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Abstract. We investigate the expectation of the hitting time of a neighborhood
of the origin for a two dimensional reflected diffusion in the unit square. More
specifically, we distinguish three different regimes depending on the sign of the
correlation coefficient of the diffusion matrix at the point 0.

For a positive correlation coefficient, the expectation of the hitting time is uni-
formly bounded as the neighborhood shrinks. For a negative one, the expectation
explodes in a polynomial way as the diameter of the neighborhood vanishes. In
the null case, the expectation explodes in a logarithmic rate.

From a practical point of view, the considered hitting time appears as a dead-
lock time in various resource sharing problems.

1. Introduction

Several resource sharing problems arising in data processing or in mathe-
matical finance may be modelized by a stochastic process moving inside a
given bounded domain with mixed reflection and absorption conditions. For
example, Knuth (Exercise 2.2.2–13) [8], Ellis [2], Yao [21], Flajolet [4] and
Maier [13] investigate the “colliding stacks” problem, that is the allocation
system of a finite quantity N of memory units between two different stacks.
At a given discrete time n, the number of units used by each stack is rep-
resented by the value at time n of a two-dimensional process X that lives
inside the triangle [(0, 0), (0, N), (N, 0)]. The process X is reflected on the
sides parallel to the axes and killed on the segment [(0, N), (N, 0)]: when X
hits the slope between (0, N) and (N, 0), the system stops since the memory
is exhausted. Another famous example of distributed algorithm is given by
the “banker algorithm”: two customers C1 and C2 share a finite amount
ρN , ρ > 1, of money lent by a banker, so that the two-dimensional process
X now stands for the quantity of money lent to C1 and C2. It is usually as-
sumed that the maximum need for each customer is exactly given by N . In
this new frame, the state space for the process X writes as a square of size
N with a broken corner delimited by the slope between (0, ρN) and (ρN, 0)
(at least for ρ < 2). Again, the process is reflected on the sides parallel to
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the axes and the hitting time of the slope appears as a deadlock time for the
allocation system. In both situations, this quantity is of crucial interest for
the manager of the system: for this reason, being able to provide a priori
bounds for the deadlock time, or at least for its expectation, in terms of the
dynamic for X , constitutes a relevant challenge for practical applications.
In a series of papers due (among others) to Louchard et al. [10], [11] and [12]
and to Maier et al. [13] and [14] and more recently to Guillotin and Schott
[6] and Comets, Delarue and Schott [1], it is shown in various contexts how
to reduce, through a normalization procedure, the analysis for large values
of N to an absorption problem for a limit process living in the unit square.

In all of these papers, the dynamic for the process X is assumed to
be Markovian (usually indexed by integers). In the continuous setting (i.e.
in the limit setting after the normalization procedure), X can be written
as the solution of a stochastic differential equation with reflection on the
boundary of the unit square. Again, the hitting time of a given slope break-
ing the right upper corner of the square then plays a fundamental role for
practical applications. Unfortunately, few estimates have been established
in the literature for such a quantity.

From a general point of view, the existence and uniqueness of solutions
to RSDE are established, at least for standard cases, in the paper of Lions
and Sznitman [9] (see also the earlier article due to Tanaka [18]). When the
dimension reduces to two and the underlying domain to the orthant (i.e.
to R

2
+) or more generally to a wedge, the existence and long time behavior

of such processes are investigated in a series of papers due to Varadhan
and Williams [20], Reiman and Williams [15] and [16] and to Taylor and
Williams [19]. The monograph due to Fayolle, Malyshev and Menshikov [3]
focuses on the time-discrete counterpart (see Subsection 3.3 there in).

Our own situation differs from the former ones since the underlying do-
main is bounded. The objective now consists in estimating the expectation
of the hitting time of a given slope for the solution to the RSDE. In addi-
tion to the standard Lipschitz setting, we then assume the diffusion matrix
a of the equation to be uniformly elliptic. We then analyze the asymptotic
trend for the expectation of the hitting time as the slope gets closer and
closer to the right upper corner of the unit square. More precisely, we show
that the resulting behavior depends on the sign of the off-diagonal elements
of a computed in (1, 1): when positive, the expectation of the hitting time
is uniformly bounded; when negative it explodes in a polynomial way and
when zero, the expectation explodes in a logarithmic rate.

The proof is organized as follows. In Section 2, we expose the basic back-
ground for our analysis as well as the main result of the paper. In Section
3, we give the main lines of the proof. The basic argument follows from the
analysis for the recurrence and transience properties of the two-dimensional
Brownian motion or more generally of a diffusion process. Generally speak-
ing, it is based on a Lyapunov function argument. In Section 4, we exhibit
suitable Lyapunov functions for our own setting. We finally complete the
proof in Section 5.
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2. Notation and Main Result

We now describe the basic background for our purpose and then state the
main result of the paper.

For d ≥ 1, | · | denotes the Euclidean norm on R
d and for x ∈ R

d and
r > 0, B(x, r) denotes the (open) Euclidean ball of center x and radius r.

2.1. Reflected SDE

Denote by S2(R) the set of 2 × 2 symmetric real matrices and consider,
for a given triple (K, λ, Λ) ∈ (R∗

+)3, a couple of K-Lipschitz continuous
coefficients (b, σ) : [0, 1]2 → R

2 × S2(R) such that for all (ξ, x) ∈ (R2)2:

λ|ξ|2 ≤ 〈ξ, a(x)ξ〉 ≤ Λ|ξ|2,

where a(x) denotes the symmetric positive matrix σσ∗(x).
Denote also by (Ω,A, P) a probability space endowed with a two-dimen-

-sional Brownian motion (Bt)t≥0, whose natural filtration, augmented with
P-null sets, is denoted by (Ft)t≥0, and consider the Reflected Stochastic
Differential Equation (RSDE in short) driven by the pair (b, σ), by the
boundary of the unit square [0, 1]2 and by the initial condition (1, 1). We are
then seeking a triple (X, H, K) of continuous and (Ft)t≥0-adapted processes
with values in [0, 1]2 × (R+)2 × (R+)2 such that:

RSDE(1) The coordinates of H and K are non-decreasing processes.
RSDE(2) For i ∈ {1, 2}, the ith coordinate process H i is non-increasing

on the set {t ≥ 0, X i
t > 0} and the ith coordinate process K i is non-

increasing on the set {t ≥ 0, X i
t < 1}, so that:

∀t ≥ 0,

∫ t

0

1{Xi
r
>0}dH i

r = 0,

∫ t

0

1{Xi
r
<1}dKi

r = 0.

RSDE(3) X is an Itô process whose differential form writes for t ≥ 0:

dXt = b(Xt)dt + σ(Xt)dBt + dHt − dKt, with X0 = (1, 1)t.

Thanks to Theorem 3.1 in Lions and Sznitman [9], the equation RSDE(1-
2-3) admits a unique solution (set, for i = 1, 2, dH i

t = −ξi
t1{Xi

t
=0}d|k|t and

dKi
t = ξi

t1{Xi

t
=1}d|k|t under the notations of [9]).

2.2. Regimes for Absorption

For X as above, we are interested in the first hitting time of a given neigh-
borhood of the origin. In practical applications (up to a rotation of center
(1/2,1/2), see the references mentioned in Introduction), the neighborhood
is delimited by the line of equation x + y = ρ, for ρ ∈]0, 1[ (see Figure 1
below). We then focus on the hitting time Tρ ≡ inf{t ≥ 0, X1

t + X2
t ≤ ρ}

and more specifically on E(Tρ).
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x + y = ρ

Fig. 1. Absorption Zone

When the matrix a is constant and diagonal, several explicit computa-
tions for the density of the process X before absorption are conceivable in
terms of Bessel functions (see Louchard et al. [12]).

In the general framework, the story is rather different. In this paper, we
manage to distinguish three different asymptotic regimes for the expectation
E(Tρ) as the parameter ρ tends to zero, each of these regimes depending on
the covariance matrix a(0), and more precisely, on the sign of its off-diagonal
components.

To detail these regimes, recall that the matrix a is assumed to be non-
degenerate. It thus writes:

a(0) =

(

ρ2
1 sρ1ρ2

sρ1ρ2 ρ2
2

)

, (2.1)

with ρ1, ρ2 > 0 and s ∈] − 1, 1[. The matrix a(0) admits two eigenvalues:

{

λ1 =
[

ρ2
1 + ρ2

2 + δ
]

/2,

λ2 =
[

ρ2
1 + ρ2

2 − δ
]

/2,
with δ ≡

(

ρ4
1 + ρ4

2 − 2(1 − 2s2)ρ2
1ρ

2
2

)1/2
. (2.2)

Denote by E1 and E2 the associated eigenvectors (up to a multiplicative
constant). For s 6= 0,

E1 =

(

1
(2sρ1ρ2)−1

(

δ + ρ2
2 − ρ2

1

)

)

, E2 =

(

−(2sρ1ρ2)−1
(

δ + ρ2
2 − ρ2

1

)

1

)

.

Since δ + ρ2
2 − ρ2

1 ≥ 0, the signs of the non-trivial coordinates of E1 and E2

are given by the sign of s. The main eigenvector (i.e. E1) has two positive
components for s > 0, and a positive one and a negative one for s < 0. Of
course, if s vanishes, E1 and E2 reduce to the vectors of the canonical basis.

The three different regimes for E(Tρ) can be distinguished as follows:

Positive Case. If s > 0, the main eigenvector of a(0) (i.e. E1) is globally
oriented from (0, 0) to the neighborhood of the corner (1, 1), or up to a
change of sign from (1, 1) to the origin, and thus tends to push the reflected
diffusion towards the absorption area. The reflection on the boundary can-
cels most of the effects of the second eigenvalue and keeps on bringing back
the diffusion towards the main axis. As a consequence, the hitting time of
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the border line is rather small and the following asymptotic holds for the
diffusion starting from (1,1):

sup
0<ρ<1

E(Tρ) < +∞.

The following picture illustrates this phenomenon when b reduces to 0 and a
is the constant matrix given by ρ1 = ρ2 = 1 and s = 0, 9. We plot below (see
Figure 2) a simulated trajectory of the reflected diffusion process, starting
from (1,1) at time 0, and running from time 0 to time 5 in the box [0, 1]2.
The algorithm used to simulate the reflected process is given in S lomiński
[17]. The eigenvector E1 exactly matches (1, 1)t.

0 1
0

1

0 1

Fig. 2. Trajectory of the Reflected Process, s > 0.

Negative Case. If s < 0, the main eigenvector of a(0) is globally oriented
from (1, 0) to the neighborhood of the corner (0, 1) and attracts the diffusion
away from the border line. Again, the reflection on the boundary cancels
most of the effects of the second eigenvalue, and thus, acts now as a trap:
the diffusion stays for a long time along the main axis and hardly touches
the boundary. The hitting time satisfies the following asymptotic behavior
when the diffusion starts from (1, 1):

∃c1, c2 ≥ 1, ∀ρ ∈]0, 1[, c−1
1 ρ−c2 − c1 ≤ E(Tρ) ≤ c1ρ

−c−1

2 + c1.

This point is illustrated by Figure 3 below when b vanishes and a reduces to
the constant matrix given by ρ1 = ρ2 = 1 and s = −0, 9 (again, the initial
condition is (1, 1)). The eigenvector E1 is given, in this case, by (1,−1)t.

0 1
0

1

Fig. 3. Trajectory of the Reflected Process, s < 0.
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Null Case. The case s = 0 is intermediate. Eigenvectors are parallel to
the axes and the behavior of the diffusion is close to the behavior of the
two-dimensional Brownian motion. For the initial condition (1, 1):

∃c1 ≥ 1, ∀ρ ∈]0, 1[, −c−1
1 ln(ρ) − c1 ≤ E(Tρ) ≤ −c1 ln(ρ) + c1.

This is illustrated by Figure 4 below when b vanishes and a reduces to the
identity matrix (the initial condition of the process is (1,1)).

0 1
0

1

Fig. 4. Trajectory of the Reflected Process, s = 0.

2.3. Main Result

The following theorem summarizes the different cases detailed in the former
subsection:

Theorem 2.1 There exists a constant C2.1 ≥ 1, depending only on known
parameters λ, Λ, K, ρ1, ρ2 and s, such that:

1. If s > 0, sup
ρ∈]0,1[

E(Tρ) ≤ C2.1

2. If s < 0, set β− ≡ −s > 0, β+ ≡ s(s − 3)(1 + s)−1 > 0. Then,

∀ρ ∈]0, 1[, C−1
2.1ρ−β

− − C2.1 ≤ E(Tρ) ≤ C2.1ρ
−β+ + C2.1.

3. If s = 0, ∀ρ ∈]0, 1[, −C−1
2.1 ln(ρ) − C2.1 ≤ E(Tρ) ≤ −C2.1 ln(ρ) + C2.1.

Note that Theorem 2.1 leaves open many questions. For example, we do not
know how to compute, for s < 0, the exact value of the “true” exponent
β ≡ inf{c > 0, supρ∈]0,1[

[

ρc
E(Tρ)

]

< +∞}. We are even unable to specify
the asymptotic behavior of β as s → −1 (note indeed that lims→−1 β− =
1, lims→−1 β+ = +∞).

We have very few ideas about the extension of Theorem 2.1 to the upper
dimensional cases. The only accessible case for us is a(0) = Id, Id denoting
the identity matrix of size d: in this case, the analysis derives from the
transience properties of the Brownian motion in dimension d ≥ 3. The
arguments then mimic the ones used in the sequel for the two-dimensional
setting s = 0.

In the whole proof of Theorem 2.1, the constants appearing in various es-
timates just refer to known parameters λ, Λ, K, ρ1, ρ2 and s. Even if denoted
by the same letter, their values may vary from line to line.
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3. Description of the Method

Recall that the two-dimensional Brownian motion never hits zero at a posi-
tive time, but hits infinitely often any neighborhood of zero with probability
one. The proof of this result (see e.g. Friedman [5], Chapter IX) relies on
the differential form of the Bessel process of index 1, i.e. of the process |B|.
In short, for B different from zero, d|B| writes d|Bt| = 1/(2|Bt|)dt + dB̃t,
where B̃ denotes a one-dimensional Brownian motion.

The common strategy to investigate the recurrence and transience prop-
erties of the Brownian motion then consists in exhibiting a Lyapunov func-
tion for the process |B| (see again Friedman [5], Chapter IX, for a complete
review on this topic). In dimension two, i.e. in our specific setting, the func-
tion ln is harmonic for the process |B| (the Itô formula yields for B different
from zero: d ln(|Bt|) = |Bt|−1dB̃t). The above asymptotic properties of B
then follow from standard probabilistic arguments.

Roughly speaking, we aim to adapt this strategy to the reflected case. In
this frame, the first question to answer is the following: what should be the
auxiliary one-dimensional process for the reflected diffusion X? Or, more
precisely, what is the equivalent of the Bessel process in our setting?

3.1. Natural Choice for the Underlying Functional

A good starting point seems to consider the following quadratic process:

∀t ≥ 0, Rt ≡ 〈Xt, a
−1(0)Xt〉

= (1 − s2)−1
[

ρ−2
1 (X1

t )2 + ρ−2
2 (X2

t )2 − 2sρ−1
1 ρ−1

2 X1
t X2

t

]

,
(3.1)

since a−1(0) = (1 − s2)−1

(

ρ−2
1 −sρ−1

1 ρ−1
2

−sρ−1
1 ρ−1

2 ρ−2
2

)

.

The process R then aims to mimic the role played by |B|2 in the non-
reflected Brownian case. Write indeed the differential form of R1/2:

Proposition 3.1 There exist a constant C3.1 as well as a function Γ3.1 :
R

2 → R, bounded by C3.1, such that for N ≥ 1 and t ∈ [0, ζN ], with ζN ≡
inf{t ≥ 0, |Xt| ≤ N−1}:

dR
1/2
t = Γ3.1(Xt)dt +

1

2
R

−1/2
t dt

− s√
1 − s2

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

− R
−1/2
t

[

κ1
t dK1

t + κ2
t dK2

t

]

+ R
−1/2
t 〈σ(Xt)a

−1(0)Xt, dBt〉,

(3.2)

with:

κ1
t ≡ 1

1 − s2

[

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

]

, κ2
t ≡ 1

1 − s2

[

ρ−2
2 − sρ−1

1 ρ−1
2 X1

t

]

. (3.3)

Proposition 3.1 is a particular case of the more general Proposition 3.3 given
in the sequel. For this reason, the proof is put aside for the moment. Focus
first on several consequences of Proposition 3.1:
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Csq(1) For X close to 0, the scalar product R
−1/2
t 〈σ(Xt)a

−1(0)Xt, dBt〉
driving the martingale part of R1/2 looks like the process R

−1/2
t 〈σ−1(0)

Xt, dBt〉, which is, thanks to Lévy’s theorem, a Brownian motion.

Csq(2) For X close to 0, the term Γ3.1(Xt) is negligible in front of R
−1/2
t .

Csq(3) For X close to 0, the dK terms vanish since dK1 is null for X1 < 1
and dK2 is null for X2 < 1.

Csq(4) For s = 0, the dH terms reduce to zero.

Thus, from Csq(1–4), the differential form of the process R
1/2
t looks like,

for s = 0 and for X close to 0, to the differential form of the Bessel process
of index 1. We thus expect the function ln to be a kind of Lyapunov function

(the exact meaning is to be specified) for R
1/2
t in the case s = 0, and thus

to establish in this way the third point in Theorem 2.1.
Focus now on the cases s > 0 and s < 0:

Csq(5) If s > 0, the dH terms are always negative. Each time the process
X hits the border lines x1 = 0 or x2 = 0, the process H attracts X
towards 0.

Csq(6) If s < 0, the dH terms are always positive. At the opposite of the
previous case, the process H repels X away from 0.

According to Csq (5–6) and to the previous discussion on the case s = 0,
we then expect the case s < 0 to be super-logarithmic and the case s > 0
to be sub-logarithmic, and then hope to recover the three different regimes
appearing in the statement of Theorem 2.1.

The very specific role of the function ln in the null case leads us to
investigate the definition of a Lyapunov function for R1/2, s being possibly
different from zero (refer to Chapter I in Hasminskii [7] for the definition of
a Lyapunov function for an ordinary differential equation). In our setting,
we seek for a function F satisfying at least:

Lya(1) F ′ ≥ 0,
Lya(2) L(F ) ≤ 0, where L denotes the second-order operator associated to

the martingale and absolutely continuous parts of the differential form
of R1/2.

Due to the reflecting processes dH and dK and by analogy with the defini-
tion of a Lyapunov function for an ordinary differential equation (see (2.5),
Chapter I in [7]), we also ask F to satisfy:

Lya(3) −sF ′(Rt)[ρ
−1
1 dH1

t + ρ−1
2 dH2

t ] ≤ 0,
Lya(4) −F ′(Rt)

[

κ1
t dK1

t + κ2
t dK2

t

]

≤ 0.

Seeking for a function F satisfying Lya(1–2) is rather conceivable, but
seeking for a function F satisfying Lya(1–4) seems far from being trivial!

In fact, in view of Lya(1) and Lya(4), a good solution for us would be
κ1, κ2 ≥ 0. Unfortunately, referring to (3.3), κ1 and κ2 may take, for s > 0,
negative values for specific choices of ρ1 and ρ2. Moreover, again in light of
Lya(1), the condition Lya(3) is hopeless for s < 0.

The plan is then the following: modify the choice of R to let κ1 and κ2

be positive and to get rid of the dH terms in the differential form of R1/2.
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3.2. A First Modification of the Auxiliary Process

We first modify R to take into account the conditions Lya(1) and Lya(4) in
the above subsection. We set (note carefully that we keep the same notation
R):

∀t ≥ 0, Rt ≡ 〈Xt, a
−1(0)Xt〉 + γ

[

X1
t X2

t

]2
, (3.4)

where γ denotes a nonnegative real whose value is fixed in the sequel of the
proof.

The choice of the correcting term γ[X1X2]2 is rather natural. First,
in light of (RSDE2), the dK terms in the differential forms of (X1)2

and (X2)2 write respectively −2dK1 and −2dK2 and are thus nonposi-
tive (as required in the condition Lya(4)). Second, the function (x1, x2) 7→
x2

1x
2
2 is of order four and is thus negligible in front of the scalar product

〈(x1, x2)t, a−1(0) (x1, x2)t〉 in the neighborhood of 0 (we thus expect the
points Csq(1–4) to hold for this new form of R and for X close to 0).

Pay also attention to the fact that the connection between R and the
usual Euclidean norm |X |2 is crucial. In short, both functionals measure in
an equivalent way the distance from X to the corner (0, 0). In this frame,
the following lemma, whose proof is left to the reader, is very useful:

Lemma 3.2 For every x ∈ R, λ−1
1 |x|2 ≤ |σ−1(0)x|2 ≤ λ−1

2 |x|2 (see (2.2)
for the definition of λ1 and λ2). In particular, for every t ≥ 0:

λ−1
1 |Xt|2 ≤ 〈Xt, a

−1(0)Xt〉 ≤ λ−1
2 |Xt|2 ≤ 2λ−1

2 .

In particular, for all t ≥ 0, λ−1
1 |Xt|2 ≤ Rt ≤

(

λ−1
2 +

γ

2

)

|Xt|2 ≤ 2λ−1
2 + γ.

For a large fixed N , define the hitting time ζN ≡ inf{t ≥ 0, |Xt| ≤ N−1},

and deduce that for every t ∈ [0, ζN ], R
1/2
t ≥ λ

−1/2
1 N−1 > 0.

3.2.1. Differential Form of the Auxiliary Process R1/2 We are now in po-
sition to write the differential form of the auxiliary process R1/2:

Proposition 3.3 There exist a constant C3.3, depending only on γ and on
known parameters, as well as a function Γ3.3 : R

2 → R, bounded by C3.3,
such that for t ∈ [0, ζN ]:

dR
1/2
t = Γ3.3(Xt)dt +

1

2
R

−1/2
t dt

− s√
1 − s2

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

− R
−1/2
t

[

κ1
t dK1

t + κ2
t dK2

t

]

+ R
−1/2
t 〈σ(Xt)S(Xt)Xt, dBt〉,

(3.5)

with:

κ1
t ≡ 1

1 − s2

[

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t + (1 − s2)γ
(

X2
t

)2]
,

κ2
t ≡ 1

1 − s2

[

ρ−2
2 − sρ−1

1 ρ−1
2 X1

t + (1 − s2)γ
(

X1
t

)2]
,

S(Xt) ≡ a−1(0) + γ
(

X2
t

)2
diag(1, 0) + γ

(

X1
t

)2
diag(0, 1) ,

(3.6)
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where the matrices diag(1, 0) and diag(0, 1)are diagonal matrices, whose di-
agonals are respectively equal to (1, 0) and to (0, 1).

Focus a while on the consequences of Proposition 3.3:

1. First, the matrix S(x) remains close to a−1(0) for x small. In particular,
the martingale part of R1/2 still looks like a Brownian motion in the
neighborhood of 0.

2. For s > 0, there is no difficulty to choose γ to make κ1 and κ2 positive.
3. For γ = 0, we recover Proposition 3.1.

Proof of Proposition 3.3. Write first the SDE satisfied by the process R:

Lemma 3.4 Keep the notation introduced in the statement of Proposition
3.3. Then, there exists a constant C3.4, depending only on γ and on known
parameters, as well as a function Γ3.4, bounded by C3.4, such that for t ≥ 0:

dRt = R
1/2
t Γ3.4(Xt)dt + 2dt

− 2s√
1 − s2

R
1/2
t

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

− 2
[

κ1
t dK1

t + κ2
t dK2

t

]

+ 2〈σ(Xt)S(Xt)Xt, dBt〉.

(3.7)

Assume for the moment that Lemma 3.4 holds and complete the proof of
Proposition 3.3. Apply Itô’s formula to R1/2 and derive from (3.7) (note
that R does not vanish for t ∈ [0, ζN ]) that for t ∈ [0, ζN ],

dR
1/2
t =

{1

2
Γ3.4(Xt)dt + R

−1/2
t dt

}

+
{

− s√
1 − s2

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

− R
−1/2
t

[

κ1
t dK1

t + κ2
t dK2

t

]}

+ R
−1/2
t 〈σ(Xt)S(Xt)Xt, dBt〉

− 1

2
R

−3/2
t 〈Xt, S(Xt)a(Xt)S(Xt)Xt〉dt

≡
[

∆(1, Xt) + R
−1/2
t

]

dt + d∆t(2) + d∆t(3) − 1

2
R

−3/2
t ∆(4, Xt)dt.

(3.8)

Focus on ∆(4, ·) in (3.8) and refer to (3.6) (definition of S):

∀t ∈ [0, ζN ], ∆(4, Xt) = 〈Xt, S(Xt)Xt〉
+ 〈Xt, [S(Xt) − a−1(0)]a(0)S(Xt)Xt〉
+ 〈Xt, S(Xt)[a(Xt) − a(0)]S(Xt)Xt〉

= Rt + 2γ(X1
t )2(X2

t )2

+ 〈Xt, [S(Xt) − a−1(0)]a(0)S(Xt)Xt〉
+ 〈Xt, S(Xt)[a(Xt) − a(0)]S(Xt)Xt〉
≡ Rt + ∆(5, Xt).

(3.9)
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Thanks to the Lipschitz continuity and to the boundedness of a, to Lemma
3.2 (equivalence of R and |X |2) and to the definition of S (see the statement
of Proposition 3.3), the function ∆(5, ·) satisfies:

∀t ∈ [0, ζN ], |∆(5, Xt)| ≤ CR
3/2
t . (3.10)

where the constant C depends only on γ and on known parameters.
Plug now (3.9) into (3.8). For all t ∈ [0, ζN ]:

dR
1/2
t =

[

∆(1, Xt) −
1

2
R

−3/2
t ∆(5, Xt) +

1

2
R

−1/2
t

]

dt + d∆t(2) + d∆t(3).

(3.11)

Set finally Γ3.3(Xt) ≡ ∆(1, Xt) − (1/2)R
−3/2
t ∆(5, Xt). Thanks to (3.8),

(3.10) and to (3.11), this completes the proof. ut
Proof of Lemma 3.4. Thanks to Itô’s formula, d〈X, a−1(0)X〉 writes for
t ≥ 0:

d〈Xt, a
−1(0)Xt〉

= 2〈Xt, a
−1(0)b(Xt)〉dt + trace

[

σ−1(0)a(Xt)σ
−1(0)

]

dt

+ 2〈Xt, a
−1(0)(dHt − dKt)〉 + 2〈a−1(0)Xt, σ(Xt)dBt〉

= 2dt

+ 2〈Xt, a
−1(0)b(Xt)〉dt + trace

[

σ−1(0)
(

a(Xt) − a(0)
)

σ−1(0)
]

dt

+ 2〈Xt, a
−1(0)(dHt − dKt)〉 + 2〈a−1(0)Xt, σ(Xt)dBt〉

(3.12)

Focus for the moment on the dH and dK terms in the above r.h.s. Due
to (RSDE2), note first that X1

t dH1
t = 0 and X2

t dH2
t = 0 and that

ρ−1
2 X2

t dH1
t = (1 − s2)1/2R

1/2
t dH1

t and ρ−1
1 X1

t dH2
t = (1 − s2)1/2R

1/2
t dH2

t .
Derive that:

〈Xt, a
−1(0)dHt〉 = X1

t

(

a−1(0)
)

1,1
dH1

t + X2
t

(

a−1(0)
)

2,2
dH2

t

+
(

a−1(0)
)

1,2

[

X2
t dH1

t + X1
t dH2

t

]

= − s

1 − s2
ρ−1
1 ρ−1

2

[

X2
t dH1

t + X1
t dH2

t

]

= − s√
1 − s2

R
1/2
t

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

.

(3.13)

Note in the same way that X1
t dK1

t = dK1
t and X2

t dK2
t = dK2

t . Thus:

〈Xt, a
−1(0)dKt〉 = X1

t

(

a−1(0)
)

1,1
dK1

t + X2
t

(

a−1(0)
)

2,2
dK2

t

+
(

a−1(0)
)

1,2

[

X1
t dK2

t + X2
t dK1

t

]

=
1

1 − s2

[

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

]

dK1
t

+
1

1 − s2

[

ρ−2
2 − sρ−1

1 ρ−1
2 X1

t

]

dK2
t .

(3.14)
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Plug now (3.13) and (3.14) into (3.12) and deduce from the boundedness
of b and the Lipschitz continuity of a and from Lemma 3.2 (equivalence
between R and |X |2) that there exists a function ∆(6, ·) from R

2 into R,
bounded by a constant C (depending on γ and on known parameters) such
that for all t ≥ 0:

d〈Xt, a
−1(0)Xt〉

= 2dt + R
1/2
t ∆(6, Xt)dt

− 2s√
1 − s2

R
1/2
t

[

ρ−1
1 dH1

t + ρ−1
2 dH2

t

]

− 2

1 − s2

[

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

]

dK1
t − 2

1 − s2

[

ρ−2
2 − sρ−1

1 ρ−1
2 X1

t

]

dK2
t

+ 2〈a−1(0)Xt, σ(Xt)dBt〉.
(3.15)

Note again from (RSDE2) that:

d
(

X1
t

)2
= 2X1

t b1(Xt)dt + a1,1(Xt)dt − 2dK1
t + 2

〈

Xt, diag(1, 0) σ(Xt)dBt

〉

,

d
(

X2
t

)2
= 2X2

t b2(Xt)dt + a2,2(Xt)dt − 2dK2
t + 2

〈

Xt, diag(0, 1) σ(Xt)dBt

〉

.

(3.16)

Thus, d
[

X1
t X2

t

]2
writes:

d
[

X1
t X2

t

]2

=
{(

X2
t

)2[
2X1

t b1(Xt) + a1,1(Xt)
]

dt +
(

X1
t

)2[
2X2

t b2(Xt) + a2,2(Xt)
]

dt

+ 4
〈

Xt, diag(1, 0)a(Xt)diag(0, 1) Xt

〉}

dt

− 2
(

X2
t

)2
dK1

t − 2
(

X1
t

)2
dK2

t

+ 2
(

X2
t

)2〈
Xt, diag(1, 0)σ(Xt)dBt

〉

+ 2
(

X1
t

)2〈
Xt, diag(0, 1)σ(Xt)dBt

〉

≡ ∆(7, Xt)dt

− 2
(

X2
t

)2
dK1

t − 2
(

X1
t

)2
dK2

t

+ 2
(

X2
t

)2〈
Xt, diag(1, 0)σ(Xt)dBt

〉

+ 2
(

X1
t

)2〈
Xt, diag(0, 1)σ(Xt)dBt

〉

.

(3.17)

Due to the regularity of the coefficients and to Lemma 3.2, the term ∆(7, Xt)
is bounded by CRt. Deduce then (3.7) from (3.15) and (3.17). ut

3.2.2. Choice of the Extra Quartic Pertubation We now choose the pa-
rameter γ in (3.4). Focus to this end on (3.6) in Proposition 3.3.

Lemma 3.5 There exists a constant C3.5 > 0 such that ∀t ≥ 0, S(Xt) ≥
C−1

3.5I2, where I2 denotes the 2 × 2-identity matrix. Moreover,
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1. If s ≤ 0 and γ = 0,

∀t ∈ [0, ζN ],



















X1
t = 1 ⇒ (1 − s2)1/2R

−1/2
t κ1

t ≥ −sρ−1
1

+(1 + s)ρ−2
1

(

ρ−1
1 + ρ−1

2

)−1
,

X2
t = 1 ⇒ (1 − s2)1/2R

−1/2
t κ2

t ≥ −sρ−1
2

+(1 + s)ρ−2
2

(

ρ−1
1 + ρ−1

2

)−1
.

2. If s > 0 and γ = (1 − s2)−1 max(ρ−2
1 , ρ−2

2 ),

∀t ∈ [0, ζN ],

{

X1
t = 1 ⇒ (1 − s2)1/2R

−1/2
t κ1

t ≥ (3/8)1/2ρ−1
1 ,

X2
t = 1 ⇒ (1 − s2)1/2R

−1/2
t κ2

t ≥ (3/8)1/2ρ−1
2 .

For each of these choices for γ, we can assume that S(Xt) ≤ C3.5I2

Proof. Start first with S(Xt). The two matrices diag(1, 0) and diag(0, 1)
are symmetric nonnegative. Since the matrix a−1(0) is symmetric positive,
the matrices (S(Xt))t≥0 are uniformly non-degenerate. Moreover, with the
above choices for γ, it is rather clear from the ellipticity assumption for a(0)
that the matrices (S(Xt))t≥0 are also uniformly bounded.

Turn now to the sign of κ1 (the same holds with κ2). Assume first that
s ≤ 0, γ = 0 and consider t ∈ [0, ζN ] such that X1

t = 1. Then,

(1 − s2)1/2R
−1/2
t κ1

t

=
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

)(

ρ−2
1 − 2sρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2
)−1/2

≥
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

)(

ρ−2
1 + 2ρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2
)−1/2

=
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t

)(

ρ−1
1 + ρ−2

2 X2
t

)−1
.

Thus,

(1 − s2)1/2R
−1/2
t κ1

t + sρ−1
1 ≥

(

(1 + s)ρ−2
1

)(

ρ−1
1 + ρ−2

2 X2
t

)−1

≥ (1 + s)
ρ−2
1

ρ−1
1 + ρ−1

2

.

Assume now that s > 0, γ = (1 − s2)−1 max(ρ−2
1 , ρ−2

2 ) and consider again
t ≥ 0 such that X1

t = 1. Then,

(1 − s2)1/2R
−1/2
t κ1

t

≥
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2
)

×
(

ρ−2
1 − 2sρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2 + max(ρ−2
1 , ρ−2

2 )(X2
t )2

)−1/2

≥
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2
)

×
(

2ρ−2
1 − 2sρ−1

1 ρ−1
2 X2

t + 2ρ−2
2 (X2

t )2
)−1/2

= 2−1/2
(

ρ−2
1 − sρ−1

1 ρ−1
2 X2

t + ρ−2
2 (X2

t )2
)1/2

= 2−1/2
(

(1 − s2/4)ρ−2
1 +

(

(s/2)ρ−1
1 − ρ−1

2 X2
t

)2)1/2

≥ (3/8)1/2ρ−1
1 .

This completes the proof. ut
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From now on, we always assume that γ is given by Lemma 3.5, i.e. γ = 0 for
s ≤ 0 and γ = (1−s2)−1 max(ρ−2

1 , ρ−2
2 ) for s > 0. These choices ensure that

the dK terms in the differential form of the auxiliary process (cf. (3.5)) are
always uniformly negative. This point is crucial in the sequel of the paper.

3.3. Definitive Auxiliary Process

We now aim to correct the auxiliary process R1/2 to remove the component
dH in the differential form (3.5) (cf. the discussion in the end of Subsection
3.1). We consider to this end the so-called definitive auxiliary process At ≡
R

1/2
t + Zt, t ≥ 0, with:

∀t ≥ 0, Zt ≡
s√

1 − s2
〈(ρ−1

1 , ρ−1
2 )t, Xt〉 =

s√
1 − s2

[

ρ−1
1 X1

t + ρ−1
2 X2

t

]

.

Again, it is crucial to verify first that the auxiliary process A and the process
|X | are equivalent (in the sense of Lemma 3.2). According to Lemma 3.2,
it is sufficient to prove that A and R1/2 are equivalent:

Lemma 3.6 The following bounds hold for A:

1. For s > 0 and t ∈ [0, ζN ], R
1/2
t ≤ At ≤

[

1 +
(

2s2(1 − s)−1
)1/2]

R
1/2
t .

2. For s < 0 and t ∈ [0, ζN ], (1 + s)(1 −
√

2s)−1R
1/2
t ≤ At ≤ (1 + s)R

1/2
t .

Proof. Note first that the following bound is obvious: R
1/2
t ≤ At for s > 0.

Focus now on the upper bound for s > 0. For all t ∈ [0, ζN ],

Rt ≥ (1 − s2)−1
[

ρ−2
1 (X1

t )2 + ρ−2
2 (X2

t )2 − 2sρ−1
1 ρ−1

2 X1
t X2

t

]

= (1 − s2)−1
[

(1 − s)ρ−2
1 (X1

t )2 + (1 − s)ρ−2
2 (X2

t )2

+ s
(

ρ−1
1 X1

t − ρ−1
2 X2

t

)2]

≥ (1 − s2)−1(1 − s)
[

ρ−2
1 (X1

t )2 + ρ−2
2 (X2

t )2
]

≥ (1 − s)
[

2(1 − s2)
]−1[

ρ−1
1 X1

t + ρ−1
2 X2

t

]2

= (1 − s)
[

2s2
]−1

Z2
t .

(3.18)

This completes the proof for s > 0.

Turn now to the case s < 0. Since for every t ∈ [0, ζN ], R
1/2
t − Zt ≥

R
1/2
t > 0, write for t ∈ [0, ζN ]:

At =
(

Rt − Z2
t

)(

R
1/2
t − Zt

)−1

=
(

R
1/2
t − Zt

)−1
(1 − s2)−1

[

(1 − s2)ρ−2
1 (X1

t )2 + (1 − s2)ρ−2
2 (X2

t )2

− 2s(1 + s)ρ−1
1 ρ−1

2 X1
t X2

t

]

=
(

R
1/2
t − Zt

)−1
(1 − s)−1

[

(1 − s)ρ−2
1 (X1

t )2 + (1 − s)ρ−2
2 (X2

t )2

− 2sρ−1
1 ρ−1

2 X1
t X2

t

]

.

(3.19)
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Derive first the lower bound. Note that, for every t ≥ 0, −Zt ≤ −s(2Rt)
1/2.

Hence, from (3.19), for t ∈ [0, ζN ]:

At ≥
(

R
1/2
t − Zt

)−1
(1 − s)−1

×
[

ρ−2
1 (X1

t )2 + ρ−2
2 (X2

t )2 − 2sρ−1
1 ρ−1

2 X1
t X2

t

]

= (1 + s)Rt

(

R
1/2
t − Zt

)−1

≥ (1 + s)(1 −
√

2s)−1R
1/2
t .

(3.20)

Turn finally to the upper bound. Note now that, for every t ≥ 0, −Zt ≥
−s(Rt)

1/2. Hence, from (3.19), for all t ∈ [0, ζN ]:

At ≤
(

R
1/2
t − Zt

)−1[
ρ−2
1 (X1

t )2 + ρ−2
2 (X2

t )2 − 2sρ−1
1 ρ−1

2 X1
t X2

t

]

.

=
(

R
1/2
t − Zt

)−1
(1 − s2)Rt

≤ (1 − s)−1(1 − s2)R
1/2
t

= (1 + s)R
1/2
t .

(3.21)

Thanks to (3.20) and (3.21), we complete the proof for s < 0. ut

Write now the differential form of the auxiliary process A (the proof derives
from Proposition 3.3 and is thus left to the reader):

Proposition 3.7 There exist a constant C3.7 and a function Γ3.7, bounded
by C3.7, such that for all t ∈ [0, ζN ]:

dAt = Γ3.7(Xt)dt +
1

2
R

−1/2
t dt −

[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ 〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉,

with κ̄1
t = R

−1/2
t κ1

t +
s√

1 − s2
ρ−1
1 , κ̄2

t = R
−1/2
t κ2

t +
s√

1 − s2
ρ−1
2 .

Note that the processes κ̄1 and κ̄2 are uniformly positive for X1 or X2

matching one. Indeed, if s < 0, the first case in Lemma 3.5 applies, and if
s ≥ 0, κ̄1 (resp. κ̄2) is greater than κ1 (resp. κ2).

3.4. Definition of the New Boundary

At this stage of the paper, it is rather judicious to introduce a new boundary
that is more appropriate to the auxiliary process A. The following choice is
the most natural:

Definition 3.8 For a real N > 0, define:

BN (resp. ∂BN) ≡
{

(x, y) ∈ [0, 1]2,
(

|σ−1(0)(x, y)t|2 + γx2y2
)1/2

+
s√

1 − s2
(ρ−1

1 x + ρ−1
2 y) ≤ (resp. =)N−1

}

,

so that the associated hitting time writes ξN ≡ inf
{

t ≥ 0, At ≤ N−1
}

.
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Thanks to Lemmas 3.2 and 3.6, there exists a constant c3.8 ≥ 1 such that, for
N > c3.8, ∆c3.8N ⊂ BN ⊂ ∆c−1

3.8
N where ∆t, for t ≥ 0, denotes the quarter

ball B(0, t−1) ∩ R
2
+. It then comes ζc−1

3.8
N ≤ ξN ≤ ζc3.8N for N > c3.8.

In the sequel, N is chosen greater than c3.8, so that the condition t ∈
[0, ζN ] can be replaced by t ∈ [0, ξN ] in all the former statements.

4. Lyapunov Functions for the Definitive Auxiliary Process

We now look for a Lyapunov function for the process A.

4.1. Itô’s Formula for the Auxiliary Functional

We first investigate the differential form of F (A), for F smooth:

Proposition 4.1 The following bounds hold for all t ∈ [0, ξN ]:

(1 +
2s2

1 − s
) + 2ZtR

−1/2
t ≥

{

1 for s ≥ 0,
(1 + s)2(1 − s)−2 > 0 for s < 0.

(4.1)

Moreover, there exist a constant C4.1 ≥ 1 and two functions Γ4.1 and Ψ4.1

from R
2 into R such that |Γ4.1|, Ψ4.1 ≤ C4.1 and Ψ4.1 ≥ C−1

4.1 and such that
for every F ∈ C2(R∗

+, R) and every t ∈ [0, ξN ]:

dF (At)

= Ψ4.1(Xt)
{

F ′′(At) +
[(

(1 +
2s2

1 − s
)R

1/2
t + 2Zt

)−1
+ Γ4.1(Xt)

]

F ′(At)
}

dt

− F ′(At)
[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(At)〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉.

Proof. Assume for the moment the following statement (whose proof is post-
poned to the end of the subsection):

Lemma 4.2 Bounds given in (4.1) hold and there exists a constant C4.2 >
0 such that for all t ∈ [0, ξN ]:

Ψ(Xt) ≡
∣

∣R
−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t
∣

∣

2 ≥ C4.2. (4.2)

Turn now to the differential form of F (A). Deduce first from Proposition
3.7 and Itô’s formula that for all t ∈ [0, ξN ]:

dF (At) = F ′(At)
[

Γ3.7(Xt) +
1

2
R

−1/2
t

]

dt − F ′(At)
[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(At)〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉,

+
1

2
F ′′(At)

∣

∣R
−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t
∣

∣

2
dt,
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so that the last term writes (1/2)F ′′(At)Ψ(Xt). From Lemma 4.2, Ψ(X) is
uniformly positive on [0, ξN ]. Moreover, due to the boundedness of σ and
to Lemmas 3.2 and 3.5, it is also bounded. Hence, for all t ∈ [0, ξN ]:

dF (At) = −F ′(At)
[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+
Ψ(Xt)

2

[

F ′′(At) + (Ψ(Xt))
−1F ′(At)

(

R
−1/2
t + 2Γ3.7(Xt)

)]

dt

+ F ′(At)〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉.

(4.3)

Develop now Ψ(X). For all t ∈ [0, ξN ]:

Ψ(Xt) = R−1
t

∣

∣σ(Xt)S(Xt)Xt

∣

∣

2
+

s2

1 − s2

∣

∣σ(Xt)(ρ
−1
1 , ρ−1

2 )t
∣

∣

2

+ 2R
−1/2
t

s√
1 − s2

〈a(Xt)S(Xt)Xt, (ρ−1
1 , ρ−1

2 )t〉

= R−1
t

∣

∣σ(0)S(0)Xt + [σ(Xt)S(Xt) − σ(0)S(0)]Xt

∣

∣

2

+
s2

1 − s2

∣

∣σ(0)(ρ−1
1 , ρ−1

2 )t + [σ(Xt) − σ(0)](ρ−1
1 , ρ−1

2 )t
∣

∣

2

+ 2R
−1/2
t

s√
1 − s2

〈a(0)S(0)Xt

+ [a(Xt)S(Xt) − a(0)S(0)]Xt, (ρ−1
1 , ρ−1

2 )t〉.
Since S(0) = a−1(0), we can write for t ∈ [0, ξN ]:

Ψ(Xt) ≡ R−1
t

∣

∣σ−1(0)Xt + e(1, Xt)Xt

∣

∣

2

+
s2

1 − s2

∣

∣σ(0)(ρ−1
1 , ρ−1

2 )t + e(2, Xt)
∣

∣

2

+ 2R
−1/2
t

s√
1 − s2

〈Xt + e(3, Xt)Xt, (ρ−1
1 , ρ−1

2 )t〉.

(4.4)

From the Lipschitz continuity of the coefficients and from Lemma 3.2, there

exists a constant C such that |e(1, Xt)|, |e(2, Xt)|, |e(3, Xt)| ≤ CR
1/2
t . De-

velop now the squares related to e(1, ·) and e(2, ·) in (4.4). There exists a
function E(1, ·) : R

2 → R, bounded by C, such that:

Ψ(Xt) = R−1
t

∣

∣σ−1(0)Xt

∣

∣

2
+

s2

1 − s2

∣

∣σ(0)(ρ−1
1 , ρ−1

2 )t
∣

∣

2

+ 2R
−1/2
t

s√
1 − s2

〈Xt, (ρ−1
1 , ρ−1

2 )t〉 + R
1/2
t E(1, Xt).

(4.5)

Write, in (4.5), |σ−1(0)Xt|2 = 〈Xt, a
−1(0)Xt〉 = Rt − γ(X1

t )2(X2
t )2 and

|σ(0)(ρ−1
1 , ρ−1

2 )|2 = 2(1 + s). Up to a modification of E(1, ·), deduce that:

Ψ(Xt) = 1 +
2s2

1 − s
+ 2R

−1/2
t

s√
1 − s2

〈Xt, (ρ−1
1 , ρ−1

2 )t〉 + R
1/2
t E(1, Xt)

= 1 +
2s2

1 − s
+ 2R

−1/2
t Zt + R

1/2
t E(1, Xt).

(4.6)
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Thanks to (4.1) and (4.2), we can consider the inverses in (4.6):

(

Ψ(Xt)
)−1

=
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt

)−1 −
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt

)−1

+
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt + R

1/2
t E(1, Xt)

)−1

=
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt

)−1

− R
1/2
t E(1, Xt)

[(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt

)

×
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt + R

1/2
t E(1, Xt)

)]−1

≡
(

1 +
2s2

1 − s
+ 2R

−1/2
t Zt

)−1 − R
1/2
t E(2, Xt).

(4.7)

Thanks to the boundedness of E(1, Xt), to (4.1), (4.6) and (4.2), E(2, ·) is
bounded. Plug (4.7) into (4.3) and complete the proof. ut

Proof (Lemma 4.2). Prove first (4.1). Since the result is obvious for s ≥ 0,
we focus on the case s < 0. For s < 0, γ reduces to 0 and R writes as a
quadratic functional. In particular, for t ∈ [0, ξN ]:

(

1 +
2s2

1 − s

)

+ 2ZtR
−1/2
t

= 1 +
2s2

1 − s
+ 2〈R−1/2

t σ−1(0)Xt,
s√

1 − s2
σ(0)(ρ−1

1 , ρ−1
2 )t〉

≥ 1 +
2s2

1 − s
− 2

∣

∣R
−1/2
t σ−1(0)Xt

∣

∣

∣

∣

s√
1 − s2

σ(0)(ρ−1
1 , ρ−1

2 )t
∣

∣.

(4.8)

Since |R−1/2
t σ−1(0)Xt| = 1 and |σ(0)(ρ−1

1 , ρ−1
2 )t|2 = 2(1 + s), deduce:

(

1 +
2s2

1 − s

)

+ 2ZtR
−1/2
t ≥ 1 +

2s2

1 − s
− 2

√
2|s|√

1 − s

=
[

1 −
√

2|s|√
1 − s

]2

=
[

1 − 2s2

1 − s

]2[
1 +

√
2|s|√

1 − s

]−2

=
(1 + s)2(1 − 2s)2

(1 − s)2
[

1 +

√
2|s|√

1 − s

]−2

= (1 + s)2ϕ(s),

(4.9)

with ∀s ∈ [−1, 0], ϕ(s) ≡ (1 − 2s)2

(1 − s)2
[

1 +

√
2|s|√

1 − s

]−2
.
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Note in this frame that:

∀s ∈ [−1, 0], ϕ(s) =
(1 − 2s)2

(1 − s)2
[

1 +

√
2|s|√

1 − s

]−2

≥ (1 − 2s)2

(1 − s)2
[

1 + 2|s|
]−2

= (1 − s)−2.

(4.10)

Deduce (4.1) for s < 0 from (4.9) and (4.10).
Complete now the proof of Lemma 4.2. Since the matrices (σ(Xt))t≥0 are

uniformly elliptic, derive for a suitable constant C > 0 and for all t ∈ [0, ξN ]:

Ψ(Xt) =
∣

∣R
−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t
∣

∣

2

≥ C
∣

∣R
−1/2
t S(Xt)Xt +

s√
1 − s2

(ρ−1
1 , ρ−1

2 )t
∣

∣

2
.

(4.11)

Note now that the matrices (S(Xt))t≥0 are also uniformly elliptic (see
Lemma 3.5). Hence, deduce from (4.11) that for a new consant C > 0:

Ψ(Xt) ≥ C
∣

∣R
−1/2
t S1/2(Xt)Xt +

s√
1 − s2

S−1/2(Xt)(ρ
−1
1 , ρ−1

2 )t
∣

∣

2

= C
[

R−1
t |S1/2(Xt)Xt|2 + 2

s√
1 − s2

R
−1/2
t 〈Xt, (ρ−1

1 , ρ−1
2 )t〉

+
s2

1 − s2
|S−1/2(Xt)(ρ

−1
1 , ρ−1

2 )t|2
]

.

(4.12)

For s ≥ 0, the result then derives from the inequality S ≥ a−1(0). For
s < 0, the function S1/2 is constant and matches σ−1(0). In this frame, up
to the constant C, the last term in (4.12) coincides with (1+2s2(1−s)−1)+

2ZtR
−1/2
t . �

4.2. Typical Example for F

We now exhibit the typical choice for F . For α ∈ R and C ∈ R:

∀r > 0, F ′(r) = rα−1 exp(−Cr). (4.13)

The parameters α and C are to be fixed in the sequel of the proof. F satisfies
the ODE F ′′(r) + (1 − α)r−1F ′(r) = −CF ′(r), r > 0. Derive then from
Proposition 4.1 that for all t ∈ [0, ξN ]:

dF (At) = −F ′(At)
[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ Ψ4.1(Xt)
[

(α − 1)A−1
t +

(

(1 +
2s2

1 − s
)R

1/2
t + 2Zt

)−1

+ Γ4.1(Xt) − C
]

F ′(At)dt

+ F ′(At)〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉.

(4.14)

Of course, it is crucial to estimate the primitive of F ′, or more precisely, to
choose a suitable version of F . Thanks to Lemmas 3.2 and 3.6, deduce the
following proposition:
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Proposition 4.3 Set δ ≡ (1+(2s2(1−s)−1)1/21s>0)(2λ−1
2 +γ)1/2 (so that

∀t ≥ 0, At ≤ δ). Then, for every r ∈]0, δ]:

1. If α > 0 and F (0) = 0, then:
(a) If C ≥ 0, 0 ≤ α−1 exp(−δC)rα ≤ F (r) ≤ α−1rα,
(b) If C ≤ 0, 0 ≤ α−1rα ≤ F (r) ≤ α−1 exp(−δC)rα,

2. If α = 0 and F (δ) = 0, then:
(a) If C ≥ 0, ln(r/δ) ≤ F (r) ≤ exp(−δC) ln(r/δ) ≤ 0,
(b) If C ≤ 0, exp(−δC) ln(r/δ) ≤ F (r) ≤ ln(r/δ) ≤ 0,

3. If α < 0 and F (δ) = 0, then:
(a) If C ≥ 0, α−1

[

rα − (δ)α
]

≤ F (r) ≤ α−1 exp(−δC)
[

rα − (δ)α
]

≤ 0,

(b) If C ≤ 0, α−1 exp(−δC)
[

rα − (δ)α
]

≤ F (r) ≤ α−1
[

rα − (δ)α
]

≤ 0.

4.3. Standard Quadratic Process and Related Lyapunov Functions

The objective now consists in choosing suitable parameters α and C in (4.14)
to get rid of the dt term in (4.14) and then in adding another differential
form to get rid of the dK terms. In short, this extra differential form is
given by a functional of the square of the Euclidean norm of X . Define to
this end:

∀t ≥ 0, Σt ≡ |Xt|2. (4.15)

The differential of Σ is easily computed (see (3.16)):

Proposition 4.4 There exist a constant C4.4 and a function φ4.4 from R
2

into R, bounded by C4.4, such that the differential dΣ writes for t ≥ 0:

dΣt = trace(a(0))dt + φ4.4(Xt)Σ
1/2
t dt − 2

[

dK1
t + dK2

t

]

+ 2〈Xt, σ(Xt)dBt〉.
(4.16)

As done for A and F , we need to associate to Σ a suitable family of func-
tionals. Define for a given D ∈ R:

∀ r > 0, G(r) ≡
∫ r

0

exp(Dv1/2)dv. (4.17)

It is well seen that ∀r > 0, G′(r) = exp(Dr1/2), G′′(r) = (D/2)r−1/2G′(r).
Again, the following proposition mimics the previous results obtained for F
and is thus left to the reader:

Lemma 4.5 Let G be given by (4.17). Then for every r ∈ [0, 2] (recall
∀t ≥ 0, Σt ≤ 2):

1. If D ≥ 0, then 0 ≤ r ≤ G(r) ≤ r exp(21/2D).
2. If D ≤ 0, then 0 ≤ r exp(21/2D) ≤ G(r) ≤ r.

We are finally in position to express the differential form of G(Σ) (again,
the proof is left to the reader):
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Proposition 4.6 Let G be given by (4.17). Then, for t ∈ [0, ξN ]:

dG(Σt) = G′(Σt)trace(a(0))dt

+
[

DΣ
−1/2
t |σ(Xt)Xt|2 + φ4.4(Xt)Σ

1/2
t

]

G′(Σt)dt

− 2G′(Σt)
[

dK1
t + dK2

t

]

+ 2G′(Σt)〈Xt, σ(Xt)dBt〉.

The strategy now consists in balancing φ4.4 with a suitable choice for D (de-
pending on the ellipticity constant of a). From Lemma 4.5 and Proposition
4.6, we claim:

Corollary 4.7 Under the notations of Proposition 4.4, it comes for t ∈
[0, ξN ]:

1. If D = −λ−1C4.4, dG(Σt) ≤ (ρ1 + ρ2)dt − 2 exp(−21/2λ−1C4.4)
[

dK1
t +

dK2
t

]

+ 2 exp(DΣ
1/2
t )〈Xt, σ(Xt)dBt〉,

2. If D = λ−1C4.4, dG(Σt) ≥ (ρ1 + ρ2)dt − 2 exp(21/2λ−1C4.4)
[

dK1
t +

dK2
t

]

+ 2 exp(DΣ
1/2
t )〈Xt, σ(Xt)dBt〉.

5. Proof of the Main Bounds

We now investigate the asymptotic behavior of E[ξN ].

5.1. Intermediate Case: s = 0

We first focus on the simple case s = 0. Choose to this end F as given in
(4.13) with α = 0 and F (δ) = 0. Since Z vanishes and A reduces to R1/2

(see Subsection 3.3), it comes from (4.14) for t ∈ [0, ξN ]:

dF (R
1/2
t ) = Ψ4.1(Xt)

[

Γ4.1(Xt) − C
]

F ′(R
1/2
t )dt

− F ′(R
1/2
t )

[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(R
1/2
t )〈R−1/2

t σ(Xt)S(Xt)Xt, dBt〉.
(5.1)

5.1.1. Upper Bound for the Expectation of ξN

Theorem 5.1 Assume that s = 0. Then, there exists a constant C5.1 such
that E[ξN ] ≤ C5.1(1 + ln(N)).

Proof. Choose F as in (5.1) with C = C4.1 (see Proposition 4.1). Then, due
to the positivity of Ψ4.1 (and the one of F ′):

∀t ∈ [0, ξN ], dF (R
1/2
t ) ≤ −F ′(R

1/2
t )

[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(R
1/2
t )〈R−1/2

t σ(Xt)S(Xt)Xt, dBt〉.
(5.2)

Focus on the dK terms. Again, the functional F ′(R1/2) is uniformly bounded
from below by a positive constant. Moreover, thanks to Proposition 3.7, the
processes κ̄1 and κ̄2 are also uniformly bounded from below by a positive
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constant when one of the coordinate of X matches one. Hence, there exists
a constant m > 0, such that for all t ∈ [0, ξN ]:

dF (R
1/2
t ) ≤ −m−1

[

dK1
t + dK2

t

]

+ F ′(R
1/2
t )〈R−1/2

t σ(Xt)S(Xt)Xt, dBt〉.
(5.3)

Apply now the point 2 in Corollary 4.7 (with the same D) and deduce that
for every t ∈ [0, ξN ]:

−dG(Σt) ≤ −(ρ1 + ρ2)dt + 2 exp
(

21/2λ−1C4.4

)[

dK1
t + dK2

t

]

− 2 exp(DΣ
1/2
t )〈Xt, σ(Xt)dBt〉.

(5.4)

Hence, from (5.3) and (5.4), there exist a constant θ > 0 and a square
integrable martingale M such that:

∀t ∈ [0, ξN ], d
[

F (R
1/2
t ) − θG(Σt)

]

≤ −θ(ρ1 + ρ2)dt + dMt. (5.5)

For t ≥ 0, take the expectation in (5.5) between 0 and t ∧ ξN :

E
[

F (R
1/2
t∧ξN

) − θG(Σt∧ξN
)
]

− F (R0) + θG(Σ0) ≤ −θ(ρ1 + ρ2)E
[

t ∧ ξN

]

.

Letting t → +∞, deduce that E(ξN ) < +∞ and that:

θ(ρ1 + ρ2)E
[

ξN

]

≤ θ
[

E[G(ΣξN
)] − G(Σ0)

]

−
[

F (N−1) − F (R0)
]

.

Recall from 2-(a) in Proposition 4.3 that the growth of F is logarithmic and
from Lemma 4.5 that G is bounded. This completes the proof. ut

5.1.2. Lower Bound for the Expectation of ξN

Theorem 5.2 Assume that s = 0. Then, there exists a constant C5.2 > 0
such that E[ξN ] ≥ C−1

5.2 ln(N) − C5.2.

Proof. Choose F as in (5.1) and C = −C4.1. As in the proof of Theorem
5.1:

∀t ∈ [0, ξN ], dF (R
1/2
t ) ≥ −F ′(R

1/2
t )

[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(R
1/2
t )〈R−1/2

t σ(Xt)S(Xt)Xt, dBt〉.
(5.6)

The functionals F ′(R1/2), κ̄1 and κ̄2 are uniformly bounded when X belongs
to one of the two border lines x1 = 1 or x2 = 1. Thus, there exists a constant
m′ > 0 such that:

∀t ∈ [0, ξN ], dF (R
1/2
t ) ≥ −(m′)−1

[

dK1
t + dK2

t

]

+ F ′(R
1/2
t )〈R−1/2

t σ(Xt)S(Xt)Xt, dBt〉.
(5.7)

Apply now the point 1 in Corollary 4.7 (with the same D). For every t ∈
[0, ξN ]:

−dG(Σt) ≥ −(ρ1 + ρ2)dt + 2 exp
(

−21/2λ−1C4.4

)[

dK1
t + dK2

t

]

− 2 exp(DΣ
1/2
t )〈Xt, σ(Xt)dBt〉.

(5.8)
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Hence, from (5.7) and (5.8), there exist a constant θ′ > 0 and a square
integrable martingale M ′ such that:

∀t ∈ [0, ξN ], d
[

F (R
1/2
t ) − θ′G(Σt)

]

≥ −θ′(ρ1 + ρ2)dt + dM ′
t . (5.9)

Take the expectation between 0 and t ∧ ξN and let t tend to +∞:

E
[

F (R
1/2
ξN

) − θ′G(ΣξN
)
]

− F (R0) + θ′G(Σ0) ≥ −θ′(ρ1 + ρ2)E
[

ξN

]

.

Hence:

θ′(ρ1 + ρ2)E
[

ξN

]

≥ θ′
[

E[G(ΣξN
)] − G(Σ0)

]

−
[

F (N−1) − F (R0)
]

.

Recall again from 2-(b) in Proposition 4.3 that the growth of F is logarith-
mic and from Lemma 4.5 that G is bounded. ut

5.2. Positive Case

Assume now that s > 0 and return back to (4.13). To establish the uniform
boundedness in N of the expectation of ξN , we aim at choosing α posi-
tive. To this end, we need to bound efficiently the coefficient [(1 + 2s2(1 −
s)−1)R1/2 + 2Z]−1 in (4.14).

Lemma 5.3 Assume that s > 0 and define s̄ ≡ min
( 2s2

1 − s
, 1

)

. Then,

∀t ∈ [0, ξN ],
[(

1 +
2s2

1 − s

)

R
1/2
t + 2Zt

]−1 ≤ [1 + s̄]−1A−1
t .

Proof. Recall that Z (see Subsection 3.3) is positive since s > 0. Hence,

∀t ∈ [0, ξN ],
(

1 +
2s2

1 − s

)

R
1/2
t + 2Zt = At + 2s2(1 − s)−1R

1/2
t + Zt

≥ At + s̄
(

R
1/2
t + Zt

)

= (1 + s̄)At.

We are now in position to prove the following theorem:

Theorem 5.4 Assume that s > 0. Then, there exists a constant C5.4 such
that E[ξN ] ≤ C5.4.

Proof. Choose α = 1 − (1 + s̄)−1 (so that α > 0), C = C4.1 and F (0) = 0
in (4.13). Then, due to the positivity of Ψ4.1 (see Proposition 4.1) and the
one of F ′, deduce from (4.14) and Lemma 5.3 that for t ∈ [0, ξN ],

dF (At) ≤ −F ′(At)
[

κ̄1
t dK1

t + κ̄2
t dK2

t

]

+ F ′(At)〈R−1/2
t σ(Xt)S(Xt)Xt +

s√
1 − s2

σ(Xt)(ρ
−1
1 , ρ−1

2 )t, dBt〉.

Follow now the proof of Theorem 5.1 (due to the equivalence between A
and |X |, see Lemma 3.6, F ′(At) is uniformly bounded from above and from
below when one of the coordinate of X matches one) and deduce for a
suitable constant θ > 0:

θ(ρ1 + ρ2)E
[

ξN

]

≤ θ
[

E[G(ΣξN
)] − G(Σ0)

]

−
[

F (N−1) − F (R0)
]

.

Recall from 1-(a) in Proposition 4.3 and from Lemma 4.5 that F and G are
bounded. This completes the proof. ut
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5.3. Negative Case

Consider finally the case s < 0. As done in the latter subsection, we need
to bound efficiently the coefficient (1 + 2s2(1 − s)−1)R1/2 + 2Z in (4.14).

Lemma 5.5 Assume that s < 0. Then,

∀t ∈ [0, ξN ], (1 − s) A−1
t ≤

[(

1 +
2s2

1 − s

)

R
1/2
t + 2Zt

]−1 ≤ A−1
t

(1 − s)2

(1 + s)
.

Proof. The upper bound follows from (4.1) and Lemma 3.6.
Turn to the lower bound. For t ∈ [0, ξN ],

(

1 +
2s2

1 − s

)

R
1/2
t + 2Zt =

(

1 +
2s2

1 − s

)

R
1/2
t + 2(At − R

1/2
t )

= 2At +
(

−1 +
2s2

1 − s

)

R
1/2
t

= 2At +
(2s − 1)(s + 1)

1 − s
R

1/2
t .

(5.10)

Note that (2s − 1)(1 − s)−1 < 0 and apply Lemma 3.6 to (5.10). For t ∈
[0, ξN ]:

(

1 +
2s2

1 − s

)

R
1/2
t + 2Zt ≤ 2At +

(2s − 1)

1 − s
At = (1 − s)−1At.

This completes the proof. ut

5.3.1. Upper Bound We are now in position to give an upper bound for
the expectation of ξN .

Theorem 5.6 Assume s < 0 and set β+ ≡ (1 − s)2(1 + s)−1 − 1 = s(s −
3)(1 + s)−1 > 0. Then, there exists a constant C5.6 such that E(ξN ) ≤
C5.6(Nβ+ + 1).

Proof. Choose α = −β+, C = C4.1 and F (δ) = 0 in (4.13), apply (4.14)
and follow the proof of Theorem 5.1. ut

5.3.2. Lower Bound Turn now to the lower bound:

Theorem 5.7 Assume s < 0 and set β− ≡ 1−s−1 = −s > 0. Then, there
exists a constant C5.7 such that E(ξN ) ≥ C−1

5.7Nβ
− − C5.7.

Proof. Choose α = −β−, C = C4.1 and F (δ) = 0 in (4.13), apply (4.14)
and follow the proof of Theorem 5.2. ut

5.4. Conclusion

Derive now Theorem 2.1 from Theorems 5.1, 5.2, 5.4, 5.6 and 5.7. Note in-
deed from the equivalence between A and the Euclidean norm (see Lemmas
3.2 and 3.6) that there exists a parameter c > 1, such that, for ` ∈]0, c−1[,
ξc`−1 ≤ T` ≤ ξc−1`−1 , where T` = inf{t ≥ 0, X1

t + X2
t ≤ `}.
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