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Abstract

We discuss the long time behavior of a two-dimensional reflected diffusion in the
unit square and investigate more specifically the hitting time of a neighborhood of
the origin.

We distinguish three different regimes depending on the sign of the correlation
coefficient of the diffusion matrix at the point 0. For a positive correlation coeffi-
cient, the expectation of the hitting time is uniformly bounded as the neighborhood
shrinks. For a negative one, the expectation explodes in a polynomial way as the di-
ameter of the neighborhood vanishes. In the null case, the expectation explodes at a
logarithmic rate. As a by-product, we establish in the different cases the attainability
or non-attainability of the origin for the reflected process.

From a practical point of view, the considered hitting time appears as a deadlock
time in various resource sharing problems.

Résumé

Nous étudions le comportement en temps long d’une diffusion réfléchie à valeurs
dans le carré unité et nous focalisons plus précisément sur le temps d’atteinte d’un
voisinage de l’origine.

Nous distinguons trois régimes différents, selon le signe du coefficient de corréla-
tion de la matrice de diffusion prise au point 0. Pour un coefficient de corrélation
strictement positif, l’espérance du temps d’atteinte reste bornée lorsque le voisinage
se rétrécit. Pour un coefficient strictement négatif, l’espérance explose à vitesse poly-
nomiale lorsque le diamètre du voisinage tend vers zéro. Dans le cas d’un coefficient
nul, l’espérance diverge à vitesse logarithmique. Au passage, nous établissons selon
les cas la possibilité ou l’impossibilité pour la diffusion réfléchie d’atteindre l’origine.

D’un point de vue pratique, le temps d’atteinte considéré apparaît comme un
instant de blocage dans différents problèmes de partage de ressource.
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1 Introduction

Background . In the papers [24], [12] and [22], Tanaka, Lions and Sznitman
and Saisho investigate the strong solvability of stochastic differential equa-
tions with reflection on the boundary of a domain. In the normal reflection
setting, pathwise existence and uniqueness hold for systems driven by Lips-
chitz continuous coefficients and for domains that are convex (see [24]) or that
satisfy both a uniform exterior sphere condition and a uniform interior cone
condition ([12] and [22]). Compared to the usual Itô case, the basic dynamics
for a reflected stochastic differential equation (RSDE in short) involve an ad-
ditional pushing process of bounded variation that prevents the diffusion to
escape from the underlying domain. A typical example of this kind is given by
the Brownian local time that keeps the reflected Brownian motion in the non-
negative half-plane. The formulation of the reflection phenomenon in terms
of pushing processes or of local times is inherited from the earlier definition
of the Skorokhod problem and turns out to be very handy (think for exam-
ple of the proof of the Feynman-Kac formula for the Neumann problem). In
this paper, we provide another example of application of this technology to
investigate the long time behavior of a two-dimensional diffusion process with
normal reflection on the boundary of the unit square.

Two-dimensional reflected processes have been widely studied for twenty years.
In Varadhan and Williams [26], the authors investigate a submartingale prob-
lem for the two-dimensional Brownian motion with an oblique reflection on
the boundary of a wedge of angle ξ. They discuss the unique solvability of
the problem and the attainability of the corner by the underlying process in
terms of the ratio α ≡ (θ1 + θ2)/ξ, θ1 and θ2 denoting the angles of reflec-
tion (with respect to the underlying normal vectors). For α ≤ 0, the process
doesn’t reach the corner; for 0 < α < 2, the process reaches the corner, but
the amount of time that the process is at the corner is zero; and, for α ≥ 2,
the process reaches the corner and remains there. In [27], Williams shows that
the process is transient for α < 0 and is recurrent in the sense of Harris for
0 ≤ α < 2. The escape rate in the transient framework is investigated in [6].
In [28] and [5], Williams and DeBlassie prove that the Brownian motion in a
wedge admits a semimartingale representation for α < 1 and α ≥ 2. Finally,
Menshikov and Williams [18] and Balaji and Ramasubramanian [1] discuss
the passage time moments: denoting by τρ, ρ > 0, the hitting time of the ball
of radius ρ centered at the corner of the wedge, they prove that E[τ p

ρ ] < +∞
for α > 0 and p < α/2, E[τ p

ρ ] = +∞ for α > 0, p > α/2 and ρ small enough,
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and E[τ p
ρ ] = +∞ for α = 0, p > 0 and ρ small enough. The monograph by

Fayolle, Malyshev and Menshikov [7] focuses on the time-discrete counterpart
(see Subsection 3.3 there in).

Objective and Main Results . Our own situation is slightly different: the
underlying process, denoted in the sequel by (Xt)t≥0, may possess a noncon-
stant drift and a nonconstant covariance matrix. Moreover, it evolves in the
unit square, which is compact. The reflection on the boundary occurs along
the inward normal vector, so that the pathwise existence and uniqueness of
the process follow from [24]. In light of the previous paragraph, we then ask
the following questions: assuming that the underlying diffusion matrix is uni-
formly elliptic, so that (Xt)t≥0 is recurrent in the sense of Harris, is the hitting
time of the origin (or more generally of every corner of the square) finite, and
if so, is it of finite expectation? More generally, how does the hitting time of
a small neighborhood of the origin behave as its diameter tends to zero?

As an answer, we exhibit in this paper a local criterion. More precisely, we show
that the expectation of the hitting time of a neighborhood of the origin highly
depends on the correlation coefficient s of a(0), the diffusion matrix at the
origin. When positive, the expectation remains bounded as the neighborhood
shrinks. In the opposite case, it is finite for every neighborhood but tends to
the infinity as the diameter tends to zero: at a logarithmic rate if s is zero and
at a polynomial rate if s is negative. As a by-product, we derive the following
rule for the initial problem: the hitting time of the origin is of finite expectation
for a positive correlation coefficient and is almost surely infinite in the other
cases.

The proof is inspired by the recurrence and transience analysis for a classical
diffusion process and relies on the construction of suitable Lyapunov function-
als for the reflected process. To this end, we benefit from the work of Varadhan
and Williams [26]: we successfully transport, by a linear mapping, the orig-
inal problem from the square to a wedge W and then bring back from the
wedge to the square the Lyapunov functions used in [26] to investigate the
reflected Brownian motion. The form of the wedge W as well as the angles
of reflection are given by the correlation coefficient s of the covariance matrix
a(0): the underlying angle ξ is equal to arccos(−s) and the parameter α to
2 − π/ arccos(−s). In particular, α is always less than 1 and

α ∈]0, 1[⇔ s > 0, α = 0 ⇔ s = 0, α < 0 ⇔ s < 0.

The classification we give for the behavior of the reflected diffusion in the
square is coherent with the classification of the reflected Brownian motion in
W. On the one hand, the reflected Brownian motion in W may be seen as
the image, by a linear mapping, of the solution of a RSDE in the orthant. For
this reason, we expect the reflected Brownian motion to be a semimartingale.
By [28] and [5], it actually is. On the other hand, the different regimes for

3



the expectation of the hitting time, by (Xt)t≥0, of a neighborhood of the
origin correspond to the recurrence and transience properties of the reflected
Brownian motion in W. For s > 0, the expectation of the hitting time remains
bounded as the neighborhood shrinks and the corresponding Brownian motion
reaches the corner of W. In the case s = 0, the expectation explodes in a
logarithmic way; the corresponding reflected Brownian motion doesn’t reach
the corner but is recurrent in the sense of Harris. In the case s < 0, the
expectation explodes in a polynomial way: the Brownian motion in W doesn’t
reach the corner and is transient.

The extension to the upper dimensional framework remains open. In [11],
Kwon and Williams investigate the reflected Brownian motion in a cone, in
dimension greater than or equal to three, and extend to this setting the re-
sults of Varadhan and Williams [26]. For the moment, we do not know if this
work might be adapted to the analysis of a reflected diffusion in a hypercube.
There are two main difficulties: first, the basis of the cone, in [11], is assumed
to be of class C3, whereas the boundary of the hypercube is just Lipschitz
continuous; second, the Lyapunov functions exhibited by Kwon and Williams
are not explicit, as in the two-dimensional framework. There are other works
on reflected processes in high dimension, but we are not able, at this time,
to connect them to our purpose: the weak existence and uniqueness (i.e. à
la Varadhan and Williams) of reflected processes in polyhedra are discussed,
among others, in [20], [21], [25], [3], [4]; for the pathwise analysis, we refer to
the recent work [19] and to the references there in.

Application . The paper is motivated by concrete applications to resource
sharing problems arising in data processing or in mathematical finance. Con-
sider for example the “banker algorithm”: two customers C1 and C2 share a
finite amount ρN , 1 < ρ < 2, of money lent by a banker, the maximum need
for each of them being worth N . At a discrete time n, the sum granted to C1

and C2 is represented by the position Xn of a Markov process living inside
the square of size N without the right upper triangle [(N, (ρ − 1)N), ((ρ −
1)N,N), (N,N)]. The process is reflected on the sides of the square and ab-
sorbed on the hypotenuse of the triangle, that is on the line segment between
(0, ρN) and (ρN, 0): when X hits the line segment, the allocation system stops
since the available resource is exhausted. In other words, the hitting time of
the line segment appears as a deadlock time for the allocation system and its
evaluation constitutes a relevant challenge.

In a series of papers due (among others) to Louchard et al. [13], [14] and [15]
and to Maier et al. [16] and [17] and more recently to Guillotin and Schott
[9] and Comets, Delarue and Schott [2], it is shown in various contexts how
to reduce, through a normalization procedure of factor N , the analysis for
large values of N to an absorption problem for a reflected diffusion process
living in the unit square. The absorption occurs on the right upper triangle
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[(1, ρ − 1), (ρ − 1, 1), (1, 1)], that is on the right upper triangle delimited by
the line segment [(0, ρ), (ρ, 0)]: it is a neighborhood of (1, 1) with radius 2− ρ.
Therefore, the situation in the limit framework corresponds, up to a rotation
of center (1/2, 1/2) and of angle π, to the one investigated in the paper. When
the diffusion matrix of the limit RSDE is diagonal and constant and the drift is
null, several explicit computations in terms of Bessel functions are conceivable
for the mean of the hitting time (see [15]). In the general case, this strategy
fails and our current work provides relevant estimates, especially for ρ close
to two.

Organization . The proof is organized as follows. In Section 2, we expose the
basic background for our analysis as well as the main result of the paper. The
proof is given in Section 3.

2 Notation and Main Results

For d ≥ 1, 〈·, ·〉 and | · | denote the Euclidean scalar product and the Euclidean
norm on R

d and, for x ∈ R
d and r > 0, B(x, r) denotes the (open) Euclidean

ball of center x and radius r.

2.1 Reflected SDE

Let M2(R) denote the set of 2 × 2 real matrices. We consider, for a given
triple (κ, λ,Λ) ∈ (R∗

+)3, a couple of κ-Lipschitz continuous coefficients (b, σ) :
[0, 1]2 → R

2 ×M2(R) such that for all (ξ, x) ∈ (R2)2:

λ|ξ|2 ≤ 〈ξ, a(x)ξ〉 ≤ Λ|ξ|2,

where a(x) denotes the symmetric positive matrix σσ∗(x).

Let (Ω,A,P) be a probability space endowed with a two-dimensional Brow-
nian motion (Bt)t≥0, whose natural filtration, augmented with P-null sets,
is denoted by (Ft)t≥0. We consider the RSDE with normal reflection on the
boundary of the unit square [0, 1]2 associated to the pair (b, σ) and to an initial
condition x0 ∈ [0, 1]2\{0}. In other words, we are seeking a triple (X,H,K) of
continuous and (Ft)t≥0-adapted processes with values in [0, 1]2×(R+)2×(R+)2

such that:

RSDE(1) The coordinates of H and K are non-decreasing processes.
RSDE(2) For i ∈ {1, 2}, the ith coordinate process H i is non-increasing on

the set {t ≥ 0, X i
t > 0} and the ith coordinate process Ki is non-increasing
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on the set {t ≥ 0, X i
t < 1}, so that:

∀t ≥ 0,
∫ t

0
1{Xi

r>0}dH
i
r = 0,

∫ t

0
1{Xi

r<1}dK
i
r = 0.

RSDE(3) X is an Itô process satisfying for t ≥ 0:

dXt = b(Xt)dt+ σ(Xt)dBt + dHt − dKt, with X0 = x0.

Thanks to Theorem 4.1 in Tanaka [24], the equation RSDE(1-2-3) admits a
unique solution (set, for i = 1, 2, dH i

t = 1{Xi
t=0}dφ

i
t and dKi

t = −1{Xi
t=1}dφ

i
t

under the notations of [24]).

We remind the reader of the Itô rule for (Xt)t≥0. For a function f of class C2

on [0, 1]2, we have for all t ≥ 0,

df(Xt)

=
1

2

2
∑

i,j=1

ai,j(Xt)
∂2f

∂xi∂xj
(Xt)dt+

2
∑

i=1

bi(Xt)
∂f

∂xi
(Xt)dt+ 〈∇f(Xt), σ(Xt)dBt〉

+
∂f

∂x1
(0, X2

t )dH1
t +

∂f

∂x2
(X1

t , 0)dH2
t −

∂f

∂x1
(1, X2

t )dK
1
t −

∂f

∂x2
(X1

t , 1)dK2
t .

We are now interested in the attainability of the origin or more generally of a
small neighborhood of the origin for the process X.

2.2 Harris Recurrence

In the previous framework, our first question is: is the process X Harris re-
current?

Due to the uniform ellipticity of the matrix a, it actually is: the process X hits
with probability one every Borel subset of [0, 1]2 of non-zero Lebesgue measure,
so that the hitting time of every neighborhood of the origin is almost-surely
finite.

2.3 Absorption at or around the Origin

Now, our second question is: does the process X hit the origin? Or more
generally, how does the hitting time of a small neighborhood of the origin
behave as its diameter decreases?

To answer the second question, we focus on the expectation of the hitting
time of a small neighborhood of the origin and investigate its behavior as
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the neighborhood shrinks. We then derive as by-product the attainability or
non-attainability of (0, 0).

In practical applications (up to a rotation of center (1/2,1/2), see the refer-
ences mentioned in Introduction), the neighborhood is delimited by the line
of equation x1 + x2 = ρ, for 0 < ρ < 1. We thus focus on the hitting time
Tρ ≡ inf{t ≥ 0, X1

t +X2
t ≤ ρ} and more specifically on E(Tρ). It is then plain

to bound the expectation of the hitting time of any other small neighborhood
of the origin by the expectations of Tρ′ and Tρ′′ , for two suitable parameters
ρ′ and ρ′′. Of course, if ρ > (x0)1 + (x0)2, E(Tρ) = 0.

In this paper, we manage to distinguish three different asymptotic regimes for
the expectation E(Tρ) as the parameter ρ tends to zero, each of these regimes
depending on the covariance matrix a(0), and more precisely, on the sign of
its off-diagonal components. Indeed, the matrix a(0) can be written:

a(0) =







ρ2
1 sρ1ρ2

sρ1ρ2 ρ2
2





 , (2.1)

with ρ1, ρ2 > 0 and s ∈] − 1, 1[ (since a is uniformly elliptic). It admits two
eigenvalues:















λ1 =
[

ρ2
1 + ρ2

2 + δ
]

/2,

λ2 =
[

ρ2
1 + ρ2

2 − δ
]

/2,
with δ ≡

(

ρ4
1 + ρ4

2 − 2(1 − 2s2)ρ2
1ρ

2
2

)1/2
. (2.2)

We denote by E1 and E2 the associated eigenvectors (up to a multiplica-
tive constant). For s 6= 0, E1 = (1, (2sρ1ρ2)

−1(δ + ρ2
2 − ρ2

1))
t and E2 =

(−(2sρ1ρ2)
−1(δ+ρ2

2−ρ
2
1), 1)t. Since δ+ρ2

2−ρ
2
1 ≥ 0, the signs of the non-trivial

coordinates of E1 and E2 are given by the sign of s. The main eigenvector (i.e.
E1) has two positive components for s > 0, and a positive one and a negative
one for s < 0. Of course, if s vanishes, E1 and E2 are equal to the vectors of
the canonical basis.

The three different regimes for E(Tρ) can be distinguished as follows:

Positive Case. If s > 0, the main eigenvector of a(0) (i.e. E1) is globally
oriented from (0, 0) to the neighborhood of the corner (1, 1), or, up to a change
of sign, from (1, 1) to the origin, and thus tends to push the reflected diffusion
towards the absorption area. The reflection on the boundary cancels most of
the effects of the second eigenvalue and keeps on bringing back the diffusion
towards the main axis. As a consequence, the hitting time of the border line
is rather small and the following asymptotic holds for the diffusion:

sup
0<ρ<1

E(Tρ) < +∞.
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We illustrate this phenomenon when b vanishes and a is the constant matrix
given by ρ1 = ρ2 = 1 and s = 0.9 by plotting below (see Figure 1, first case)
a simulated trajectory of the reflected diffusion process, starting from (1,1) at
time 0, and running from time 0 to time 5 in the box [0, 1]2. The algorithm used
to simulate the reflected process is given in Słomiński [23]. The eigenvector E1

is equal to (1, 1)t.

Negative Case. If s < 0, the main eigenvector of a(0) is globally oriented
from (1, 0) to the neighborhood of the corner (0, 1) and attracts the diffusion
away from the border line. Again, the reflection on the boundary cancels most
of the effects of the second eigenvalue, and thus, acts now as a trap: the
diffusion stays for a long time along the main axis and hardly touches the
boundary. The hitting time satisfies the following asymptotic behavior:

∃c1 ≥ 1, ∃c2 > 0 ∀ρ ∈]0, 1[, c−1
1 ρ−c2 − c1 ≤ E(Tρ) ≤ c1ρ

−c2 + c1.

This point is illustrated by the second case in Figure 1 below when b vanishes
and a is equal to the constant matrix given by ρ1 = ρ2 = 1 and s = −0.9
(again, x0 = (1, 1)). The eigenvector E1 is given, in this case, by (1,−1)t.

Null Case. The case s = 0 is intermediate. Eigenvectors are parallel to the
axes and the behavior of the diffusion is close to the behavior of the two-
dimensional Brownian motion. We have:

∃c1 ≥ 1, ∀ρ ∈]0, 1[, −c−1
1 ln(ρ) − c1 ≤ E(Tρ) ≤ −c1 ln(ρ) + c1.

This is illustrated by the third point in Figure 1 below when b vanishes and a
is equal to the identity matrix (x0 = (1, 1)).

0 1
0

1

0 1 0 1
0

1

0 1
0

1

s > 0 s < 0 s = 0

Figure 1. Trajectories of the Reflected Process in Function of s.

2.4 Main Results

The following theorem summarizes the different cases detailed in the previous
subsection:
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Theorem 2.1 There exists a constant D ≥ 1, depending only on the known
parameters λ, Λ, K, ρ1, ρ2 and s, such that, for all ρ ∈]0, 1[,

if s > 0, E(Tρ) ≤ D

if s < 0, D−1ρα −D|x0|
α ≤ E(Tρ) ≤ Dρα +D,

with α ≡ 2 −
π

arccos(−s)
< 0,

if s = 0, −D−1 ln(ρ) +D
[

ln(|x0|) − 1
]

≤ E(Tρ) ≤ −D ln(ρ) +D.

We emphasize that D doesn’t depend on x0.

As a by-product of the proof of Theorem 2.1, we can establish the following
criterion for the attainability of the origin:

Proposition 2.2 Denote by T0 the first hitting time of the origin by the pro-
cess X. Then, E(T0) < +∞ if s > 0 and P{T0 = +∞} = 1 if s ≤ 0.

3 Proof

In the whole proof of Theorem 2.1 and Proposition 2.2, the constants appearing
in various estimates only depend on the known parameters λ,Λ, K, ρ1, ρ2 and
s. Even if denoted by the same letter, their values may vary from line to line.

The common approach to investigate the recurrence and transience proper-
ties of a diffusion process is exposed in Friedman [8, Ch. IX]. The strategy
consists in exhibiting superharmonic functions (or equivalently subharmonic
functions) for the generator of the diffusion process: these supersolutions (or
subsolutions) play the role of Lyapunov functions (see Hasminskii [10, Ch. I]
for the definition of a Lyapunov function for an ordinary differential equation).
In our framework, the generator is given by:

L ≡
1

2

2
∑

i,j=1

ai,j(·)
∂2

∂xi∂xj
+

2
∑

i=1

bi(·)
∂

∂xi
.

We are then seeking a supersolution (resp. subsolution) h ∈ C2([0, 1]2 \ {0})
satisfying

Lh(x) ≤ (resp. ≥) C, x ∈ [0, 1]2 \ {0}, (3.1)

for a constant C > 0, verifying a zero Neumann boundary condition on the
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edges ](0, 0), (0, 1)] and ](0, 0), (1, 0)], that is

∂h

∂x1

(0, x2) = 0 for 0 < x2 ≤ 1,

∂h

∂x2

(x1, 0) = 0 for 0 < x1 ≤ 1,

(3.2)

and having positive (resp. negative) derivatives along the outward normal
vectors on the other sides, that is

∂h

∂x1
(1, x2) > (resp. <) 0 for 0 < x2 ≤ 1,

∂h

∂x2
(x1, 1) > (resp. <) 0 for 0 < x1 ≤ 1.

(3.3)

If we can find such a function h, we deduce by the Itô formula and (3.1), (3.2)
and (3.3)

E(h(XTρ
)) − E(h(X0)) ≤ (resp. ≥) CE(Tρ).

The asymptotic trend of E(Tρ) is then given by the growth of h at the origin.
The growth at the origin of the supersolution (resp. subsolution) that we
construct in the sequel is governed by the sign of s: it is bounded if s > 0, it
is of logarithmic growth if s = 0 (i.e. |h(x)| ≍ | ln(|x|)| for |x| small: ∃c ≥ 1,
c−1| ln(|x|)| ≤ |h(x)| ≤ c| ln(|x|)| for |x| small) and it is of polynomial growth,
with exponent α, if s < 0 (i.e. |h(x)| ≍ |x|α for |x| small). This classification
coincides with the one given in the statement of Theorem 2.1.

We proceed in two steps to construct h. Using the results of Varadhan and
Williams [26], we manage to construct a superharmonic (resp. subharmonic)
function f on [0, 1]2 \ {0} satisfying a zero Neumann boundary condition on
the edges ](0, 0), (0, 1)] and ](0, 0), (1, 0)] and having negative derivatives along
the outward normal vectors on the other sides. The growth of f is governed
at the origin by the sign of s, as explained for h.

Moreover, we exhibit a bounded Lyapunov function g on [0, 1]2 satisfying

Lg(x) ≤ (resp. ≥) C, x ∈ [0, 1]2 \ {0},

for a constant C > 0, verifying a zero Neumann boundary condition on the
edges [(0, 0), (0, 1)] and [(0, 0), (1, 0)] and having positive derivatives along the
outward normal vectors on the other sides.

We then construct h as a linear combination of f and g.
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3.1 Harmonic Function for the Reflected Brownian Motion in a Wedge

We remind the reader of the results established in [26]. For an angle ξ ∈]0, 2π[,
let W denote the subset of R

2 given, in polar coordinates, by W ≡ {(r, θ), 0 ≤
θ ≤ ξ, r ≥ 0}, and let ∂W1 ≡ {(r, θ), θ = 0, r ≥ 0} and ∂W2 ≡ {(r, θ), θ =
ξ, r ≥ 0} denote the two sides of the boundary of W. For j = 1, 2, let nj

denote the unit inward normal vector to ∂Wj .

For j = 1, 2, we are given a unit vector vj such that 〈vj , nj〉 > 0: the angle
between nj and vj , measured such that it is positive if and only if vj points
towards the origin, is denoted by θj (see Figure 1 below).

0
ξ θ1

θ2

n1

n2

v1

v2

∂W1

∂W2

Figure 1. Wedge W

Then, the function ψ given, in polar coordinates, by ψ(r, θ) ≡ rα cos(αθ− θ1)
for (r, θ) ∈ W, with α ≡ (θ1 + θ2)/ξ, satisfies, if α 6= 0, the Neumann problem
∆ψ = 0 in W \{0}, with the boundary conditions 〈v1,∇ψ〉 = 0 on ∂W1 \ {0}
and 〈v2,∇ψ〉 = 0 on ∂W2 \ {0} (∇ and ∆ denote the gradient and Laplace
operators).

3.2 Transposition of the Original Problem to a Wedge

We set a0 ≡ a(0) and we consider, for the operator
∑2

i,j=1(a0)i,j[∂
2/∂xi∂xj ], the

associated Neumann problem in the orthant W0 ≡ {x ∈ R
2, x1, x2 ≥ 0} with

a zero boundary condition on the sides. With a suitable change of variable,
we now reduce this Neumann problem to a Neumann problem in a wedge for
the Laplace operator.

The matrix a−1
0 has the form

a−1
0 = (1 − s2)−1







ρ−2
1 −sρ−1

1 ρ−1
2

−sρ−1
1 ρ−1

2 ρ−2
2





 .
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We denote by ς ≡ a
−1/2
0 the symmetric square root of a−1

0 . We can associate
to ς the norm:

∀x ∈ R
2, r(x) ≡ |ςx|

= [〈x, a−1
0 x〉]1/2

= (1 − s2)−1/2
[

ρ−2
1 x2

1 + ρ−2
2 x2

2 − 2sρ−1
1 ρ−1

2 x1x2

]1/2
.

By ellipticity of a, we deduce that

∀x ∈ R
2, Λ−1/2|x| ≤ r(x) ≤ λ−1/2|x|. (3.4)

Setting u1 ≡ ςe1/|ςe1| and u2 ≡ ςe2/|ςe2|, the image of the wedge W0 by the
matrix ς may be expressed as ςW0 = {λu1 + µu2, λ, µ ≥ 0}. Since ς is a
positive symmetric matrix, we can prove that the angle (u1, u2) belongs to
]0, π[. Indeed, we can find an orthogonal matrix M such that

ς = MDM∗, D ≡







λ
−1/2
1 0

0 λ
−1/2
2





 ,

λ1 and λ2 being the eigenvalues of a0 (see (2.2)). The angle (M∗e1,M
∗e2) is

equal to π/2. Since the diagonal coefficients of D are positive, we easily de-
duce that the angle (DM∗e1, DM

∗e2) belongs to ]0, π[. Since M is orthogonal,
the angle (u1, u2), which is equal to the angle (MDM∗e1,MDM∗e2), belongs
to ]0, π[. In particular, the angle (u1, u2) is equal to ξ ≡ arccos(〈u1, u2〉) =
arccos(−s).

Moreover, 〈u1, e1〉 = 〈ςe1, e1〉 > 0, 〈u2, e2〉 = 〈ςe2, e2〉 > 0 and 〈u1, e2〉 =
(|ςe2|/|ςe1|)〈u2, e1〉 so that 〈u1, e2〉 and 〈u2, e1〉 have the same sign (see Figure
2 below).

ξ θ1

θ2 n1

n2

e1

e2

u1

u1

u2u2

Figure 2. Image of the Wedge W0 by ς

We denote by W the wedge formed by the vectors u1 and u2. The inward
normal vectors to the two sides are denoted by n1 and n2 (n1 is the unitary
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orthogonal vector to u1 generating a positive angle with it and n2 is the unitary
orthogonal vector to u2 generating a negative angle with it, see Figure 2).
Along the side generated by u1, the vector u2 plays the role of the vector v1

in the description of Subsection 3.1. Similarly, the vector u1 plays, along the
side generated by u2, the role of the vector v2. Moreover, the angle θ1 between
the vectors n1 and u2 is equal to the angle θ2 between the vectors n2 and u1

and their common value is θ1 = θ2 = ξ − π/2.

The parameter α introduced in the previous subsection is equal, in this setting,
to α = 2 − π/ξ = 2 − π/ arccos(−s). It is plain to prove that

α < 0 ⇔ s < 0, α = 0 ⇔ s = 0, α > 0 ⇔ s > 0.

We denote by (y1, y2) the Cartesian coordinates and by (r, θ) the polar coordi-
nates in the basis (u1, n1), and we set ψ(r, θ) ≡ rα cos(αθ−θ1). By Subsection
3.1, we deduce that ψ satisfies, if s 6= 0, the Neumann problem ∆ψ = 0
in W \ {0}, with the boundary conditions 〈u2,∇ψ〉 = 0 on ∂W1 \ {0} and
〈u1,∇ψ〉 = 0 on ∂W2 \{0} (recall that the Laplace operator ∆ is independent
of the choice of the Cartesian coordinates).

We assume for a while that s 6= 0. For x ∈ W0, we set ϕ(x) ≡ ψ(ςx). We let
the reader check that, for x ∈ W0 \ {0}, ∇ϕ(x) = ς∇ψ(ςx) and ∇2ϕ(x) =
ς∇2ψ(ςx)ς (∇2ϕ stands for the Hessian matrix of ϕ). The function ϕ may be
expressed as

ϕ(x) = [r(x)]α cos(αθ(x) − θ1),

θ(x) denoting the angle of ςx in the basis (u1, n1).

The function ϕ satisfies the Neumann problem:

2
∑

i,j=1

(a0)i,j
∂2ϕ

∂xi∂xj

(x) = 0 for x ∈ W0 \ {0}, (3.5)

with the boundary conditions 〈e2,∇ϕ(x)〉 = 0 if x1 > 0 and x2 = 0 and
〈e1,∇ϕ(x)〉 = 0 if x2 > 0 and x1 = 0.

Proposition 3.1 Assume that s 6= 0. Then, there exists a constant η ≥ 1
such that

∀x ∈ W0 \ {0},



























η−1[r(x)]α ≤ ϕ(x) ≤ [r(x)]α,

η−1[r(x)]α−1 ≤ |∇ϕ(x)| ≤ η[r(x)]α−1,

|∇2ϕ(x)| ≤ η[r(x)]α−2.

Moreover,

α inf
x2∈[0,1]

∂ϕ

∂x1

(1, x2) > 0, α inf
x1∈[0,1]

∂ϕ

∂x2

(x1, 1) > 0.
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PROOF. We first establish the bounds for the function ϕ and its derivatives.
The upper bound for ϕ is obvious. We prove the lower bound. By construction,
we know that, for all x ∈ W0\{0}, 0 ≤ θ(x) ≤ ξ. If α > 0, −θ1 ≤ αθ(x)−θ1 ≤
αξ−θ1, that is π/2−ξ ≤ αθ(x)−θ1 ≤ ξ−π/2 (θ1 = ξ−π/2 and α = 2−π/ξ).
We deduce the lower bound for α > 0. The same argument holds for α < 0.

We now prove the bounds for the gradient of ϕ. By ellipticity of the matrix
ς, it is sufficient to investigate ∇ψ. We denote by ∇yψ = (∂ψ/∂y1, ∂ψ/∂y2),
with ∂ψ/∂y1 = 〈∇ψ, u1〉 and ∂ψ/∂y2 = 〈∇ψ, n1〉, the coordinates of ∇ψ in
the basis (u1, n1). For a point y ∈ W \ {0}, we can express ∇yψ(y) in terms
of the polar coordinates (r, θ) of y, r > 0 and 0 ≤ θ ≤ ξ. We obtain:

∇yψ(r, θ) =







cos(θ) − sin(θ)

sin(θ) cos(θ)













∂rψ(r, θ)

r−1∂θψ(r, θ)





 .

Since ∂rψ(r, θ) = αrα−1 cos(αθ − θ1) and ∂θψ(r, θ) = −αrα sin(αθ − θ1), we
obtain the following expression (in polar coordinates) for ∇yψ:

∇yψ(r, θ) = αrα−1







cos(θ) cos(αθ − θ1) + sin(θ) sin(αθ − θ1)

sin(θ) cos(αθ − θ1) − cos(θ) sin(αθ − θ1)







= αrα−1







cos
[

(α− 1)θ − θ1
]

− sin
[

(α− 1)θ − θ1
]





 .

(3.6)

The bounds for |∇ϕ| easily follows (r = |y| = |ςx| = r(x)). By a similar
argument, we establish the bound for the second order derivatives of ϕ.

We now investigate the sign of α[∂ϕ/∂x1](x) = α〈∇ϕ(x), e1〉 for x1 = 1 and
0 ≤ x2 ≤ 1. It is sufficient to investigate the sign of α〈∇ψ(y), ςe1〉 for y = ςx,
that is the sign of α〈∇ψ(y), u1〉. We denote to this end by (r, θ) the polar
coordinates of y. We deduce from (3.6) that

α〈∇yψ(r, θ), u1〉 = α2rα−1 cos
[

(α− 1)θ − θ1
]

.

Since x1 = 1 and 0 ≤ x2 ≤ 1, there exists 0 < χ < ξ such that 0 ≤ θ ≤ χ (see
Figure 3 below). Moreover, α − 1 = 1 − π/ξ < 0 because ξ < π. We deduce
that

−π/2 = (α− 1)ξ − θ1 < (α− 1)χ− θ1
≤ (α− 1)θ − θ1
≤ −θ1 = π/2 − ξ < π/2.

We deduce that

α inf
x2∈[0,1]

∂ϕ

∂x1

(1, x2) > 0.
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ξ

χ e1

u1

u1

u2u2

Figure 3. Angle χ

We investigate in the same way the sign of α[∂ϕ/∂x2](x) for x2 = 1 and
0 ≤ x1 ≤ 1. Again, it is sufficient to investigate the sign of α〈∇ψ(y), u2〉 for
y = ςx. The polar coordinates of y are denoted by (r, θ), with r > 0 and
χ ≤ θ ≤ ξ. We deduce from (3.6):

α〈∇ψ(r, θ), u2〉 = α2rα−1 cos
[

(α− 1)θ + ξ − θ1
]

.

As above,

−π/2 < ξ − π/2 = αξ − θ1
≤ (α− 1)θ + ξ − θ1
≤ (α− 1)χ+ ξ − θ1 < ξ − θ1 = π/2.

We deduce that

α inf
x1∈[0,1]

∂ϕ

∂x2

(x1, 1) > 0.

We now investigate the case s = 0. We let the reader check

Proposition 3.2 Assume that s = 0. Then, the function ϕ(x) ≡ − ln(r(x))+
ln(r(1, 1)), with r(x) ≡ (ρ−2

1 x2
1 +ρ−2

2 x2
2)

1/2, is nonnegative on the square [0, 1]2

and satisfies

2
∑

i,j=1

(a0)i,j
∂2ϕ

∂xi∂xj
(x) = 0 for x ∈ W0 \ {0},

with the boundary conditions 〈e1,∇ϕ(x)〉 = 0 if x1 = 0 and x2 > 0 and
〈e2,∇ϕ(x)〉 = 0 if x2 = 0 and x1 > 0. There exists a constant η ≥ 1 such that

∀x ∈ W0 \ {0},











η−1[r(x)]−1 ≤ |∇ϕ(x)| ≤ η[r(x)]−1,

|∇2ϕ(x)| ≤ η[r(x)]−2.
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Moreover,

inf
x2∈[0,1]

∂ϕ

∂x1

(1, x2) < 0, inf
x1∈[0,1]

∂ϕ

∂x2

(x1, 1) < 0.

3.3 Lyapunov Functions

For all N ≥ 1, we set ζN ≡ inf{t ≥ 0, |Xt| ≤ N−1}.

Proposition 3.3 If α > 0, there exist a local martingale (Mt)t≥0, a smooth
function F from R

∗
+ to R and two constants c > 0 and γ > 0 such that, for

all r > 0, r exp(−γr1/α) ≤ F (r) ≤ r, for all N ≥ 1, (Mt)0≤t≤ζN
is square

integrable, and for all t ∈ [0, ζN ],

d[−F (ϕ(Xt))] ≥ dMt + c(dK1
t + dK2

t ).

If α < 0, there exist a local martingale (M̂t)t≥0, a smooth function F̂ from R
∗
+

to R and two constants ĉ > 0 and γ̂ > 0 such that, for all r > 0, γ̂(r − 1)+ ≤
F̂ (r) ≤ r, for all N ≥ 1, (M̂t)0≤t≤ζN

is square integrable, and for all t ∈ [0, ζN ],

dF̂ (ϕ(Xt)) ≥ dM̂t + ĉ(dK1
t + dK2

t ).

Moreover, setting m = inf [0,1]2\{0} ϕ > 0, there exist a square integrable mar-

tingale (M̌t)t≥0, a smooth function F̌ from R
∗
+ to R and two constants č > 0

and γ̌ > 0 such that, for all r ≥ m, r − m ≤ F̌ (r) ≤ γ̌r, for all N ≥ 1,
(M̌t)0≤t≤ζN

is square integrable, and for all t ∈ [0, ζN ],

dF̌ (ϕ(Xt)) ≤ dM̌t + č(dK1
t + dK2

t ).

PROOF. In a first time, we do not take into account the sign of α. Whatever
the sign of α is, the function ϕ is smooth on W0 \ {0} and we can apply the
Itô formula to (ϕ(Xt))0≤t≤ζN

. For a fixed N ≥ 1 and for all t ∈ [0, ζN ], we
deduce from (3.5) and from the Neumann boundary condition satisfied by ϕ:

dϕ(Xt) = 〈∇ϕ(Xt), b(Xt)〉dt+
1

2

2
∑

i,j=1

ai,j(Xt)
∂2ϕ

∂xi∂xj
(Xt)dt

+ 〈∇ϕ(Xt), σ(Xt)dBt〉 + 〈∇ϕ(Xt), dHt〉 − 〈∇ϕ(Xt), dKt〉

= 〈∇ϕ(Xt), b(Xt)〉dt+
1

2

2
∑

i,j=1

[

ai,j(Xt) − ai,j(0)
] ∂2ϕ

∂xi∂xj

(Xt)dt

+ 〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉.

(3.7)

By the Lipschitz continuity of a and the boundedness of b, and by Proposition
3.1, we can find a bounded function Γ from R

2 to R, independent of N , such
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that

dϕ(Xt) = (ϕ(Xt))
(α−1)/αΓ(Xt)dt+ 〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉.

Let F be a smooth function from R
∗
+ to R. Again, the Itô formula yields for

all t ∈ [0, ζN ]:

dF (ϕ(Xt)) = F ′(ϕ(Xt))(ϕ(Xt))
(α−1)/αΓ(Xt)dt

+
1

2
F ′′(ϕ(Xt))〈∇ϕ(Xt), a(Xt)∇ϕ(Xt)〉dt

+ F ′(ϕ(Xt))〈∇ϕ(Xt), σ(Xt)dBt〉 − F ′(ϕ(Xt))〈∇ϕ(Xt), dKt〉.

For a real C, we choose F ′(r) = exp(Cr1/α) for r > 0, so that F ′′(r) =
(C/α)r1/α−1 exp(Cr1/α). We obtain for all t ∈ [0, ζN ]:

dF (ϕ(Xt))

= exp(C(ϕ(Xt))
1/α)

[

(ϕ(Xt))
(α−1)/αΓ(Xt)

+ (C/(2α))(ϕ(Xt))
(1−α)/α〈∇ϕ(Xt), a(Xt)∇ϕ(Xt)〉

]

dt

+ exp(C(ϕ(Xt))
1/α)

[

〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉
]

.

(3.8)

We now assume that α > 0. By Proposition 3.1 and (3.8), we can find a
constant C < 0, independent of N , such that, for all t ∈ [0, ζN ],

dF (ϕ(Xt)) ≤ exp(C(ϕ(Xt))
1/α)

[

〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉
]

= exp(C(ϕ(Xt))
1/α)

[

〈∇ϕ(Xt), σ(Xt)dBt〉 −
∂ϕ

∂x1

(1, X2
t )dK1

t

−
∂ϕ

∂x2

(X1
t , 1)dK2

t

]

.

By Proposition 3.1, we can find a constant c > 0, independent of N , such that,
for all t ∈ [0, ζN ],

d[−F (ϕ(Xt))] ≥ − exp(C(ϕ(Xt))
1/α)〈∇ϕ(Xt), σ(Xt)dBt〉 + c(dK1

t + dK2
t ).

Moreover, we can choose F (r) =
∫ r

0
exp(Cs1/α)ds. Then, for all r > 0, we

have

r exp(Cr1/α) ≤ F (r) ≤ r.

This completes the proof in the case α > 0.

We turn to the case α < 0. By Proposition 3.1 and (3.8), we can find a constant
C < 0, independent of N , such that, for all t ∈ [0, ζN ],

dF (ϕ(Xt)) ≥ exp(C(ϕ(Xt))
1/α)

[

〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉
]

.
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By Proposition 3.1, we can find a constant c > 0, independent of N , such that,
for all t ∈ [0, ζN ],

dF (ϕ(Xt)) ≥ exp(C(ϕ(Xt))
1/α)〈∇ϕ(Xt), σ(Xt)dBt〉 + c(dK1

t + dK2
t ).

Choosing F (r) =
∫ r

0
exp(Cs1/α)ds, we have for all r > 0

(r − 1)+ exp(C) ≤ F (r) ≤ r.

This completes the proof of the lower bound in the case α < 0.

We finally prove the upper bound. By Proposition 3.1 and (3.8), we can find
a constant C > 0, independent of N , such that, for all t ∈ [0, ζN ],

dF (ϕ(Xt)) ≤ exp(C(ϕ(Xt))
1/α)

[

〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉
]

.

By Proposition 3.1, we can find a constant d > 0, independent of N , such
that, for all t ∈ [0, ζN ],

dF (ϕ(Xt)) ≤ exp(C(ϕ(Xt))
1/α)〈∇ϕ(Xt), σ(Xt)dBt〉 + d(dK1

t + dK2
t ).

Choosing F (r) =
∫ r

m
exp(Cs1/α)ds, we have for all r ≥ m

r −m ≤ F (r) ≤ r exp(Cm1/α).

This completes the proof. 2

We now investigate the case α = 0.

Proposition 3.4 If α = 0, there exist a local martingale (M̂t)t≥0, a smooth

function F̂ from R
∗
+ to R and two constants ĉ > 0 and γ̂ > 0 such that, for

all r > 0, γ̂r ≤ F̂ (r) ≤ r, for all N ≥ 1, (M̂t)0≤t≤ζN
is square integrable, and

for all t ∈ [0, ζN ],

dF̂ (ϕ(Xt)) ≥ dM̂t + ĉ(dK1
t + dK2

t ).

Moreover, there exist a square integrable martingale (M̌t)t≥0, a smooth func-
tion F̌ from R+ to R and two constants č > 0 and γ̌ > 0 such that, for all
r > 0, r ≤ F̌ (r) ≤ γ̌r, for all N ≥ 1, (M̌t)0≤t≤ζN

is square integrable, and for
all t ∈ [0, ζN ],

dF̌ (ϕ(Xt)) ≤ dM̌t + č(dK1
t + dK2

t ).

PROOF. We follow the proof of Proposition 3.3. Applying the Itô formula
to (ϕ(Xt))0≤t≤ζN

, N ≥ 1, we obtain (3.7). By Proposition 3.2, we can find
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a bounded function Γ from R
2 to R, independent of N , such that for all

t ∈ [0, ζN ],

dϕ(Xt) = exp(ϕ(Xt))Γ(Xt)dt+ 〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉.

For a real C, we consider a smooth function F from R
∗
+ to R such that F ′(r) =

exp(C exp(−r)). The Itô formula yields for all t ∈ [0, ζN ]:

dF (ϕ(Xt))

= exp(C exp(−ϕ(Xt)))
[

exp(ϕ(Xt))Γ(Xt)

− (C/2) exp(−ϕ(Xt))〈∇ϕ(Xt), a(Xt)∇ϕ(Xt)〉
]

dt

+ exp(C exp(−ϕ(Xt)))
[

〈∇ϕ(Xt), σ(Xt)dBt〉 − 〈∇ϕ(Xt), dKt〉
]

.

(3.9)

By Proposition 3.2, we can find two constants C < 0 and c > 0, independent
of N , such that

dF (ϕ(Xt)) ≥ exp(C exp(−ϕ(Xt)))〈∇ϕ(Xt), σ(Xt)dBt〉 + c(dK1
t + dK2

t ).

Choosing F (r) =
∫ r

0
exp(C exp(−s))ds, we have for all r > 0,

exp(C)r ≤ F (r) ≤ r.

This completes the proof of the lower bound.

We prove the upper bound in the same way. By Proposition 3.2 and (3.9), we
can find two constants C > 0 and c > 0, independent of N , such that

dF (ϕ(Xt)) ≤ exp(C exp(−ϕ(Xt)))〈∇ϕ(Xt), σ(Xt)dBt〉 + c(dK1
t + dK2

t ).

Choosing F (r) =
∫ r

0
exp(C exp(−s))ds, we have for all r > 0,

r ≤ F (r) ≤ exp(C)r.

This completes the proof. 2

Proposition 3.5 We set, for all t ≥ 0, St ≡ |Xt|
2 (so that 0 ≤ St ≤ 2).

Then, there exist a square integrable martingale (N̂t)t≥0, a smooth function

Ĝ : R+ → R and two constants Ĉ ≥ 1 and δ̂ ≥ 1, such that, for all 0 ≤ r ≤ 2,
r ≤ Ĝ(r) ≤ δ̂r, and for all t ≥ 0,

dĜ(St) ≥ Ĉ−1dt+ dN̂t − Ĉ(dK1
t + dK2

t ).

Moreover, there exist a square integrable martingale (Ňt)t≥0, a smooth function
Ǧ : R+ → R and two constants Č ≥ 1 and δ̌ ≥ 1, such that, for all 0 ≤ r ≤ 2,
δ̌−1r ≤ Ǧ(r) ≤ r, and for all t ≥ 0,

dǦ(St) ≤ Čdt+ dŇt − Č−1(dK1
t + dK2

t ).
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PROOF. The function q : x ∈ R
2 7→ |x|2 satisfies [∂q/∂x1](0, x2) = 0 and

[∂q/∂x1](1, x2) = 2 for x2 ∈ R and [∂q/∂x2](x1, 0) = 0 and [∂q/∂x2](x1, 1) = 2
for x1 ∈ R. By the Lipschitz property of a and by the boundedness of b, we
can find a bounded function ∆ from R

2 to R, such that, for t ≥ 0,

dSt = trace(a(Xt))dt+ 2〈Xt, b(Xt)〉dt− 2
[

dK1
t + dK2

t

]

+ 2〈Xt, σ(Xt)dBt〉

= trace(a(0))dt+ ∆(Xt)S
1/2
t dt− 2

[

dK1
t + dK2

t

]

+ 2〈Xt, σ(Xt)dBt〉.

For a given D ∈ R, we set, for all r ≥ 0, G(r) =
∫ r

0
exp(Dv1/2)dv. For all

r ≥ 0, G′(r) = exp(Dr1/2) and, for all r > 0, G′′(r) = (D/2)r−1/2G′(r).

For r ∈ [0, 2], r ≤ G(r) ≤ r exp(21/2D) if D ≥ 0 and r exp(21/2D) ≤ G(r) ≤ r
if D ≤ 0. Moreover, for all t ≥ 0,

dG(St) = G′(St)trace(a(0))dt+G′(St)
[

DS
−1/2
t |σ∗(Xt)Xt|

2 + ∆(Xt)S
1/2
t

]

dt

− 2G′(St)
[

dK1
t + dK2

t

]

+ 2G′(St)〈Xt, σ(Xt)dBt〉.

For D = −λ−1‖∆‖∞,

dG(St) ≤ (ρ2
1 + ρ2

2)dt− 2 exp(−21/2λ−1‖∆‖∞)
[

dK1
t + dK2

t

]

+ 2 exp(DS
1/2
t )〈Xt, σ(Xt)dBt〉.

For D = λ−1‖∆‖∞,

dG(St) ≥ (ρ2
1 + ρ2

2)dt− 2 exp(21/2λ−1‖∆‖∞)
[

dK1
t + dK2

t

]

+ 2 exp(DS
1/2
t )〈Xt, σ(Xt)dBt〉.

This completes the proof. 2

3.4 Proof of Theorem 2.1

To establish Theorem 2.1, it is sufficient to investigate the asymptotic behav-
ior of E(ζN) as N → +∞. Indeed, we can easily check that there exists a
parameter β > 1 such that, for ρ > 0, ζ⌊βρ−1⌋ ≤ Tρ ≤ ζ⌊β−1ρ−1⌋.

We start with the case α > 0. By Proposition 3.3, there exist a local martingale
(Mt)t≥0, a smooth function F from R

∗
+ to R and two constants c > 0 and γ > 0

such that, for all r > 0, r exp(−γr1/α) ≤ F (r) ≤ r, for all N ≥ 1, (Mt)0≤t≤ζN

is square integrable, and for all t ∈ [0, ζN ],

d[−F (ϕ(Xt))] ≥ dMt + c(dK1
t + dK2

t ). (3.10)
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Moreover, by Proposition 3.5, we can find a square integrable martingale
(N̂t)t≥0, a smooth function Ĝ : R+ → R, two constants Ĉ ≥ 1 and δ̂ ≥ 1

such that, for all 0 ≤ r ≤ 2, r ≤ Ĝ(r) ≤ δ̂r, and for all t ≥ 0,

dĜ(St) ≥ Ĉ−1dt+ dN̂t − Ĉ(dK1
t + dK2

t ). (3.11)

Gathering (3.10) and (3.11), we obtain, for all N ≥ 1 and t ≥ 0,

E

[

−ĈF (ϕ(Xt∧ζN
)) + cĜ(St∧ζN

)
]

− E

[

−ĈF (ϕ(X0)) + cĜ(S0)
]

≥ cĈ−1
E[t ∧ ζN ].

Using (3.4), Proposition 3.1 (growth of ϕ) and the bounds for F and Ĝ and
letting t→ +∞, we deduce that for all N ≥ 1,

cĈ−1
E[ζN ] ≤ 2cδ̂ + Ĉ(ϕ(X0))

α ≤ 2cδ̂ + 2α/2Ĉλ−α/2.

This completes the proof for α > 0.

We now investigate the case α < 0. By Proposition 3.3, there exist a local
martingale (M̂t)t≥0, a smooth function F̂ from R

∗
+ to R and two constants

ĉ > 0 and γ̂ > 0 such that, for all r > 0, γ̂(r− 1)+ ≤ F̂ (r) ≤ r, for all N ≥ 1,
(M̂t)0≤t≤ζN

is square integrable, and for all t ∈ [0, ζN ],

dF̂ (ϕ(Xt)) ≥ dM̂t + ĉ(dK1
t + dK2

t ). (3.12)

Gathering (3.12) and (3.11), we deduce that for, all t ≥ 0,

E

[

ĈF̂ (ϕ(Xt∧ζN
)) + ĉĜ(St∧ζN

)
]

− E

[

ĈF̂ (ϕ(X0)) + ĉĜ(S0)
]

≥ ĉĈ−1
E[t ∧ ζN ].

Using (3.4), Proposition 3.1 and the bounds for F̂ and Ĝ and letting t→ +∞,
we deduce that

ĉĈ−1
E[ζN ] ≤ Ĉλ−α/2N−α + 2ĉδ̂.

This proves the upper bound for E[ζN ].

We now establish the lower bound. By Proposition 3.3, there exist a local
martingale (M̌t)t≥0, a smooth function F̌ from R

∗
+ to R and two constants

č > 0 and γ̌ > 0 such that, for all r ≥ m, r − m ≤ F̌ (r) ≤ γ̌r (with
m = inf [0,1]2\{0} ϕ), for all N ≥ 1, (Mt)0≤t≤ζN

is square integrable, and for all
t ∈ [0, ζN ],

dF̌ (ϕ(Xt)) ≤ dM̌t + č(dK1
t + dK2

t ). (3.13)

By Proposition 3.5, we can find a square integrable martingale (Ňt)t≥0, a
smooth function Ǧ from R+ to R and two constants Č ≥ 1 and δ̌ ≥ 1, such
that, for all r ≥ 0, δ̌−1r ≤ Ǧ(r) ≤ r, and for all t ≥ 0,

dǦ(St) ≤ Čdt+ dŇt − Č−1(dK1
t + dK2

t ). (3.14)
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Gathering (3.13) and (3.14), we obtain, for all t ≥ 0,

E

[

Č−1F̌ (ϕ(Xt∧ζN
)) + čǦ(St∧ζN

)
]

− E

[

Č−1F̌ (ϕ(X0)) + čǦ(S0)
]

≤ čČE

[

t ∧ ζN
]

.
(3.15)

Using (3.4), Proposition 3.1 and the bounds for F̌ and Ǧ, we deduce that

čČE[ζN ] ≥ Č−1(η−1Λ−α/2N−α −m) − Č−1γ̌λ−α/2|X0|
α − 2č.

This completes the proof for α < 0. We can investigate in the same way the
case α = 0 by means of Proposition 3.4.

3.5 Proof of Proposition 2.2

For s > 0, the assertion follows from Theorem 2.1 and from the Beppo-Levi
Theorem. For s < 0, (3.15) yields

Č−1(η−1Λ−α/2N−α −m)P{ζN ≤ t} ≤ čČt+ Č−1γ̌λ−α/2|X0|
α + 2č.

As N → +∞, ζN → T0 almost surely, so that P{T0 ≤ t} = 0 for all t ≥ 0. A
similar argument holds for s = 0. 2
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