component
for stimulus representation, and several works capitabreithis temporal representation for the application of
Actor-Critic models of reinforcement learning in the bagaiglia to robotics (Perez-Uribe, 2001; Sporns and
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Alexander, 2002). Will we need to add such a component tanodel to be able to apply it to certain type of
natural tasks, or survival tasks?

In the experiments presented here, we didn’'t need suchpaitainmepresentation of stimuli because there was
sufficient information in the continuous sensory flow peree by the animat during its moves, so that the
model can dynamically adapt its reward predictions, asmwid also in another work (Baldassarre and Parisi,
2000). For example, when the animat is at the center of the, rparceives the white wall (stimulus predicting
reward) and moves towards reward location, the latienulus becomes bigger in the visual field of the
animat, and the model can learn to increase its rewardiction, as shown in figure 8. We didn’'t aim at
explaining the depression of dopamine neurons’ firing rates wehmward doesn’'t occur, nevertheless we
were able to observe this phenomenon in cases where thet arasapproaching the reward site, was about
to consume it, but finally turned away from it (R eeint figure 8).
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Figure 8 Reward prediction (light curve) and dopamine reinforcement sigiaak curve) computed by Critic of Mod®IAMC2 in
the 3D environment. X-axis: time. Y-axis: Critic’s signals. (rception of the stimulus (white wall) by the animat; BwBRrd missed
by the animat.

Using Critics dependent or independent from the performance: In our experiments,Model AMCI,
implementing a gating network for experts’ credibilities pomation, did not solve the task. We saw in
section 2 that, during the simulations, one expert becapidly the most credible, which forced the model to
use only one neuron to solve the task. The use of gating netwoattks frame of mixture of experts methods
has already being criticized (Tarmg al., 2002). According to these authors, this approach words am
problems composed of disjoint regions but does not generalizesu##ring from effects on boundaries of
regions.

In our case, we explain the failure in the experts’ speeition withModel AMCL1 by the observation that until

the model has started to learn the task, and so caagate teaching signals to the rest of the maze, only
reward location has a value. As a consequence, it isnliyeaoea where the gating network tries to train an
expert, and the latter rapidly reaches a high credibilihen, as reward value starts to be extended to a new
zone, this same expert still has the best credibilityenpetting bad performances. Other experts do not have
significantly better performances — since they were @atéd yet and since the new area and the first one are
not disjoint. As a consequence, they remain non credibl¢hanshodel starts having bad performances.

In his work, Baldassarre managed to obtain a good sped@tizzitexperts (Baldassarre, 2002). This may be
partly explained by the fact that his task involved threteifit rewards located in three different sensory
contexts. The simulated robot had to visit all rewardsradtarely since the very beginning of the task. This
may have helped the gating network to attribute good craidibilto several experts. However, reward
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locations in Baldassarre’s task are not perfectly glijavhich result in a difficult specialization: one thie
experts is the most credible for two of the three rewgmels Baldassarre, 2002).

Another model (Tani and Nolfi, 1999) proposes a diffemantture of experts where the gating network is
replaced with a dynamical computation of experts’ credidit Their model managed to categorize the
sensori-motor flow perceived by a simulated robot duringhidsements. However, their method does not use
any memory of associations between experts’ credésliind different contexts experienced during the task.
As a conseguence, experts’ specialization is even mopendent to each expert's performance than
Baldassarre’s gating network, and suffers from the damtion when applied to reinforcement learning in
our plus-maze task - as we experimented in unpublished work.

Combining self-organizing maps with mixture of expert: To test the principle of dissociating the experts
credibility from their performance, we partitioned the enwin@nt into several sub-regions. Yet, this method
is ad hoc, lacks autonomy, and suffers generalizatidities if the environment is changed or becomes more
complex. We are currently implementing Self-Organizing MEpOM) as a method of autonomous clustering
of the different sensory contexts will be used to deiteerthese zones. Note that this proposition differs from
the traditional use of SOM to cluster the state space iopexgerts or to Actor-Critic models (Smith, 2002;
Leeet al., 2003). It is rather a clustering of the credibility spadeich was recently proposed by Tagtcal.
(2002). We also would like to compare the use of SOM wlite use of place cells. Indeed models of
hippocampal place cells have already been used for coadg®y of the input state space to the Actor and the
Critic (Arleo and Gerstner, 2000; Fosttral., 2000; Strosslin, 2004) but, in our case, we would lkege
place cells to determine experts’ credibilities.

4.3. Future work

As often mentioned in the literature, and as confirmedthis work, the application of Actor-Critic
architectures to continuous tasks is more difficult than thedr in discrete tasks. Several other works have
been done on the subject (Doya, 2000). However, thesetemteies still have to be improved so as to
decrease their learning time:

Particularly, the learning performance of our animenss still far from the learning speed that real rat can
reach in the same task (Alberghal., 2000), even if the high time constant that we used in our Indods not
allow a rigorous comparison yet (cf. parameters tabteerappendix). This could be at least partly explained
by the fact that we implemented only S-R learning (ortHehrning), whereas it has recently been known that
rats are endowed with two distinct learning systeneedlto different cortex-basal ganglia-thalamus loaps:
habit learning system and a goal-directed learning onenflii@® and Panksepp, 1999; Cardieahl., 2002).
The latter would be fast, used at the early stagesawhiley, and implying an explicit representation of
rewarding goals or an internal representation of actionrsautccontingencies. The former would be very slow
and takes advantage of the latter when the animat reachepgdodnances and becomes able to solve the
task with a reactive strategy (S-R) (Killcross and Couatuy@003; Yiret al., 2004).

Some theoretical work has already been started to eXetudt-Critic models to this functional distinction
(Dayan, 2001). In the practical case of our artificia] batth such systems could be useful in two different
manners.
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First, it could be useful to upgrade the exploration famctiThis function could have an explicit
representation of different places of the environmend, particularly of the reward site. Then, when the
animat gets reward for the first time, the exploration famctivould guide it trying behaviors that can allow it
to reach the explicitly memorized reward location. Tinection could also remember which behaviors have
already been tried unsuccessfully in the different arsasthat untried behaviors are selected instead of
random behaviors in the case of exploration. This would stienghe exploration process and is expected to
increase the animat’s learning speed.

The second possible use of a goal-directed behavior compartentepresent the type of reward the animat is
working for. This can be useful when an animat has tbwdiga different rewards (food, drink) so as to satisfy
different motivations (hunger, thirst). In this case, a compotiert chooses explicitly the current reward the
animat takes as an objective can select sub-modules of ttoe that are dedicated to the sequence of
behaviors that leads to the considered reward. This impevewould serve as a more realistic validation of
the artificial rat Psikharpax when it has to survive more natural environments, satisfying concurrent
motivations.
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Appendix : Parameters Table

Svmbo  Valu Description

At 1 sec. Time constant — time between two successive iterations ofdadel.
o 40 iter.  Time threshold to trigger the exploration function.

g 0.98 Discount factor of the Temporal Difference learning rule.

n 0.01 Learning rate of the Actor and Critic modules.

N 30 Number of experts in the Critic of Mode#/IC1, AMC2 andMAMC?2.
g 2 Scaling parameter in the mixture of experts of Mo&MIC1.

m 0.1 Learning rate of the gating network in Mod@!C1.
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