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This article describes a biomimetic control architecture affording an animat both action

selection and navigation functionalities. It satisfies the survival constraint of an artificial

metabolism and supports several complementary navigation strategies. It builds upon

an action selection model based on the basal ganglia of the vertebrate brain, using two
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interconnected cortico-basal ganglia-thalamo-cortical loops: a ventral one concerned with

appetitive actions and a dorsal one dedicated to consummatory actions.

The performances of the resulting model are evaluated in simulation. The experiments

assess the prolonged survival permitted by the use of high level navigation strategies and

the complementarity of navigation strategies in dynamic environments. The correctness

of the behavioral choices in situations of antagonistic or synergetic internal states are

also tested. Finally, the modelling choices are discussed with regard to their biomimetic

plausibility, while the experimental results are estimated in terms of animat adaptivity.

Keywords: action selection, navigation, basal ganglia, computational neuroscience

Short title: Basal ganglia model of action selection and navigation.

1 Introduction

The work described in this paper contributes to the Psikharpax project, which aims at

building the control architecture of a robot reproducing as accurately as possible the current

knowledge of the rat’s nervous system (Filliat et al., 2004), it thus concerns biomimetic

modelling derived from data gathered with rats. The main purpose of the Psikharpax

project is to refocus on the seminal objective advocated by the animat approach: building

”a whole iguana” (Dennett, 1978), instead of designing isolated and disembodied functions.

Indeed, in the animat literature, a great deal of work is devoted to the design of isolated

control architectures that provide either action selection or navigation abilities –two fun-
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damental functions for an autonomous system. The main objective of robotic navigation

architectures is to afford an animat with various orientation strategies, like dead-reckoning,

taxon navigation, place-recognition or planning (Filliat and Meyer, 2003, Meyer and Fil-

liat, 2003 for reviews). The main objective of action selection architectures is to maintain

the animat into its “viability zone”, defined by the state space of its “essential variables”

(Ashby, 1952), through efficient switches between various actions (Prescott et al., 1999

for a review). Even if there is evidence that an effective animat requires the use of these

two functionalities, few models attempt to integrate them, taking into account the specific

characteristics of each.

On the one hand, most of the navigation models insert arbitration mechanisms typical

of action selection to solve spatial issues (e.g., Rosenblatt and Payton, 1989), but they do

not take into account motivational constraints.

On the other hand, action selection models always integrate navigation capacities en-

suring an animat the ability to reach resources in the environment, but they typically

implement only rudimentary navigation strategies –random walk and taxon navigation–

(e.g., Maes, 1991, Seth, 1998).

The few models that process both navigation and action selection issues are inspired by

biological considerations, indicating that the hippocampal formation, in association with

the prefrontal cortex, processes spatial information (O’Keefe and Nadel, 1978), whereas

the basal ganglia are hypothesized to be a possible neural substrate for action selection in

the vertebrate brain (Redgrave et al., 1999).

For example, Arleo and Gerstner (2000) propose a model of the hippocampus that
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elaborates an internal map with the creation of several “place cells”, used by an animat to

reach two different kinds of resources providing rewards. The outputs of the model are as-

sumed to be four action cells, coding for displacements in cardinal directions, and assumed

to belong to the nucleus accumbens. This nucleus, located in the ventral part of the basal

ganglia, is hypothesized to integrate sensorimotor, motivational and spatial information

(Kelley, 1999). In this model, it selects the actual displacement by averaging the ensemble

activity of the action cells. However, the animat does not select other navigation strategies

and does not have a virtual metabolism that puts constraints on the timing and efficiency

of the selection of its behaviors.

Guazzelli et al. (1998) endow their simulated animat with two navigation strategies

(place-recognition-triggered and taxon navigation, processed by hippocampus and pre-

frontal cortex) and homeostatic motivational systems (hunger and thirst, processed by

hypothalamus). Here, the role of the basal ganglia is limited to computing of reinforce-

ment signals associated with motivational states, while action selection properly occurs in

the premotor cortex. Yet, in this work, there are no virtual metabolism constraints on

action selection and because of the choice of a systems-interaction level of modelling, the

internal operation of the modules is not specifically biomimetic.

Gaussier et al. (2000) endow a motivated robot (KoalaTM, K-Team) with a virtual

metabolism –generating signals of hunger, thirst and fatigue– and a topological navigation

capacity. A topological map is built in the hippocampus and used to build a graph of

transitions between places in the prefrontal cortex, used for path planning. The motor

output is assumed to be effected by action neurons in the nucleus accumbens, coding
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for three egocentric motions (turn right, left, go straight). Motivational needs affect path

planning by spreading activation into the prefrontal graph from the desired resources to the

current location of the animat. They are transmitted to the action neurons, allowing the

animat to reach one goal by several alternative paths, and to make compromises between

different needs. Here, one navigation strategy only is used, while various complementary

strategies coexist in animals.

These models do not entirely satisfiy the objectives of the fundamental functions, that

is, dealing with survival constraints together with taking advantage of various complemen-

tary navigational strategies. Moreover, they do not exploit recent neurobiological findings

concerning neural circuits devoted to the integration of these functions, involving two paral-

lel and interconnected “cortico-basal ganglia-thalamo-cortical” loops (CBGTC, Alexander

et al., 1986), stacked on a dorsal to ventral axis, receiving sensorimotor (dorsal loop) and

spatial (ventral loop) information.

We previously tested a computational model of action selection, inspired by the dor-

sal loop and designed by Gurney et al. (2001a,b, referred to here as ’GPR’ after the

authors’names), by replicating the Montes-Gonzalez et al. (2000) implementation in a sur-

vival task (Girard et al., 2003). To improve the survival of an artificial system in a complex

environment, our objective is to add to this architecture a second circuit –simulating the

ventral loop– which selects locomotor actions according to various navigation strategies: a

taxon strategy, directing the animat towards the closest resource perceived, a topological

navigation, building a map of the different places in the environment and using it for path

planning, together with random exploration, mandatory to map unknown areas and allow-
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ing the discovery of resources by chance. The interconnection of the dorsal and ventral

loops is designed by means of bioinspired hypotheses. The whole model will be validated

in several environments where the animat performs a simple survival task.

After describing the navigation and action selection systems and how they are inter-

connected, we will introduce the specific experimental setup (survival task and animat

configuration). The results will concern tests on the animat’s specific adaptive mecha-

nisms and behaviors, involving topological and taxon navigation, opportunistic ability and

conflict management in case of changes in the environment or internal state.

2 The control architecture

This model has been introduced in a brief preliminary form in Girard et al. (2004).

2.1 Navigation

The choice of the navigation model was based on functional and efficiency criteria: it had

to provide the animat with the capabilities of building a cognitive map, localizing itself

with respect to it, storing the location of resources and computing directions to reach these

resources; these operations had to be performed in real time and had to be robust enough

to cope with the physical limitations of a real robot. The navigation system proposed by

Filliat (2001) was chosen as it provides the required features and has been validated on a

real robot (PioneerTM, ActivMedia).

This model emulates hippocampal and prefrontal cortex functions. It builds a dense
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topological map in which nodes store the allothetic sensory input that the animat can per-

ceive at respective places in the environment. These inputs are mean gray levels perceived

by a panoramic camera in each of 36 surrounding directions, and sonar readings providing

distances to obstacles in eight surrounding directions. A link between two nodes memorizes

at which distance and in which direction the corresponding places are positioned relative to

each other, as measured by the idiothetic sensors of odometry. The position of the animat

is represented by a probability distribution over the nodes.

The model also provides an estimation of disorientation (D), which varies from 0 when

the estimate of location is good, to 1 when it is poor. D increases when the robot is

creating new nodes (it is in an unmapped area) and only decreases when it spends time

in well known areas. The model also provides two 36-component vectors indicating which

directions to follow in order to either explore unmapped areas (Expl) or go back to known

areas in order to decrease disorientation (BKA). If the animat does not regularly go back

to known areas when it is very disoriented, the resulting cognitive map will not be reliable.

Consequently, the addition of topological navigation to an action selection mechanism will

put a new constraint on the latter, the one of keeping Disorientation as low as possible.

We provided the model with the ability to learn the localization of resources important

to survival (e.g. loading station, dangerous area) in the topological map. It is learned by

associating active nodes of the graph with the type of resources encountered using Hebbian

learning. By specifying the type of resource currently needed to a path planning algorithm

applied on the graph, a vector P of 36 values is produced, representing the proximity of

that resource in 36 directions spaced by 10◦. Such a vector can be produced for each type of
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resource res, weighted by the motivation associated to that resource m(res), and combined

with the other ones to produce a generic path planning vector Plan. The combination is

processed as follows:

Plan = 1 −
∏

res

(1 − m(res) × P(res)) (1)

2.2 Action Selection System

–Figure 1 around here–

The action selection model presented here is an extension of the one used in Girard

et al. (2003), the GPR model (Gurney et al., 2001a). It is a neural network model

built with leaky-integrator neurons, in which each nucleus in the BG is subdivided into

distinct channels each modelled by one neuron (Figure 1), and each channel associated to

an elementary action. Each channel of a given nucleus projects to a specific channel in

the target nucleus, thereby preserving the channel structure from the input to the output

of the BG circuit. The subthalamic nucleus (STN) is an exception as its excitation seems

to be diffuse. Inputs to the BG channels are Salience values, assumed to be computed in

specific areas in the cortex, and representing the commitment to perform the associated

action. They take into account internal and external perceptions, together with a positive

feedback signal coming from the thalamo-cortical circuit, which introduces some persistence

in the action performance. Two parallel selection and control circuits within the basal

ganglia serve to modulate interactions between channels. Finally, the selection operates
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via disinhibition (Chevalier and Deniau, 1990): at rest, the BG output nuclei are tonically

active and keep their thalamic and motor system targets under constant inhibition. The

output channel that is the less inhibited is selected, and the corresponding action executed.

A principal original feature of our model is that two parallel CBGTC loops are modelled,

one selecting consummatory actions and the other appetitive actions.

2.2.1 Dorsal loop

In the BG, the dorsal loop implicated in the selection of motor responses in reaction to

sensorimotor inputs and corresponds to the one modelled in the previous robotic studies

of the GPR (Montes-Gonzalez et al., 2000; Girard et al., 2003). Here we hypothesize that

it will direct the selection of non-locomotor actions, which in the present case are limited

to consummatory actions (robotic equivalents of eating, resting, etc.) (Figure 2). In this

loop:

• input Saliences are computed with internal and external sensory data;

• at the output, a “winner-takes-all” selection occurs for the most disinhibited channel,

as simultaneous partial execution of both reloading behaviors doesn’t make sense.

–Figure 2 around here–

2.2.2 Ventral loop

The ventral loop can be subdivided into two distinct subloops (Thierry et al., 2000), orig-

inating from the core and shell regions of its input nucleus (nucleus accumbens or NAcc)
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(Zham and Brog, 1992). In the present work, we will only retain the core subloop (that will

be henceforth also called ventral loop), which has been proposed to play a role in navigation

towards rewarding places (Mulder et al., 2004; Martin and Ono, 2000). The interactions

between the hippocampus, the prefrontal cortex and the NAcc core (Thierry et al., 2000)

could be the substrate of a topological navigation strategy. Taxon navigation needs sensory

information only and could therefore be implemented in the dorsal loop. However, it was

reported that the lesion of the NAcc also impairs object approach (Seamans and Phillips,

1994). This is why, in our model, this strategy will also be managed by the ventral loop.

To summarize, we hypothesize that this loop will direct appetitive actions (robotics

equivalent for looking for food, homing, etc.), suggesting displacements towards motivated

goals (Figure 2).

The ventral loop is very similar –anatomically and physiologically– to the circuits of

the dorsal loop: the dorsolateral ventral pallidum plays a role similar to the GP (Maurice

et al., 1997), the medial STN is dedicated to the ventral circuits (Parent and Hazrati, 1995)

as well as the dorsomedial part of the SNr (Maurice et al., 1999). Thus, despite probable

differences concerning the influence of dopamine on ventral and dorsal input nuclei, it is

also designed by a GPR model. However, a few differences are to be noted:

• Saliences are computed with internal and external sensory data: the taxon navigation

needs distal sensory inputs to select a direction and all navigation strategies are

modulated by the motivations. Additional data coming from the navigation system

proposes motions on the basis of a topological navigation strategy and map updates
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of current positions;

• each nucleus is composed of 36 channels, representing allocentric displacement direc-

tions separated by 10◦;

• the lateral inhibitions which occur in the nucleus accumbens core are no longer uni-

form as in the dorsal loop, but increase with the angular distance between two

channels (see eqn. 7), so that close directions compete less than opposite ones;

• at the output, the selection makes a compromise among all channels disinhibited

above a fixed threshold. The direction chosen by the animat is computed by a vector

sum of these channels, weighted by their magnitudes of disinhibition.

2.2.3 Interconnection of Basal Ganglia loops

Interconnections between the parallel CBGTC loops is needed to coordinate their respec-

tive selection processes. This is especially true here, when selections concerning navigation

taken in the ventral loop –like following a planned path leading to a resource– might be

conflicting with behavioral choices made by the dorsal loop –like resting. Four main hy-

potheses concerning interconnections between loops have been proposed in the rat’s brain.

Two of them (Hierarchical pathway (Joel and Weiner, 1994) and Dopaminergic hierarchical

pathway (Joel and Weiner, 2000)) were discarded because they only allow unidirectional

communication from ventral to dorsal loops, whereas bidirectional or dorsal-to-ventral com-

munication was necessary to solve our conflicts. The two remaining possibilities are (1) the

Cortico-cortical pathway : cortical interconnections between areas implied in different loops
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could allow bidirectional flows of information between loops; and (2) the Trans-subthalamic

pathway (Kolomiets et al., 2001, 2003): the segregation of loops is not perfectly preserved

at the level of the STN, some neurons belonging to one loop are excited by cortical areas

belonging to other loops, thus, parts of the SNr belonging to one loop can be excited by

another loop (Figure 2).

We implemented the trans-subthalamic hypothesis, by distributing dorsal STN activa-

tion to the ventral outputs (see eqn. 10 and Figure 2). Selection of an action in the dorsal

loop increases activity in the dorsal STN, which in turn increases activation of the ventral

outputs, preventing any movement from occuring.

The precise mathematical description of the resulting model is given in appendix A.1.

3 Experimental setup

3.1 Environment and survival task

The experiments are performed in simulated 2D environments involving, as in Girard

et al. (2003), the presence of “ingesting” and “digesting” zones, but with the addition

of “dangerous” places. The animat has to reach “ingesting” zones in order to acquire

Potential Energy (EP ), which it should convert into Energy (E) in “digesting” zones, in

order to use it for behavior. Note that a full load of Energy allows the animat to survive

only 33min. Paths to reach these zones may contain dangerous areas to avoid.

The software used is a simulator programmed in C++, developed in our laboratory.
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Walls and obstacles are made of segments colored on a 256 level grayscale. The effects of

lighting conditions are not simulated: the visual sensors have a direct access to the color.

The three type of resources are represented by 50cm × 50cm squares of specific colors:

the “ingesting” (Ep), “digesting” (E) and “dangerous” (DA) areas are respectively gray

(127), white (255) and dark gray (31). They can be used by the animat when the distance

between their centre and the centre of the animat is less than 70cm (i.e. when they occupy

more than 60◦ of the visual field). The other gray objects have no impact on survival but

help the navigation system discriminating places.

3.2 The animat

The animat is circular (30cm diameter), and translation and rotation speeds are 40cm.s−1

and 10◦.s−1 respectively. Its simulated sensors are:

• an omnidirectional linear camera providing the color of the nearest segment for every

10◦ surrounding sector,

• eight sonars with a 5m range, a directional incertitude of ±5◦ and a ±10cm distance

accuracy,

• encoders measuring self-displacements with an error of ±5% of the measured distance,

• a compass with a ±10◦ range of error of estimated direction.

The sonars are used by a low level obstacle avoidance reflex which overrides any decision

taken by the BG model when the animat comes too close to obstacles. The navigation
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model uses the camera, encoders and compass inputs. The BG model uses the camera

input to compute nine external variables:

• Three 36-component vectors, Prox(DA), Prox(EP ) and Prox(E) providing the

proximity of each type of resource in each direction. This measure is related to

the angular size of the resource in the visual field with a 10◦ resolution, as it is

obtained by counting the number of contiguous pixels of the resource color in a 7

pixels window centered on the direction considered. These vectors are the basis of

the taxon navigation strategy.

• Three variables, mProx(DA), mProx(EP ) and mProx(E) which are the max values

of the components of Prox vectors.

• Three Boolean variables, A(DA), A(EP ) and A(E), which are true if the correspond-

ing mProx value is one (i.e. if the resource is less than 70cm away and thus usable).

These purely sensory inputs are completed by the vectors produced by the topological

navigation system: the path planning vector Plan, the exploration vector Expl and the

“go back to known areas” vector BKA.

The animat has four internal variables: Energy and Potential Energy, which concern the

survival task (see 3.1), Fear, which is a constant, fixing the strength of the repellent effect

of “dangerous areas” and Disorientation, which is provided by the topological navigation

system (see 2.1). From these variables are derived four motivations used in saliences

computations and in the weighting of the Plan vector (eqn. 1). The motivations to go

back to known areas and to flee dangerous areas are respectively equal to the Disorientation
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and Fear variables, while the motivation to reach Energy and Potential Energy resources

are more complex:

m(DA) = F

m(BKA) = D

m(E) = (1 − E)
√

1 − (1 − EP )2

m(EP ) = 1 − EP

(2)

The variables used to compute saliences in each loop are summarized in Figure 2, and

the details of these computations are given in appendix A.2.

4 Experiments

Three different experiments are carried out in simple environments in order to test the

adaptive mechanisms the animat is provided with.

Experiment 1 tests the efficiency of the navigation/action selection models interface.

An animat capable of topological navigation has to survive in an environment contain-

ing one resource of Energy and one resource of Potential Energy which cannot be seen

simultaneously. It is compared to an animat using the taxon strategy only, the use of the

topological navigation is expected to improve the survival time.

Experiment 2 tests adaptive action selection in a changing environment : on the one

hand, the animat has to use a taxon strategy in order to reach newly appeared resources;

on the other hand, it has to forget the location of exhausted resources to head towards

abundant ones.
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Experiment 3 tests adaptive action selection in case of antagonistic or synergetic in-

ternal states: on the one hand, in a situation where two paths lead to a resource and the

shortest one includes a dangerous area; on the other hand, in a situation where a short

path leads to one resource only, while a longer one leads to two resources satisfying two

different needs.

In experiments 2 and 3, the animat is provided with a previously built map of the

environment in order to allow statistical comparison of runs with identical initial conditions.

4.1 Experiment 1: Efficiency of the navigation/action selection

interface

In this experiment, an animat traverses the environment (7m×9m) depicted in Figure 3: it

contains one resource of E and one resource of EP , but it is impossible to see one resource

from the vicinity of the other. In the first model configuration (condition A), the animat

uses both object approach and topological navigation strategies, whereas in the other one

(condition B), the animat uses object approach only. The “reactive” animat (condition B),

following taxon strategy only, has to rely on random exploration to find hidden resources.

In contrast, after a first phase of random exploration and map building, the animat in

condition A should be able to reach desired resources using its topological map.

–Figure 3 around here–

Ten tests, with a four-hour duration limit, are run for both animats. Energy and

Potential Energy are initially set to 1. The comparison of the median of survival durations
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for both sets shows that in condition A, the animat is able to survive significantly longer

(p < 0.01, U-test, see Table 1) than the animat in condition B.

–Table 1 around here–

In (Girard et al., 2003), action selection was only constrained by the virtual metabolism.

Here, the addition of the topological navigation system generates a new constraint of limit-

ing Disorientation. Yet it does not affect the efficiency of action selection, as the life span

of animats is enhanced.

4.2 Experiment 2: Changing environment

–Figure 4 around here–

This experiment takes place in the 6m × 6m environment depicted in Figure 4, where

the second Potential Energy resource is not always present.

4.2.1 New resources: Coordination of the navigation strategies

In this case, the second Potential Energy resource is not present during the mapping phase,

so that when the animat reaches the first intersection, it perceives a new resource that is

unknown by the topological navigation system. The topological and the taxon strategies

are thus competing, the first one suggesting to move to the distant resource (EP 1) and

the second to the newly appeared and closer resource (EP 2). For all tests, the animat is

initially placed on the same location shown in Figure 4 and lacks Potential Energy (E = 1

and Ep = 0.5). The tests are stopped when the animat activates the ReloadEP action.

The control experiment consisting of ten tests in which resource EP 2 is not added,
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results in a repeatable behavior of the animat: it goes directly to EP 1 and activates the

ReloadEP action when close enough to EP 1. Three series of fifteen tests, with different

weightings of the salience computations (variations of eqn. 17 in appendix using the weights

of Table 2), are compared by counting how many times the animat chose one resource versus

the other. The results are summarized in Table 2.

–Table 2 around here–

The first weighting corresponds to the configuration used in the previous experiment

(eqn. 17). The path planning weight is larger than the taxon strategy one. As a result, the

animat often ignores the new resource and chooses the memorized one. When the relative

importance of the two strategies is modulated by progressively lowering the path planning

weight, the behavior of the animat is modified and an opportunistic behavior, where it

prefers the new and closest resource, can be obtained.

Consequently, if our control architecture does not intrinsically exhibit an opportunistic

or a pure planning behavior, it can easily be tuned to generate the desired balance between

these two extremes.

4.2.2 Exhausted resources: Forgetting mechanism

In this situation, resource EP 2 is present during mapping but is removed during the tests.

The animat then has to “forget” its existence in the map in order to go to the other

resource.

Fifteen tests are carried out, with the animat initially placed on the same start location

(see Figure 4) lacking Potential Energy (E = 1 and Ep = 0.5). The tests are stopped when
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the animat activates the ReloadEP action.

The animat first goes to the closest EP resource coded by the topological navigation

system: the near but absent EP 2 resource. The forgetting mechanism (implemented by the

Hebbian rule used to link resources with locations on the map) allows the animat to finally

leave this area and to reach resource EP 1. The time necessary to forget EP 2 is estimated

by subtracting the duration of the most direct path leading from the start position to EP 1

via EP 2 (46s) to the duration of each test. The mean duration is 178s (σ = 78), i.e. 2

minutes and 58 seconds (max value 5 minutes). It is a bit long (almost 10% of the 33

minutes survival duration with a full charge of Energy), but it can be reduced by simply

modifying the gain of the Hebbian rule.

This shows that the ability to forget, which is necessary to survive in environments

where resources are exhaustible, operates correctly.

4.3 Experiment 3: Antagonistic or synergetic internal states

4.3.1 Antagonistic internal states: Fear vs reloading need

–Figure 5 around here–

A first experiment is run in an environment (10m × 6m) containing two EP resources

and a dangerous area blocking direct access to the closest one (Figure 5). The Dangerous

Areas affect the planning algorithm of the topological navigation system in an inhibitory

manner. A path planning vector leading to dangerous areas is computed, multiplied by the

level of Fear and subtracted to the other planning vectors: the term −m(DA) × P(DA)
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is added to the computation of Plan described in eqn. 1.

The animat initially lacks Potential Energy and its level of Fear is fixed (E = 1,

EP < 1, F = 0.2). When the Dangerous Area is absent, the animat systematically chooses

the closest resource (EP 1). However, when it is present, this inhibits the drive to go

towards the EP 1 resource and the final choice of the EP resource should thus depend on

the importance of the lack of energy.

–Table 3 around here–

Two series of 20 tests are carried out in order to induce conflicts between internal

states depending on Fear and EP , respectively with a moderate (EP = 0.5) and a strong

(EP = 0.1) lack of EP . As illustrated in Table 3, the inhibition generated by the Dangerous

Area in the first case is strong enough and the animat, despite the longer route, selects

EP 2. In the second one, the need for Potential Energy is stronger and the animat, despite

the danger, selects EP 1. These two opposite tendencies are significantly different (Fischer’s

exact probability test, p < 0.01).

This experiment shows that the animat may take risks in emergency situations and

avoid them otherwise. But, more generally, it shows that it can exhibit, in an identical

environmental configuration, different behavioral choices adapted to its conflicting internal

needs, an essential property for a motivated animat.

4.3.2 Synergetically interacting motivations

–Figure 6 around here–

This task is inspired by a T-maze experiment proposed in Quoy et al. (2002) in order
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to study the behavior generated by the coupling of two motivations. The left branch of the

T contains one EP resource while the right one contains both an E and an EP resource

(Figure 6). The length of the right branch is varied so that the ratio of the right branch

length to the left branch length is 1, 1.5 or 2. The animat is initially placed in the lower

branch of the T, with a motivation for both E and EP (E = 0.5 and EP = 0.5). The test

stops when the animat activates the ReloadEP action. In such a situation, the animat is

expected to systematically prefer the right branch, even if it is longer, because choosing

the left only satisfies the EP need, while choosing the right can satisfy both E and EP

needs.

–Table 4 around here–

Three series of fifteen tests are carried out with branch length ratio values of 1, 1.5

and 2, with an animat that needs both E and EP . As long as the ratio is not too high,

the cumulated activation generated by the two resources on the right is higher than the

drive generated by the single EP resource on the left (Table 4, ratio 1 and 1.5). However,

when the two resources on the right are too far away, the drive they generate is attenuated

by distance and the animat becomes more and more attracted by the resource on the left

(Table 4, ratio 2).

The Gaussier et al. (2000) model of navigation integrates the notion of “preferred path”

by reducing the apparent distance between two nodes of the map when they are often used.

This allows the right branch to become preferred and thus systematically chosen over time.

Future development of our model should include such a habit learning capability.
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5 Discussion

The proposed biomimetic model integrates both navigation and action selection, in taking

into account the specificities of both survival constraint and variety of navigation strategies.

Simulations in benchmark environments validate 1) the survival advantage of using path

planning strategies, 2) the benefits of simultaneously using taxon and planning strategies

along with the necessity of being able to forget when operating in changing environments,

and 3) the capability of the model to behave adaptively in case of conflicting and synergetic

motivations.

5.1 From Rattus rattus...

How the brain coordinates the interface between spatial maps, motivation, action selection

and motor control systems is of timely interest. The rat brain is widely investigated in this

purpose, but many issues remain to be clarified. By synthesizing observed mechanisms in

a behaving artificial system, our work helps to formulate several questions.

For example, our model points out limitations about the current neurobiological knowl-

edge concerning the actual role of NAcc core channels: do they represent, as in our model

and in e.g., Strösslin (2004), competing directions of movements? In Experiment 2.1, the

level of opportunism is fixed and does not adapt to changing conditions (whereas taxon

navigation is less reliable in poor lighting conditions), as the ventral loops selects one di-

rection taking into account all the navigation strategies. This could be changed by having

it selecting among the strategies the most adapted one before a dorsal loop selects the
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direction of motion based on the chosen strategy suggestion only. Such coding has recently

received support by the work of Mulder et al. (2004), on the basis of electrophysiological

recordings in hippocampal output structures associated with the NAcc and a nucleus of the

dorsal stream (ventromedial caudate nucleus). Another and more complex role may also

be considered: NAcc core could interface goals, their location, their amount and the cor-

responding motivations with information coming from several neural structures like other

limbic structures or CBGTC loops (Dayan and Balleine, 2000).

Likewise, our model questions the putative substrates of interactions between CBGTC

loops and their mode of operation, a subject of active current research. We may have im-

plemented the trans-subthalamic hypothesis in an exaggerated manner. In fact the overlap

of STN projections from various loops is rather limited (Kolomiets et al., 2003), while in

our model they extensively reach the whole output of the ventral loop. This choice was in-

deed convenient for the role attributed here to the dorsal and ventral channels, respectively

coding for immobile and mobile actions. Recent results relative to interactions at the level

of BG output projections to dopaminergic nuclei in rats (Mailly et al., 2003) shed a new

light on the dopamine hierarchical pathway and could be the basis of an alternative model.

In the GPR, varying the dopamine level affects directly the ability to select, therefore, the

possibility that one loop may modulate the dopamine level of another one could be the

basis of an alternative mechanism for a loop to shunt another loop. One cannot finally

exclude the possibility that the resolution of selection conflicts in the CBGTC loops is not

only managed in the BG but also in downstream brainstem structures, for example in the

reticular formation (Humphries et al., this issue).
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5.2 ...to Psikharpax

In Experiment 1, the planning animat (condition A) sometimes dies because of a imperfect

hand-tuning of the salience computations, which causes it to stop to reload too far away

from resources. The basal ganglia, in interaction with the dopaminergic system, is supposed

to be the neural substrate for reinforcement learning. In order to avoid such problems in

the future, we are now adding such a mechanism of automatic optimization of salience

computations to our model (Khamassi et al., 2004).

As mentioned in introduction, this work contributes to the Psikharpax project, which

aims at building an artificial rat (Filliat et al., 2004). As it evolves, this artificial rat

will be endowed with more than the few motivations taken into account here, in the aim

to improve the actual autonomy of current robots, often devoted to a single task. The

development of polyvalent artifacts working in natural environments is indeed promising

for many applications in the home or in the office, as well as future space programs with

unmanned missions. Our work also helps assessing the operational value of the biomimetic

models used for this purpose.
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A Appendix: Mathematical model description

A.1 GPR structure

Activation (a) of every neuron of the model:

τ
da

dt
= I − a (3)

where: I: input of the neuron, τ : time constant (τ = 25ms). Corresponding output

(y):

y =































0 if a < ǫ

m × (a − ǫ) if ǫ ≤ a < ǫ + 1/m

1 if ǫ + 1/m ≤ a

(4)

Values of ǫ and m for each nucleus in Table 5.

–Table 5 around here–

In each module (D1 and D2 striatum subparts, STN, EP/SNr, GP, VL, TRN and

cortical feedback), the input of each channel i is defined by the equations 5 to 14, where

N : number of channels, Si: salience of channel i, λ: dopamine level (0.2).

I i
D1 = (1 + λ)Si −

N
∑

j=0
j 6=i

yi
D1 (5)

I i
D2 = (1 − λ)Si −

N
∑

j=0
j 6=i

yi
D2 (6)
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In our model of the ventral loop, lateral inhibitions (sum terms in eqn. 5 and 6) increase

with the angular difference between two channels. They are replaced in the ventral loop

by the following LI term:

LI i =

N
∑

j=0
j 6=i

|i − j|mod(N/2)

N/2
× yi

(D1 or D2) (7)

I i
STN = Si − yi

GP (8)

I i
EP = −yi

D1 − 0.4 yi
GP + 0.8

N
∑

j=0

yj
STN (9)

The trans-subthalamic pathway is modelled by a modified input for the ventral EP/SNr

(v and d stand for ventral and dorsal):

I i
EPv = − yi

D1v − 0.4 yi
GPv

+ 0.8

N
∑

j=0

yj
STNv + 0.4

N
∑

j=0

yj
STNd

(10)

I i
GP = −yi

D2 + 0.8

N
∑

j=0

yj
STN (11)

I i
V L = yi

P − yi
EP − 0.13

N
∑

j=0
j 6=i

yj
TRN (12)

I i
TRN = yi

V L + yi
P (13)
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I i
P = yi

V L (14)

A.2 Salience computations

The modification to the GPR model proposed in Girard et al. (2003) consisted in allowing,

for the computation of saliences, the use of sigma-pi neurons and non-linear transfert

function applied to the inputs. This was kept in the present model and is the origin of the

square roots and multiplications in the following equations.

A.2.1 Experiments 1 and 2

Dorsal loop saliences (E and EP reloading actions):

SE = 0.4 × PE + 1.2 × A(E) × m(E)

+ 0.6 × mProx(E) × m(E)

(15)

SEP
= 0.4 × PEP

+ A(EP ) × m(EP )

+ 0.2 × mProx(EP ) × m(EP )

(16)

27



Ventral loop salience for each direction i:

Si = 0.2 × Pi + Wplan

√

Plani

+ 0.55
√

Prox(E)i × m(E)

+ W
Ep

taxon

√

Prox(EP)i × m(EP )

+ 0.4 × BKAi × m(BKA)

+ Expi × (0.25

+ 0.05 × (1 − mProx(EP )) × m(EP )

+ 0.05 × (1 − mProx(E)) × m(E))

(17)

Where Wplan and W
Ep

taxon are respectively set to 0.65 and 0.55, except in experiment

4.2.1, where they take the values recorded in Table 2.
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A.2.2 Experiment 3.1

Saliences of the dorsal loop computed as in experiments 1 and 2. Ventral saliences modified

to include the avoidance of dangerous areas:

Si = 0.2 × Pi + 0.45
√

Plani

+ 0.35
√

Prox(E)i × m(E)

+ 0.35
√

Prox(EP)i × m(EP )

+ 0.19 × (1 − Prox(DA)i) × m(DA)

+ 0.4 × BKAi × m(BKA)

+ Expi × (0.05

+ 0.05 × (1 − mProx(EP )) × m(EP )

+ 0.05 × (1 − mProx(E)) × m(E))

(18)

A.2.3 Experiment 3.2

Experiment 3.2 showed that the weight of the dorsal computations had to be lowered:

SE = 0.4 × PE + 0.9 × A(E) × m(E)

+ 0.1 × mProx(E) × m(E)

(19)

SEP
= 0.4 × PEP

+ 0.9 × A(EP ) × m(EP )

+ 0.1 × mProx(EP ) × m(EP )

(20)
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The ventral salience computations from experiments 1 and 2 risked stopping the animat

too far from resources. As this problem arose systematically in experiment 3.2, the term

(0.65
√

Plani) term was changed for (0.55
√

Plani × (1−mProx(E))× (1−mProx(EP )).
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Table 1: Comparison (U-test) of experiments testing median survival duration of animats

in conditions A (taxon navigation only) and B (taxon and topological navigation).

Durations (s) Median Range

A 14431.5 2531 : 17274

B 4908.0 2518 : 8831

U test U = 15 p < 0.01
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Table 2: Resource choice depending on the relative weighting of the two navigation strate-

gies in the salience computation. Wplan and W
Ep

taxon: weights related to planning and taxon

navigation strategies respectively (see eqn. 17).

Weights Choices

Wplan W
Ep

taxon EP1 EP2

0.65 0.55 13 2

0.55 0.55 7 8

0.45 0.55 2 13
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Table 3: Resource choice depending on the initial EP level.

Internal Incidence of

state choices

F EP EP1 EP2

0.2 0.1 13 7

0.2 0.5 2 18

Fisher’s test p¡ 0.01
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Table 4: Branch choices depending on the length ratio.

Incidence of

first choice

Ratio Left Right

1 3 12

1.5 4 11

2 8 7
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Table 5: Parameters of the transfer functions of the GPR model.

GPR Module ǫ m

D1 Striatum 0.2 1

D2 Striatum 0.2 1

STN -0.25 1

GP -0.2 1

EP/SNr -0.2 1

Ctx 0 1

TRN 0 0.5

VL -0.8 0.62
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Figure Captions

Figure 1: The GPR model. Nuclei are represented by boxes, each circle in these nuclei rep-

resents an artificial leaky-integrator neuron. On this diagram, three channels are competing

for selection, represented by the three neurons in each nucleus. The second channel is rep-

resented by gray shading. For clarity, the projections from the second channel neurons only

are represented, they are similar for the other channels. White arrowheads represent exci-

tations and black arrowheads, inhibitions. D1 and D2: neurons of the striatum with two

respective types of dopamine receptors; STN: subthalamic nucleus; GP: globus pallidus;

EP/SNr: entopedoncular nucleus and substantia nigra pars reticulata; VL: ventrolateral

thalamus; TRN: thalamic reticular nucleus. Dashed boxes represent the three subdivisions

of the model proposed by its authors (Selection, Control of selection and thalamo-cortical

feedback or TCF), note that these subdivisions appear on the simplified sketch of Figure 2.

Figure 2: Final model structure. Input variables are exhaustively listed, 36-component

vectors are in bold type. The excitatory projections from the STN of the dorsal loop to the

EP/SNr of the ventral loop, which are the substrate for loops coordination, are highlighted.

Figure 3: Experiment 1 environment. Initial position and orientation are represented

by the schematic animat. E: Energy resource; EP : Potential Energy resource.

Figure 4: Experiment 2 environment. Initial position and orientation are represented by

the schematic animat. EP : Potential Energy resource; EP 2 is absent in some experiments,

see text.

Figure 5: Experiment 3 environment. Initial position and orientation are represented
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by the schematic animat. EP 1,2: Potential Energy resources; DA: dangerous area.

Figure 6: The three environments of experiment 4. The ratio of the right branch

length to the left branch length varied between 1 and 2. Initial position and orientation

is represented by the schematic animat. EP 1,2: Potential Energy resources; E: Energy

resource.
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