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Since 1995, numerous Actor-Critic architectures for reinforcement learning have been proposed as models of
dopamine-like reinforcement learning mechanisms in the rat’s basal ganglia.  However,  these models were
usually tested in different tasks, and it is then difficult to compare their efficiency for an autonomous animat.
We present here the comparison of four architectures in an animat as it performs the same reward-seeking task.
This will illustrate the consequences of different hypotheses about the management of different Actor sub-
modules and Critic units, and their more or less autonomously determined coordination. We show that the
classical method of coordination of modules by mixture of experts, depending on each module's performance,
did not allow solving the task. Then we address the question of which principle should be applied to efficiently
combine these units. Improvements for Critic modeling and accuracy of Actor-critic models for a natural task
are  finally  discussed  in  the  perspective  of  our  Psikharpax  project  –  an  artificial  rat  having  to  survive
autonomously in unpredictable environments.
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1. Introduction

This work aims at adding learning capabilities in the architecture of action selection introduced by Girard et al.

in this issue. This architecture will be implemented in the artificial rat Psikharpax, a robot that will exhibit at

least some of the capacities of autonomy and adaptation that characterize its natural counterpart (Filliat et al.,
2004). This learning process capitalizes on Actor-Critic architectures, which have been proposed as models of

dopamine-like  reinforcement  learning  mechanisms  in  the  rat’s  basal  ganglia  (Houk  et  al.,  1995).  In such

models, an Actor network learns to select actions in order to maximize the weighted sum of future rewards, as
computed on line by another network, a Critic. The Critic predicts this sum by comparing its estimation of the

reward with the actual one by means of a Temporal Difference (TD) learning rule, in which the error between
two successive predictions is used to update the synaptic weights (Sutton and Barto, 1998). A recent review of

numerous computational models, built on this principle since 1995, highlighted several issues raised by the
inconsistency of the detailed implementation of Actor and Critic modules with known basal ganglia anatomy

and physiology (Joel et al., 2002). In the first section of this paper, we will consider some of the main issues,

updated  with  anatomical  and  neurophysiological  knowledge.  In  the  second  section,  we will  illustrate  the
consequences of alternative hypotheses concerning the various Actor-Critic designs by comparing animats that

perform the same classical instrumental learning (S-R task). During the test, the animat freely moves in a plus-
maze with a reward placed at the end of one arm. The reward site is chosen randomly at the beginning of each
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trial and it refers to site-specific local stimuli. The animat has to autonomously learn to associate continuous

sensory information with certain values of reward and to select sequences of behaviors that enable it to reach
the goal from any place in the maze. This experiment is more realistic than others used to validate Actor-Critic

models, often characterized by an a priori fixed temporal interval between a stimulus and a reward (e.g., Suri
and Schultz, 1998), by an unchanged reward location over trials (e.g., Strösslin, 2004), or by a discrete state

space (e.g., Baldassarre, 2002).

We will compare, in this task, four different principles inspired by Actor-Critic models trying to tackle the

issues evocated in the first section. The first one is the seminal model proposed by Houk et al. (1995), which

uses one Actor and a single prediction unit (Model AC – one Actor, one Critic), which is supposed to induce

learning in the whole environment. The second principle implements one Actor with several Critics (Model

AMC1 – one Actor, Multiple Critics). The Critics are combined by a mixture of experts where a gating network
is used to decide which expert – which Critic – is used in each region of the environment, depending on its

performance  in  that  region.  The principle  of  mixture  of  experts is  inspired  from several  existing  models

(Jacobs et al., 1991; Baldassarre, 2002; Doya et al., 2002). The third one is inspired by Suri and Schultz (2001)
and uses also one Actor with several Critic experts. However, the decision of which expert should work in each

sub-zone of the environment is independent from the experts’ performances, but rather depends on a partition

of the sensory space perceived by the animat (Model AMC2  – one Actor, Multiple Critics).  The fourth one

(Model  MAMC2  – Multiple  Actors,  Multiple  Critics)  proposes  the  same principle  as the  previous  Critic,

combined with several  Actors,  which latter  principle is one of the features of Doya  et al.’s model (2002),
particularly designed for continuous tasks, and is also a feature of Baldassarre’s model (2002). Here we will

implement these principles in four models using the same design for each Actor component. Their comparison
will  be  made  on  the  learning  speed  and  on  their  ability  to  extend  learning  to  the  whole  experimental

environment.
The last section of the paper will  discuss the results on the basis of  acquired knowledge in reinforcement

learning tasks in artificial and natural rodents.

Figure 1 Schematic illustration of the correspondence between the modular organization of the basal ganglia including

both striosomes and matrix modules and the Actor-Critic architecture in the model proposed by Houk et al, (1995). F,
columns in the frontal cortex; C, other cortical columns; SPs, spiny neurons striosomal compartments of the striatum;
SPm, spiny neurons in matrix modules; ST, subthalamic sideloop; DA, dopamine neurons in the substantia nigra pars
compacta; PD, pallidal neurons; T, thalamic neurons. (adapted from Houk et al., 1995).
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2. Actor-Critic designs: the issues

The two main principles of Actor-Critic models that lead to consider them as a good representation of the role

of the basal ganglia in reinforcement learning of motor behaviors are (i): the implementation of a Temporal
Difference (TD) learning rule which leads to translate progressively reinforcement signals from the time of

reward occurrence to environmental contexts that precede the reward.; (ii): the separation of the model in two
distinct parts, one for the selection of motor behaviors (actions) depending on the current sensory inputs (the

Actor), and the other for the driving of the learning process via dopamine signals (the Critic).

Schultz’s work on the electrophysiology of dopamine neurons in monkeys showed that dopamine patterns of
release are similar to the TD learning rule (see Schultz, 1998 for a review). Besides, the basal ganglia are a

major  input  to dopamine neurons,  and are also a privileged target  of reinforcement  signals  sent  by these

neurons  (Gerfen  et  al.,  1987).  Moreover,  the basal  ganglia  appears  to  be constituted  of  two distinct  sub-
systems, related to two different parts of the striatum – the major input nucleus of the basal ganglia –, one

projecting to motor areas in the thalamus, the other projecting to dopamine neurons, influencing the firing
patterns of these neurons at least to some extent (Joel and Weiner, 2000).

These properties  lead the  first  Actor-Critic  model  of  the basal  ganglia  to  propose the  matrisomes of  the

striatum to constitute the Actor, and the striosomes of this very structure to be the Critic (Houk et al., 1995,
figure 1). The classical segregation of ‘direct’ and ‘indirect’ pathways from the striatum to the dopaminergic

system (SNc, substantia nigra pars compacta, and VTA, ventral tegmental area; Albin et al., 1989) was used in

the model to explain the timing characteristics of dopamine neurons’ discharges.

Numerous models were proposed to improve and complete the model of Houk et al. However, most of these
computational models  have  neurobiological  inconsistencies  and lacks  concerning  recent  anatomical

hypotheses on the basal ganglia (Joel et al., 2002). 

An important  drawback is that the Actor  part  of these models is often simplistic  compared to the known
anatomy  of  the  basal  ganglia  and  does  not  take  into  account  important  anatomical  and  physiological

characteristics  of  the  striatum.  For  example,  recent  works  showed a  distinction  between  neurons  in  the

striatum  having  different  dopamine  receptors  (D1-receptors  or D2-receptors;  Aizman  et  al.,  2000).  This
implies at least two different  pathways in the Actor, on which tonic dopamine has opposite effects, going

beyond the classical functional segregation of ‘direct’ and ‘indirect’ pathways in the striatum (Gurney et al.,

2001).
Likewise, some constraints  deriving from striatal  anatomy restrict  the possible architectures for  the Critic

network. In particular, the striatum is constituted of only one layer of medium spiny neurons – completed with

5% of interneurons (Houk  et al., 1995). As a consequence, Critic models cannot be constituted of complex
multilayer networks for  reward prediction computation. This anatomical  constraint  lead several  authors to

model the Critic as a single-neuron (Houk et al., 1995; Montague et al., 1996), which works well in relatively

simple tasks. For more complicated tasks, several models assign one single Critic neuron to each subpart of
the task. These models differ in the computational mechanism used to coordinate these neurons. Baldassarre

(2002) and Doya et al. (2002) propose to coordinate Critic modules with a mixture of experts method: the
module that has the best performance at a certain time during the task becomes expert in the learning process

of this subpart of the task. Another model proposes an affectation of experts to subparts of the task (such as
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stimuli  or events) in an a priori  manner, independently from each expert’s performance (Suri  and Schultz,

2001). It remains to assess the efficiency of each principle, as they have been at work in heterogeneous tasks

(e.g. Wisconsin Card Sorting Test, Discrete Navigation Task, Instrumental Conditioning).
These models also question the functional segregation of the basal ganglia in ‘direct’ and ‘indirect’ pathways

(see Joel  et al., 2002 for a review). These objections are built on electrophysiological data (for review see

Bunney et al., 1991) and anatomical data (Joel and Weiner, 2000) which show that these two pathways are

unable to produce the temporal dynamics necessary to explain dopamine neurons patterns of discharge. These
findings lead to question the localization of the Critic in the striosomes of the dorsal striatum, and several

models capitalized on its implementation in the ventral striatum (Brown et al., 1999; Daw, 2003). These works

are supported by recent fMRI data in humans, showing a functional dissociation between dorsal striatum as the

Actor and ventral striatum as the Critic (O’Doherty et al., 2004), but they may be controversial for the rat, as

electrophysiological  data (Thierry  et  al.,  2000) showed that an important  part  of the ventral  striatum (the
nucleus accumbens core) does not project extensively to the dopamine system in the rat brain.

We can conclude that the precise implementation of the Critic remains an open question, if one takes also into
account a recent model assuming that a new functional distinction of striosomes in the dorsal striatum – based

on  differential  projections  to  GABA-A and  GABA-B  receptors  in  dopamine  neurons  –  can  explain  the

temporal dynamics expected (Frank et al., 2001).
Besides these neurobiological inconsistencies, some computational requirements on which numerous Actor-

Critic models have focused seem unnecessary for a natural reward-seeking task. For example, as Houk et al.’s

model  could  not  account  for  temporal  characteristics  of  dopamine  neurons  firing  patterns,  most  of  the
alternative models focused on the simulation of the depression of dopamine at the precise time where the

reward  is  expected  when  it  eventually  does  not  occur.  To  this  purpose,  they  concentrated  on  the
implementation of a temporal component for stimulus description – which is computed outside of the model

and is sent as an input to the model via cortical projections (Montague et al., 1996; Schultz et al., 1997). These

models were tested in the same tasks chosen by Schultz  et  al. (1993) to record dopamine neurons in the

monkey, using a fixed temporal bin between a stimulus and a reward. However, in natural situations where a
rodent needs to find food or any other type of reward, temporal characteristics of the task are rarely fixed but

rather depend on the animal’s behavior and on the environment’s changes/evolution.

Figure 2 Left: the robot in the plus maze environment. A white arm extremity indicates the reward location. Other arm

extremities do not deliver any reward and are shown in black. Upper right: the robot’s visual perceptions. Lower right:
activation level of different channels in the model.
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3. Method

The objective of this work is to evaluate the efficiency of the main principles on which current Actor-Critic
models  inspired  by the basal  ganglia  are  designed,  when they are  implemented in the same autonomous

artificial system. The main addressed issues are:
• The implementation of a detailed Actor, whose structure would be closer to the anatomy of the dorsal

striatum, assessing whether reinforcement learning is still possible within this architecture.

• The comparison of the function of one Critic unit, versus several alternative ways to coordinate different

Critic modules for solving a complex task where a single-neuron is not enough.
• The test of the models in a natural task involving taxon navigation where events are not predetermined by

fixed temporal bins. Instead, the animat perceives a continuous sensory flow during its movements, and

has to reactively switch its actions so as to reach a reward.

3.1. The simulated environment and task

Figure 2 shows the experimental setup simulated, consisting in a simple 2D plus-maze. The dimensions are

equivalent  to  a  5m *  5m environment  with  1m large  corridors.  In  this  environment,  walls  are  made  of
segments colored on a 256 grayscale. The effects of lighting conditions are not simulated. Every wall of the

maze is colored in black (luminance = 0), except walls at the end of each arm and at the center of the maze,
which are represented by specific colors: the cross at the center is gray (191), three of the arm extremities’

walls are dark gray (127) and the fourth is white (255), indicating the reward location (equivalent to a water
trough delivering two drops – non instantaneous reward – not a priori known by the animat).

The plus-maze task mimicks the neurobiological and behavioral studies that will serve as future validation for

the model (Albertin  et al., 2000). In this task, at the beginning of each trial, one arm extremity is randomly
chosen to deliver reward. The associated wall is colored in white whereas walls at the three other extremities

are dark gray. The animat has to learn that selecting the action drinking when it is near the white wall (distance

< 30 cm) and faces it (angle < 45 degrees) gives it a reward. Here we assume that reward = 1 for n iterations (n
= 2), without considering how the hedonic value of this reward is determined.

We expect the animat to learn a sequence of context-specific behaviors, so that it can reach the reward site
from any starting point in the maze:

• When not seeing the white wall, face the center of the maze and move forward.

• As soon as arriving at the center (the animat can see the white wall), turn to the white stimulus.

• Move forward until being close enough to reward location.

• Drink.

The trial ends when reward is consumed: the color of the wall at reward location is changed to dark gray, and a

new arm extremity is chosen randomly to deliver reward. The animat has then to perform again the learned
behavioral  sequence.  Note that  there  is  no break between two consecutive trials:  trials  follow each other

successively.
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The more efficiently and fluently the animat performs the above described behavioral sequence, the less time

it will take to reach the reward. As a consequence, the criterion chosen to validate the models is the time to
goal, plotted along the experiment as the learning curve of the model.

3.2. The animat

The animat is represented by a circle (30 cm diameter). Its translation and rotation speeds are 40 cm.s-1 and
10°.s-1. Its simulated sensors are:

• An omnidirectional linear camera providing every 10° the color of the nearest perceived segment. This

results in a 36 colors table that constitute the animat’s visual perception (see figure 2),
• Eight  sonars  with  a  5m range,  an incertitude  of  ±5 degrees  concerning  the pointed  direction  and an

additional ±10 cm measurement error,

The sonars are used by a low level obstacle avoidance reflex which overrides any decision taken by the Actor-

Critic model when the animat comes too close to obstacles.

The animat is provided with a visual system that computes 12 input variables ∀ i∈[1 ;12 ] ,0var
i
1 

out of the 36 colors table at each time step. These sensory variables constitute the state space of the Actor-
Critic and so will be taken as input to both the Actor and the Critic parts of the model (figure 3). Variables are

computed as following:

• seeWhite(resp. seeGray, seeDarkGray) = 1 if the color table contains the value 255 (resp. 191, 127), else

0.

• angleWhite, angleGray, angleDarkGray = (number of boxes in the color table between the animat’s head

direction and the desired color) / 18.

• distanceWhite,distanceGray, distanceDarkGray  = (maximum number of consecutive boxes in the color

table containing the desired color) / 18.

• nearWhite (resp. nearGray, nearDarkGray) = 1 – distanceWhite (resp. distanceGray, distanceDarkGray).

Representing the environment with such continuous variables will imply for the model to permanently receive

a flow of sensory information and having to learn autonomously the events (sensory contexts) that can be
relevant for the task resolution.

The animat has a repertoire of 6 actions:  drinking,  moving forward,  turning to white perception,  turning to

gray perception, turning to dark gray perception, and waiting. These actions constitute the output of the Actor

model (described below) and the input to a low-level model that translates it into appropriate orders to the
animat’s engines.

3.3. The model: description of the Actor part

The Actor-Critic  model is inspired by the rat  basal  ganglia.  As mentioned in section 2, the Actor  can be
hypothesized   as implemented in the matrix part of the basal ganglia, while striosomes in the dorsal striatum

are considered as the anatomical counterpart for the Critic. The Critic produces dopamine-like reinforcement
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signals that help it learn to predict reward during the task, and that make the Actor learn to select appropriate

behaviors in every sensory context experienced during the task.
The architecture implemented in the Actor  is a recent model  proposed by Gurney,  Prescott and Redgrave

(2001a,b) – henceforth called GPR model -  that replaces the simple winner-takes-all which usually constitutes
Actor models and is supposed to be more biologically plausible.

Like other Actors, the GPR is constituted of a series of parallel channels, each one representing an action (in
our implementation, we used 6 channels corresponding to the 6 actions used for the task). This architecture

constitutes an alternative view to the prevailing functional segregation of the basal ganglia into ‘direct’ and

‘indirect’  pathways discussed in section 1 (Gurney  et al., 2001).  All these channels are composed by two
different circuits through dorsal striatum: the first is the ‘selection’ pathway, implementing action selection

properly via a feed-forward off-center on-surround network, and mediated by cells in the dorsal striatum with
D1-type receptors. The second is the ‘control’ pathway, mediated by cells with D2-type receptors in the same

area. Its role is to regulate the selection by enhancing the selectivity inter-channels, and to control the global
activity within the Actor. Moreover, a cortex-basal ganglia-thalamus loop in the model allows it to take into

account each channel’s persistence in the process of selection (see Gurney et al., 2001, for detailed description

and mathematical implementation of the model). The latter characteristic showed some interesting properties

that prevented a robot from performing behavioral oscillations (Montes-Gonzalez  et al., 2000; Girard  et al.,
2003).

In our implementation, the input values of the Actor model are saliences – i.e. the strength of a given action  –
that are computed out of the 12 sensory variables, a constant implementing a bias, and a persistence factor –

equal to 1 for the action that was selected at previous timestep (figure 3). At each timestep t (timesteps being
separated by a 1 sec bin in our simulations), the action that has the highest salience is selected to be performed

by the animat, the salience of action i being: 

sal
i
 t =[∑

j−1

13

var
j
 t ⋅w

i,j
 t ]+persist i  t ⋅wi,14

 t                                                                                        (1)

where  var
13

t =1, ∀ t ,  and  the  w
i,j

 t   are  the  synaptic  weights  representing,  for  each  action  i,  the

association  strength  with  input  variable  j.  These  weights  are  initiated  randomly

∀ i,j,−0 . 02<w
i,j
 t=0 0 . 02   and the objective of the learning process will be to find a set of weights

allowing the animat to perform the task efficiently.

An exploration function is added that would allow the animat to try an action in a given context even if the
weights of the Actor do not give a sufficient tendency to perform this action in the considered context.

To do so, we introduce a clock that triggers exploration in two different cases:

• When the animat has been stuck for a large number of timesteps (time superior to a fixed threshold α) in a

situation that is evaluated negative by the model (when the prediction  P(t) of reward computed by the
Critic is inferior to a fixed threshold).

• When the animat has remained for a long time in a situation where P(t) is high but this prediction doesn’t

increase that much (|P(t+n) – P(t)| < ) and no reward occurs.ε

If one of these two conditions is true, exploration is triggered: one of the 6 actions is chosen randomly. Its

salience  is  being  set  to  1  (Note  that:  when  exploration  =  false,sal
i
 t 1, ∀ i,t,w

i,j
 t  )  and  is  being
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maintained to 1 for a duration of 15 timesteps (time necessary for the animat to make a 180  turn or to run˚

from the center of the maze until the end of one arm).

3.4. The model: description of the Critic part

For the Critic part of the model, different principles based on existing techniques are tested. The idea is to test

the  hypothesis  of  one  single  Critic  unit  first,  but  also  to  provide  the  Critic  with  enough  computational
capacities so that it can correctly estimate the value function over the whole environment of the task. In other

words, the Critic will have to deal with several different sensory contexts – corridors, maze center, extremity
of arms, etc. equivalent to different stimuli –, and will have to associate a correct reward prediction to these

contexts.
One obvious possibility would be a multilayer perceptron with several hidden layers but, as mentioned before

in  section  2,  there  are  anatomical  constraints  which  prevent  us  from adopting  this  choice:  our  Critic  is
supposed to be situated in the striosomes of dorsal striatum, which structure is constituted of only one layer of

medium spiny neurons (Houk et al., 1995). Thus we need a more general method that combines several Critic

modules, each one being constituted of a single neuron and dealing with a particular part of the problem space.
The method adopted here is the mixture of experts, which was proposed to divide a non-linearly separable

problem into a set of linearly separable problems, and to affect a different expert  to each considered sub-

problem (Jacobs et al., 1991).
The Critics tested in this work differ mainly in two following manners:

• The first (Model AMC1) implements a mixture of experts in which a gating network is used to decide

which expert is used in each region.

• The second (Model AMC2) implements a mixture of experts in which a hand-determined partition of the

environment based on a categorization of visual perceptions is used to decide which expert works in each

sub-zone.

Figure 3 General scheme of the models tested in this work. The Actor is a group of GPR modules with saliences as inputs

and actions as outputs. The Critic (involving striosomes in the dorsal striatum, and the substantia nigra compacta (SNc) )
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propagates towards the Actor  an estimate  of  the instantaneous reinforcement  triggered by the selected actionř .  The
particularity of this scheme is to combine several modules for both Actor and Critic, and to weight the Critic experts’
predictions and the Actor modules’ decisions with credibilities. These credibilities can be either computed by a gating

network (Model AMC1) or in a context-dependent manner (Models AMC2 and MAMC2).

Moreover, since the animat has to solve a task in continuous state space, there could be interferences between
reinforcement signals sent by different Critic experts to the same single Actor. In this way, whereas one model

will employ only one Actor (Model AMC2), another one will use one Actor module associated to each expert

(Model MAMC2). Figure 3 shows the general scheme with different modules employed as suggested by the

models presented here.

Performances of Models AMC1, AMC2 and MAMC2 will be compared, together with the one of the seminal
Actor-Critic model inspired by the basal ganglia, proposed by  Houk, Adams and Barto (1995), and using a

single cell Critic with a single Actor (Model AC). 

We will start by the description of the simplest Critic, the one belonging to Model AC.

3.4.1. Model AC

In this model, at each timestep, the Critic is a single linear cell that computes a prediction of reward based on
the same input variables than the Actor, except the persistence variable:

P t =∑
j=1

13

var
j
 t ⋅w'

j
 t                                                                                                       (2)

where w'
j
 t   are the synaptic weights of the Critic.

This prediction is then used to calculate the reinforcement signal by means of the TD-rule:

r t =r t +gP t −P  t−1                                                                                                          (3)

where  r(t)  is  the  actual  reward  received by the animat,  and  g is  the  discount  factor  (0  <  g <  1)  which

determines how far in the future expected rewards are taken into account in the sum of future rewards.
Finally, this reinforcement signal is used to update both Actor’s and Critic’s synaptic weights according to the

following equations respectively:

w
i,j

t w
i,j

 t−1 +η⋅r t ⋅var
j
 t−1                                                                                     (4)

w'
j
 t w'

j
 t−1 +η⋅r t ⋅var

j
 t−1                                                                                           (5)

where >η 0  is the learning rate.

3.4.2. Model AMC1

As this Critic implements N experts, each expert k computes its own prediction of reward at timestep t:
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p
k
 t =∑

j=1

13

w'
k,j

 t ⋅var
j
t                                                                                            (6)

where the w'
k,j

 t   are the synaptic weights of expert k.

Then the global prediction of the Critic is a weighted sum of experts’ predictions:

P t =∑
k=1

N

cred
k
t ⋅p

k
t                                                                                                        (7)

where  cred
k
t   is  the credibility  of expert  k at  timestep  t.  These credibilities  are computed by a gating

network which learns to associate, in each sensory context, the best credibility to the expert that makes the
smaller prediction error. Following Baldassarre’s description (2002), the gating network is constituted of N

linear cells which receive the same input variables than the experts and compute an output function out of it:

o
k
 t =∑

j=1

13

w ''
k,j

 t ⋅var
j
 t                                                                                            (8)

where w ''
k,j

 t   are the synaptic weights of gating cell k.

The credibility of expert k is then computed as the softmax activation function of the outputs o
f
 t   :

cred
k
t =

o
k
 t 

∑
f=1

N

o
f
 t 

                                                                                                      (9)

Concerning learning rules, whereas equation (3) is used to determine the global reinforcement signal sent to
the Actor, each Critic’s expert has a specific reinforcement signal based on its own prediction error:

r
k
 t =r  t +gP t −p

k
 t−1                                                                                                (10)

The synaptic weights of each expert k are updated according to the following formula:

w ''
k,j

t w ''
k,j

 t−1 +η⋅r
k
t ⋅var

j
t−1 ⋅h

k
t                                                                                         (11)

where h
k
t   is the contribution of expert k to the global prediction error of the Critic, and is defined as:

h
k
 t =

cred
k
 t−1 ⋅corr

k
t 

∑
f=1

N

cred
f
 t−1 ⋅corr

f
t 

                                                                                                           (12)
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where corr
k
 t   is a measure of the « correctness » of the expert k defined as:

corr
k
 t =exp − r

k
 t 

2

2σ 2                                                                                                (13)

whereσ is a scaling parameter depending on the average error  of the experts (see parameters table in the

appendix section).
Finally, to update the weights of the gating network, we use the following equation:

w ''
k,j

 t w ''
k,j

 t−1 +m⋅diff t ⋅var
j
 t−1                                                                                               (14)

with diff t =h
k
t −cred

k
 t−1                                                                                                             (15)

where m is a learning rate specific to the gating network.

So the credibility of expert k in a given sensory context depends on its performance in this context.

3.4.3. Model AMC2

The Critic also implements N experts. However, it differs from Model AMC1 in the way the credibility of each

expert is computed.
The principle we wanted to bring about here is to dissociate credibilities of experts from their performance.

Instead, experts would be assigned to different subregions of the environment – these regions being computed
as windows in the perceptual space –, would remain enchained to their associate region forever, and would

progressively learn to accurate their performance along the experiment. This principle is declined from Houk
et al. (1995) for the improvement of their model, assuming that different striosomes may be specialized in

dealing with different behavioral tasks. This proposition was implemented by Suri and Schultz (2001) in using
several TD models, each one computing predictions for only one event (stimulus or reward) that occurs in the

simulated paradigm.
To test this principle, we replaced the gating network by a hand-determined partition of the environment (e.g.

a coarse representation of the sensory space): At timestep  t, the current zone  β depends on the 12 sensory

variables computed by the visual system. Example: if (seeWhite = 1 and angleWhite < 0.2 and distanceWhite

> 0.8) then zone = 4 (e.g. =4).β  Then cred
β

 t =1 ,  cred
k
 t =0  for all other experts, and expert  β has

then  to  compute  a  prediction  of  reward  out  of  the  12  continuous  sensory  variables.  Predictions  and

reinforcement signals of the experts are determined by the same equations than Critic of Model AMC1.

This was done as a first step in the test of the considered principle. Indeed, we assume that another brain
region  such as the parietal  cortex  or  the hippocampus would determine the zone (sensory  configuration)

depending on the current sensory perception (McNaughton, 1989; Burgess et al., 1999), and would send it to

the Actor-Critic model of the basal ganglia. Here, the environment was partitioned into N=30 zones, an expert
being associated to each zone. The main difference between this scheme and the one used by Suri and Schultz
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is that, in their work, training of experts in each sub-zone was done in separated sessions, and the global model

was tested on the whole task only after training of all experts. Here, experts will be trained simultaneously in a
single experiment.

Finally, one should note that this method is different from applying a coarse coding of the state space that

constitutes the input to the Actor and the Critic (Arleo and Gerstner, 2000). Here, we implemented a coarse

coding  of  the  credibility  space  so as  to  determine  which  expert  is  the  most  credible  in  a  given  sensory

configuration, and kept the 12 continuous sensory variables, plus a constant described above, as the state space
for the reinforcement learning process. This means that within a given zone, the concerned expert has to learn

to approximate a continuous reward value function, based on the varying input variables.

3.4.4. Model MAMC2

The Critic of this Model is the same as in Model AMC2 and only differs from its associated Actor.
Instead of using one single Actor, we implemented N different Actor modules. Each Actor module has the

same structure than the simple Actor described in section 3.4 and is constituted of 6 channels representing the
6 possible actions for the task. The difference resides in the fact that only actions of the Actor associated with

the zone in which the animat is currently are competing to determine the animat’s current action.

As a consequence, if  the animat was in zone  β at time  t and performed action  i, the reinforcement signal

r  t+1   computed by the Critic at next timestep will be used to update only weights of action  i from the

Actor β according to the following equation:

w
k,i,j

t w
k,i,j

 t−1 +η⋅r t ⋅var
j
 t−1                                                                                                (16)

Other equations are the same than those used for Critic of Model AMC2. As mentioned above, this principle –
using a specific controller or a specific Actor for each module of the Actor-Critic model – is inspired by the

work of Doya et al., (2002).

3.5. Results

In order to compare the learning curves of the four  simulated models, and so as to evaluate which models
manage to solve the task efficiently, we adopt the following criterion: after 50 trials of training (out of 100 for

each experiments), the animat has to achieve an equivalent performance to a hand-crafted model  that  can
already solve the task (Table 1). To do so, we simulated the GPR action selection model with appropriate

hand-determined synaptic weights and without any learning process, so that the animat can solve the task as if
it  had already learned  it.  With  this  model,  the  animat performed a 50 trials  experiment  with  an average

performance of 142 iterations per trial. Since each iteration lasted approximately 1 sec, as mentioned above, it
took a little bit more than 2 min per trials to this hand-craft animat to reach the reward.

Table 1. Performances of each model.
Model GPR AC AMC1 AMC2 MAMC
Performance 142 587 623 3240 97
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Table 1 shows the performance of each model, measured as the average number of iterations per trial after

trial #50. Figure 4 illustrates results to the four experiments performed in the 2D environment, one per model.
The x-axis represents the successive trials along the experiments. For each trial, y-axis shows the number of

iterations needed for the animat to reach the reward and consume it. Figure 4.a shows the learning curve of

Model AC. We can first notice that the model increased rapidly its performance until trial 7, and stabilized it at
trial 25. However, after trial 50, the average duration of a trial is still 587 iterations, which is nearly 4 times

higher than the chosen criterion. We can explain this limitation by the fact that Model AC is constituted of only

one single neuron in the Critic,  which can only solve linearly  separable problems. As a consequence, the
model could learn only a part of the task – in the area near the reward location –, but it was unable to extend

learning to the rest of the maze. So the animat has learned to select appropriate behaviors in the reward area,
but it still performs random behaviors in the rest of the environment.

Model AMC1 is designed to mitigate the computational limitations of Model AC, as it implies several Critic

units controlled by a gating network. Figure 4.b shows its learning curve after simulation in the plus-maze
task. The model has also managed to decrease its running time per trial at the beginning of the experiment.

However, we can notice that the learning process is more unstable than the previous one. Furthermore, after

the 50th trial, the model has a performance of 623 iterations, which is not better than Model AC. Indeed, the
model couldn’t extend learning to the whole maze either. We can explain this failure by the fact that the gating

network did not manage to specialize different experts in different subparts of the task. As an example, figure
5 shows the reward prediction computed by each Critic’s expert during the last trial of the experiment. It can

be noticed that the first expert (dark curve) has the highest prediction throughout the whole trial. This is due to
the fact that it is the only one the gating network has learned to consider as credible – its credibility remains

above 90% during  the whole experiment.  As a consequence,  only one expert  is  involved in  the learning

process and the model becomes computationally equivalent  to  Model AC:  it  cannot extend learning to the
whole maze, which is confirmed by the absence of any reward prediction before the perception of the reward

site (stimulus occurrence) in Figure 5.

Figure  4.c  shows  the  learning  curve  of  Model  AMC2 which  implements  another  principle  for  experts

coordination. This model cannot suffer from the same limitations than Model AMC1, since each expert was a
priori assigned to a specific area of the environment. As a consequence, it quickly managed to extend learning

to the whole maze.  However,  the consequence of  this  process  is to  produce interferences  in  the  Actor’s
computations: the same Actor receives all experts’ teaching signals, and it remains unable to switch properly

between reinforced behaviors. For example, when the action ‘drinking’ is reinforced, the Actor starts selecting

this action permanently, even when the animat is far from reward location. These interferences explain the

very bad performances obtained with Model AMC2.

The last simulated model (Model MAMC2) performed best. Its learning curve is shown on figure 4.d. This
model  implements  several  Actor  modules  (an  Actor  module  connected  to  each  Critic  expert).  As  a

consequence, it avoids interferences in the learning process and rapidly converged to a performance of 97
iterations per trial. This good performance cannot been reached with the multi-Actor only, since we tried to

combined several Actor modules to model  AMC1 and got a performance of 576 iterations per trial.  So the

achievement of the task implies the combination of a multi-Actor and a good specialization of experts.
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For checking the ability of Model MAMC2 to learn the same task in more realistic conditions, we simulated it
a 3D environment,  working in real time and implementing physical dynamics (Figure 7). This experiment

constituted an intermediary step favoring the implementation into an actual Pekee robot (Wany Robotics). The
animat is still able to learn the task in this environment and gets good performances after 35 trials (Figure 6;

corresponding average performance of the animat between trials 35 and 65: 284 iterations per trial).       

Figure 4 Learning curves of the four models simulated in

the 2D plus-maze task over 100 trials experiments. X-axis:
trials. Y-axis: number of iterations per trial (truncated to

10000 it. for better readability). a) Model AC. b) Model

AMC1. c) Model AMC2. d) Model MAMC2.

Figure  5  Reward  prediction  computed  by  each  Critic’s

expert of Model AMC1 during trial #100 of the experiment.
Time 0 indicates the beginning of the trial. S: perception of
the stimulus (the white wall) by the animat. R: beginning of
reward delivery. The dark curve represents the prediction of
expert 1. The other experts’ predictions are melted into the
light curve or equal to 0.

Figure  6  Learning  curve  in  the  3D environment.  X-axis:

trials. Y-axis: number of iterations per trial.
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Figure 7 Simulation of the plus-maze task in a 3D environment. Like the 2D environment, one random arm extremity is

white and delivers reward. The animat has to perform taxon navigation so as to find and consume  this reward. Gray
stripes arising from the animat’s body represent its sonar sensors used by its low level obstacle avoidance reflex.

4.Discussion and future work

In this work, we compared learning capabilities on a S-R task of several Actor-Critic  models of the basal

ganglia  based on distinct  principles.  Results  of  simulations with  models  AC,  AMC1,  AMC2  and MAMC2

demonstrated that:  

• A single-component Critic cannot solve the task (Model AC);

• Several Critic modules controlled by a gating network (Model AMC1) cannot provide good specialization,
and the task remains unsolved.

• Several Critic modules a priori associated with different subparts of the task (Model AMC2) and connected

to a single Actor (an Actor component being composed of a 6 channels GPR) allow learning to extend to
areas that are distant from reward location, but still suffer from interferences between signals sent by the

different Critic to the same single Actor.

Model  MAMC2,  combining several  Critic  modules with  the principle of  Model  AMC2,  and implementing

several Actor components produces better results in the task at matter, spreading learning in the whole maze
and reducing the learning duration. However, there are a few questions that have to be raised concerning the

biological plausibility and the generalization ability of this model.

4.1. Biological plausibility of the proposed model

When using a single GPR Actor, each action is represented in only one channel – an Actor module being

constituted of one channel per action (Gurney et al., 2001) – and the structural credit assignment problem –
which action to  reinforce  when getting a reward  – can be simply  solved:  the action that  has the highest

salience inhibits its neighbors via local recurrent inhibitory circuits within D1 striatum (Brown and Sharp,
1995). As a consequence, only one channel in the Actor will have enough pre- and post-synaptic activity to be

eligible for reinforcement.
When using several Actor modules, this property is not true anymore: even if only one channel per Actor

module may be activated at a given time, each Actor module will have its own activated channel, and several
concurring synapses would be eligible for reinforcement within the global Actor.  To solve this problem, we
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considered in our work that only one channel in the entire Actor is eligible at a given time. However, this

implies for the basal ganglia to have one of the two following characteristics: it should either exist non-local
inhibition between Actor  modules within the striatum,  or there should be some kind of  selectivity  in the

dopamine reinforcement signals so that even if several channels are activated, only those located in the target
module receives dopamine signals.

To the best of our knowledge, these characteristics were not found in the basal ganglia, and a few studies tend
to refute the dopamine selectivity (Pennartz, 1996).

4.2. Computational issues

Several computational issues need also to be addressed. First, the results presented here show that the learning

process was not perturbed by the fact to use an Actor detailing the action selection process in the basal ganglia.
This  Actor  has the property  to  take  into account  some persistence  provided by the cortex-basal  ganglia-

thalamus-cortex  loops.  The way this  persistence  precisely  influence the  learning  process  in  the  different
principles compared in this work was not thoroughly studied here. However we suspect that persistence could

probably challenge the way different Actors interact with Critic’s experts, as switching between actions does
not exactly follow switches in sensorimotor  contexts with this model. This issue should be examined in a

future work.

Generalization  ability  of  the  multi-module  Actor:   Another  issue  that  needs  to  be  addressed  here  is  the

generalization  ability  of  the multi-module  Actor  model  used in this  experiment.  Indeed,  Model  MAMC2
avoids interferences in the Actor because hand-determined subzones of the maze are absolutely disjoint. In

other words, learned stimulus-response associations in a given zone cannot be performed in another zone, and
do not interfere with the learning process is this second zone even if visual contexts associated to each of them

are very similar. However, this leads also to an inability to generalize from one zone to the other: even if the
distinction we made between two zones seemed relevant for the plus-maze task, if these two zones are similar

and would imply similar  motor responses in another task, the animat would have to learn twice the same
sensorimotor association – one time in each zone. As a consequence, the partition we set in this work is task-

dependent.
Instead,  the  model  would  need  a  partitioning  method  that  autonomously  classifies sensory  contexts

independently from the task, can detect similarities between two different contexts and can generalize learned
behaviors in the first experienced context to the second one.

About the precise time of reward delivery:

In the work presented here, the time of reward delivery depends exclusively on the animat’s behavior, which

differs from several other S-R tasks used to validate Actor-Critic models of the basal ganglia. In these tasks,
there is a constant duration between a stimulus and a reward, and several Actor-Critic models were designed

so as to describe the precise temporal dynamics of dopaminergic neurons in this type of task (Montague et al.,

1996). As a consequence, numerous Actor-Critic models focused on the implementation of a time component
for stimulus representation, and several works capitalized on this temporal representation for the application of

Actor-Critic models of reinforcement learning in the basal ganglia to robotics (Perez-Uribe, 2001; Sporns and
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Alexander, 2002). Will we need to add such a component to our model to be able to apply it to certain type of

natural tasks, or survival tasks?
In the experiments presented here, we didn’t need such a temporal representation of stimuli because there was

sufficient information in the continuous sensory flow perceived by the animat during its moves, so that the
model can dynamically adapt its reward predictions, as observed also in another work (Baldassarre and Parisi,

2000). For example, when the animat is at the center of the maze, perceives the white wall (stimulus predicting
reward)  and moves towards reward location,  the latter stimulus becomes bigger  in the visual  field of the

animat, and the model can learn to increase its reward prediction, as shown in figure 8. We didn’t aim at
explaining the depression of dopamine neurons’ firing rates when a reward doesn’t occur, nevertheless we

were able to observe this phenomenon in cases where the animat was approaching the reward site, was about
to consume it, but finally turned away from it (R events in figure 8).

Figure 8 Reward prediction (light curve) and dopamine reinforcement signal (dark curve) computed by Critic of Model MAMC2 in

the 3D environment. X-axis: time. Y-axis: Critic’s signals. S : perception of the stimulus (white wall) by the animat; R: Reward missed

by the animat.

Using  Critics  dependent  or  independent  from  the  performance: In  our  experiments,  Model  AMC1,
implementing a gating  network  for  experts’  credibilities  computation,  did  not  solve  the task.  We saw in

section 2 that, during the simulations, one expert became rapidly the most credible, which forced the model to
use only one neuron to solve the task. The use of gating networks in the frame of mixture of experts methods

has already being criticized (Tang  et  al.,  2002).  According to these authors,  this approach works well  on

problems composed of disjoint regions but does not generalize well, suffering from effects on boundaries of
regions.

In our case, we explain the failure in the experts’ specialization with Model AMC1 by the observation that until

the model has started to learn the task, and so can propagate teaching signals to the rest of the maze, only
reward location has a value. As a consequence, it is the only area where the gating network tries to train an

expert, and the latter rapidly reaches a high credibility. Then, as reward value starts to be extended to a new
zone, this same expert still has the best credibility while getting bad performances. Other experts do not have

significantly better performances – since they were not trained yet and since the new area and the first one are
not disjoint. As a consequence, they remain non credible and the model starts having bad performances.

In his work, Baldassarre managed to obtain a good specialization of experts (Baldassarre, 2002). This may be
partly explained by the fact that his task involved three different rewards located in three different sensory

contexts. The simulated robot had to visit all rewards alternatively since the very beginning of the task. This
may  have  helped  the  gating  network  to  attribute  good  credibilities  to  several  experts.  However,  reward
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locations in Baldassarre’s task are not perfectly disjoint, which result in a difficult specialization: one of the

experts is the most credible for two of the three rewards (see Baldassarre, 2002). 
Another model (Tani and Nolfi, 1999) proposes a different mixture of experts where the gating network is

replaced  with  a  dynamical  computation  of  experts’  credibilities.  Their  model  managed  to  categorize  the
sensori-motor flow perceived by a simulated robot during its movements. However, their method does not use

any memory of associations between experts’ credibilities and different contexts experienced during the task.
As  a  consequence,  experts’  specialization  is  even  more  dependent  to  each  expert’s  performance  than

Baldassarre’s gating network, and suffers from the same limitation when applied to reinforcement learning in
our plus-maze task - as we experimented in unpublished work.

Combining  self-organizing  maps  with  mixture  of  expert: To test  the  principle  of  dissociating  the  experts

credibility from their performance, we partitioned the environment into several sub-regions. Yet, this method
is ad hoc, lacks autonomy, and suffers generalization abilities if the environment is changed or becomes more

complex. We are currently implementing Self-Organizing Maps (SOM) as a method of autonomous clustering
of the different sensory contexts will be used to determine these zones. Note that this proposition differs from

the traditional use of SOM to cluster the state space input to experts or to Actor-Critic models (Smith, 2002;

Lee et al., 2003). It is rather a clustering of the credibility space, which was recently proposed by Tang et al.

(2002).  We also  would  like  to  compare  the  use of  SOM with  the  use  of  place  cells.  Indeed models  of

hippocampal place cells have already been used for coarse coding of the input state space to the Actor and the

Critic (Arleo and Gerstner, 2000; Foster  et al., 2000; Strösslin, 2004) but, in our case, we would like to use
place cells to determine experts’ credibilities.

4.3. Future work

As  often  mentioned  in  the  literature,  and  as  confirmed  in this  work,  the  application  of  Actor-Critic

architectures to continuous tasks is more difficult than their use in discrete tasks. Several other works have
been done on the subject  (Doya,  2000).  However,  these architectures  still  have to  be improved so as to

decrease their learning time:
Particularly, the learning performance of our animat seems still far from the learning speed that real rat can

reach in the same task (Albertin et al., 2000), even if the high time constant that we used in our model does not

allow a rigorous comparison yet (cf. parameters table in the appendix). This could be at least partly explained
by the fact that we implemented only S-R learning (or habit learning), whereas it has recently been known that

rats are endowed with two distinct learning systems related to different cortex-basal ganglia-thalamus loops: a

habit learning system and a goal-directed learning one (Ikemoto and Panksepp, 1999; Cardinal  et al., 2002).
The latter  would be fast,  used at  the early  stages of  learning,  and implying  an explicit  representation  of

rewarding goals or an internal representation of action-outcome contingencies. The former would be very slow
and takes advantage of the latter when the animat reaches good performances and becomes able to solve the

task with a reactive strategy (S-R) (Killcross and Coutureau, 2003; Yin et al., 2004).

Some theoretical work has already been started to extend Actor-Critic models to this functional distinction
(Dayan, 2001). In the practical case of our artificial rat, both such systems could be useful in two different

manners.
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First,  it  could  be  useful  to  upgrade  the  exploration  function.  This  function  could  have  an  explicit

representation of different  places of the environment,  and particularly  of the reward site.  Then,  when the
animat gets reward for the first time, the exploration function would guide it trying behaviors that can allow it

to reach the explicitly memorized reward location. The function could also remember which behaviors have
already been tried  unsuccessfully  in  the different  areas, so that  untried  behaviors  are  selected instead of

random behaviors in the case of exploration. This would strengthen the exploration process and is expected to
increase the animat’s learning speed. 

The second possible use of a goal-directed behavior component is to represent the type of reward the animat is
working for. This can be useful when an animat has to deal with different rewards (food, drink) so as to satisfy

different motivations (hunger, thirst). In this case, a component that chooses explicitly the current reward the
animat  takes  as  an objective  can select  sub-modules  of  the  Actor  that  are  dedicated  to  the  sequence  of

behaviors that leads to the considered reward. This improvement would serve as a more realistic validation of
the  artificial  rat  Psikharpax  when  it  has  to  survive  in  more  natural  environments,  satisfying  concurrent

motivations.
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Appendix : Parameters Table

Symbo Valu Description
tΔ 1 sec. Time constant – time between two successive iterations of the model.

α 40 iter. Time threshold to trigger the exploration function.

g 0.98 Discount factor of the Temporal Difference learning rule.

η 0.01 Learning rate of the Actor and Critic modules.

N 30 Number of experts in the Critic of Models AMC1, AMC2 and MAMC2.

σ 2 Scaling parameter in the mixture of experts of Model AMC1.

m 0.1 Learning rate of the gating network in Model AMC1.
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