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ON THE SPECTRAL DENSITY OF THE WAVELET

COEFFICIENTS OF LONG MEMORY TIME SERIES WITH

APPLICATION TO THE LOG-REGRESSION ESTIMATION

OF THE MEMORY PARAMETER

E. MOULINES, F. ROUEFF, AND M.S. TAQQU

Abstract. In the recent years, methods to estimate the memory parame-
ter using wavelet analysis have gained popularity in many areas of science.
Despite its widespread use, a rigorous semi-parametric asymptotic theory,
comparable to the one developed for Fourier methods, is still missing. In
this contribution, we adapt the classical semi-parametric framework intro-
duced by Robinson and his co-authors for estimating the memory parameter
of a (possibly) non-stationary process. As an application, we obtain min-
imax upper bounds for the log-scale regression estimator of the memory
parameter for a Gaussian process and we derive an explicit expression of
its variance.

AMS Keywords: 62M10, 60G18 Secondary: 62M15

1



2 E. MOULINES, F. ROUEFF, AND M.S. TAQQU

1. Introduction

LetX
def
= {Xk}k∈Z be a real-valued process, not necessarily stationary and let

∆KX denotes its K-th order difference. The first order difference is [∆X]k
def
=

Xk − Xk−1 and ∆K is defined recursively. The process X is said to have
memory parameter d, d ∈ R (in short, is an M(d) process) if for any integer
K > d − 1/2, the K-th order difference process ∆KX is weakly stationary
with spectral density function

f∆KX(λ)
def
= |1 − e−iλ|2(K−d) f ∗(λ) λ ∈ (−π, π), (1)

where f ∗ is a non-negative symmetric function which is bounded on (−π, π)
and is bounded away from zero in a neighborhood of the origin. M(d) processes
encompass both stationary and non-stationary processes, depending on the
value of the memory parameter d. When d < 1/2, the process X is covariance
stationary and its spectral density is given by

f(λ) = |1 − e−iλ|−2df ∗(λ) . (2)

The process X is said to have long-memory if 0 < d < 1/2, short-memory if
d = 0 and negative memory if d < 0; the process is not invertible if d < −1/2.
When d > 1/2, the process is non stationary but its (possibly higher-order)
increments are covariance stationary. Stationarity of the increments is com-
monly assumed in time-series analysis, as in ARIMA models (in this case,
d = K is an integer and f ∗ is the spectral density of an autoregressive moving
average short-memory process). Under this assumption, a finite number of
integer differences produces a short-memory process, with the degree of differ-
encing determined by diagnostics such as unit root tests. In this case, f is not
integrable on [−π, π] and is therefore not a spectral density. In the terminology
introduced by Yaglom (1958), this referred to a generalized spectral density.

If d > 0 and f ∗ ≡ σ2 in (2), one gets the so-called fractionally integrated
white noise process. If

f ∗
ARMA(λ) = σ2

∣

∣1 −∑q
k=1 θke

−iλk
∣

∣

2

|1 −∑p
k=1 φke−iλk|2

with 1 −
p
∑

k=1

φkz
k 6= 0 for |z| = 1 (3)

leads to the class of ARFIMA(p, d, q) processes. Another example are the
discrete-time samples {BH(k)}k∈Z of the continuous-time fractional Brown-
ian motion (FBM) {BH(t), t ∈ R} with Hurst index H ∈ (0, 1), which is a
continuous centered Gaussian process with covariance

RH(t, s)
def
= E[BH(t)BH(s)] =

1

2

{

|t|2H + |s|2H − |t− s|2H
}

.

(see for instance Mandelbrot and Van Ness (1968)). The process {BH(k)}k∈Z

is increment stationary (K = 1) and its generalized spectral density is given
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by fFBM(λ)
def
= |1 − e−iλ|−2d f ∗

FBM(λ), where d = H + 1/2 and

f ∗
FBM(λ) =

∣

∣

∣

∣

2 sin(λ/2)

λ

∣

∣

∣

∣

2d

+ |2 sin(λ/2)|2H+1
∑

k 6=0

|λ+ 2kπ|−(2d) (4)

The memory parameter d plays a central role in the definition of M(d) pro-
cesses and is often the focus of empirical interest. Two classes of methods have
emerged to estimate the memory parameter d : Fourier and Wavelet methods.
Frequency-domain techniques are now well documented and understood (see
for instance Hurvich and Ray (1995), Velasco (1999), Velasco and Robinson
(2000) and Hurvich et al. (2002)).

In this paper, we focus on wavelet methods. The use of the DWT to estimate
the memory parameter d was initiated by Flandrin (1992) and Wornell and
Oppenheim (1992) for the continuous-time FBM. Flandrin (1992) showed that
the wavelet coefficients of the FBM at a given scale is a covariance stationary
sequence and provided explicit expression for the wavelet coefficient covariance
sequence. Most importantly, the log-scale spectrum, defined as the logarithm
of the variance of the wavelet coefficients as a function of the scale parameter,
was shown to be a linear function of the scale index, with a slope proportional
to the memory parameter d. The correlation of the wavelet coefficients of
continuous time processes with stationary increments was studied by Masry
(1993). Dijkerman and Mazumdar (1994) obtain bounds in the case of FBM.

In many applications, observations are in discrete-time and the DWT in dis-
crete time should therefore be used (see below). One of the earliest reference
in this context is Kaplan and Kuo (1993), who applied the DWT using the
Haar basis to the discrete increments of the FBM, also known as the discrete
fractional Gaussian noise (FGN). They have shown that the properties of the
correlation structure of the Haar wavelet coefficients of the FGN are identi-
cal to that of the FBM. These results were later extended to the fractionally
integrated white noise, defined as the M(d) process with generalized spectral
density density f(λ) = σ2|1 − eiλ|−2d (see McCoy and Walden (1996) for the
stationary case; Fan (2003) for nonstationary extensions). These authors em-
phasized the importance of the choice of the wavelet and in particular of the
number of its vanishing moments; see for instance Percival and Walden, chap-
ters 9,10 (2000) for an in-depth study. More recently, Craigmile and Percival
(2005) study what happens when the number of zero moments tends to infin-
ity. While these authors focus on bounds of the correlation between wavelet
coefficients, our focus will be instead on bounds on their spectral densities.
This allows us to develop a semiparametric approach to the estimation of the
long memory parameter.

The particular structure of the scale spectrum suggested several estimators
of the memory parameter d. In this paper, we focus on the regression estimator
introduced in Abry and Veitch (1998), consisting in estimating d from the
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slope in the regression of the logarithm of the scale spectrum on the scale
index. This estimator is now widely used in many different fields (see e.g.
Veitch and Abry (1999) for applications to network traffic; Percival and Walden
(2000) and Papanicolaou and Sølna (2003) for applications in physical sciences;
see e.g. Gençay et al. (2002) and Bayraktar et al. (2004) for applications in
finance). This estimator is well-suited to process large data sets, since it has
low computational complexity due to the pyramidal algorithm for computing
the details coefficients. Also, it is robust with respect to additive polynomial
trends (see for instance Veitch and Abry (1999) and Craigmile et al. (2005)).

Despite its widespread use, a rigorous semi-parametric asymptotic theory of
this estimator, comparable to the one developed for corresponding estimators
based on the periodogram, is still missing (the concluding remarks in Velasco
(1999) are still valid). To our best knowledge, the only attempt in this di-
rection was Bardet et al. (2000) (see also Bardet (2002)), where the log-scale
regression estimator is studied in a semi-parametric setting. However their
results cannot be compared with other estimators because the process is sup-
posed to be observed in continuous-time processes (discretization issues were
not discussed). Similar results were derived independently in Bayraktar et al.
(2004). None of these results directly translate for discrete time observations.
The main objective of this paper is to fill this gap.

The paper is organized as follows. In section 2, we introduce wavelets and
wavelet transforms for time-series. We do not assume that the wavelets are
orthonormal nor that they result from a multiresolution analysis. In section
3, we establish that the wavelet coefficients at a given scale of an M(d) pro-
cess are covariance stationary and derive an explicit expression for its spectral
density. We then extend this result to two different scales by grouping, in
appropriate way, the wavelet coefficients. These results apply to a general
class of wavelets with bounded supports, which include but are not limited to
Daubechies wavelets. We finally show that the spectral density of the wavelet
coefficients of an M(d) process can be approximated, at large scales, by the
spectral density of the continuous-time wavelet coefficients of the FBM, and
derive an explicit bound for the difference between these two quantities. In
section 4, we apply the results obtained above to derive a minimax upper
bound and an explicit expression of the limiting variance for the estimator of
the memory parameter based on the regression of the log-scale spectrum for
(possibly non-stationary) Gaussian processes.

2. Discrete Wavelet Transform

In this section, we introduce the main concepts required to define an (ex-
tended) discrete wavelet transform. Denote by L2(R) the set of square inte-
grable functions with respect to the Lebesgue measure. Let φ ∈ L2(R) and
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ψ ∈ L2(R) be two functions and define their Fourier transforms as

φ̂(ξ)
def
=

∫ ∞

−∞
φ(t)e−iξt dt and ψ̂(ξ)

def
=

∫ ∞

−∞
ψ(t)e−iξt dt.

Consider the following assumptions:

(W-1) φ and ψ are compactly-supported, integrable, and φ̂(0) =
∫∞
−∞ φ(t) dt =

1 and
∫∞
−∞ ψ2(t) dt = 1.

(W-2) There exists α > 1 such that supξ∈R
|ψ̂(ξ)| (1 + |ξ|)α <∞.

(W-3) The function ψ has M vanishing moments, i.e.
∫∞
−∞ tlψ(t) dt = 0 for

all l = 0, . . . ,M − 1
(W-4) The function

∑

k∈Z
klφ(· − k) is a polynomial of degree l for all l =

0, . . . ,M − 1.

Assumption (W-1) implies that φ̂ and ψ̂ are everywhere infinitely differen-
tiable. Hence, under (W-1), (W-3) is equivalent to asserting that the firstM−1

derivatives of ψ̂ vanish at the origin which implies, using a Taylor expansion,
that

|ψ̂(ξ)| = O(|ξ|M) as ξ → 0 . (5)

By (Cohen, 2003, Theorem 2.8.1, Page 90), under (W-1), (W-4) is equivalent
to

sup
k 6=0

|φ̂(ξ + 2kπ)| = O(|ξ|M) as ξ → 0 . (6)

Define the family {ψj,k, j > 0, k ∈ Z} of translated and dilated functions

ψj,k(t) = 2−j/2 ψ(2−jt− k) , (7)

Many authors suppose that the ψj,k are orthogonal and even that they are
generated by a multiresolution analysis (MRA). We discuss in Appendix A,
the relations between assumptions (W-1)-(W-4) and multiresolution analysis
(in which case, φ is the scaling function and ψ is the associated wavelet). In
this paper, we do not assume that wavelets are orthonormal nor that they are
associated to a multiresolution analysis. We may therefore work with other
convenient choices for φ and ψ as long as (W-1)-(W-4) are satisfied. A simple
example is to set, for some positive integer N ,

φ(x)
def
= 1⊗N

[0,1](x) and ψ(x)
def
=

dN

dxN
1⊗2N

[0,1] (x),

where 1A is the indicator function of the set A and for a non negative function
f , f⊗N denotes the N -th self-convolution of f . It follows that

|φ̂(ξ)| = |2 sin(ξ/2)/ξ|N and ψ̂(ξ) = |ξ|N |2 sin(ξ/2)/ξ|2N .

Using (5) and (6), one easily checks that (W-1)-(W-4) are satisfied with M and
α equal to N . Of course the family of functions {ψj,k} are not orthonormal for
this choice of the wavelet function ψ (and the function φ is not associated to
a MRA). Nevertheless, to ease references to previously reported works, with
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a slight abuse in the terminology, we still call φ and ψ the scaling and the
wavelet functions.

Having defined the functions φ and ψ, we now define what we call the
Discrete Wavelet Transform in discrete time. Start with a real valued sequence
{xk, k ∈ Z}. Using the scaling function φ, we first associate to the sequence
{xk, k ∈ Z} the functions

xn(t)
def
=

n
∑

k=1

xk φ(t− k) and x(t)
def
=
∑

k∈Z

xk φ(t− k) (8)

The (details) wavelet coefficients are then defined as

W x

j,k
def
=

∫ ∞

−∞
x(t)ψj,k(t) dt j ≥ 0, k ∈ Z. (9)

If the support of the scaling function φ is included in (−T, 0) for some integer
T ≥ 1, then xn(t) = x(t) for all t = 0, . . . , n − T + 1. If the support of the
wavelet function ψ is included in (0,T), then, the support of ψj,k is included
in the interval (2jk, 2j(k + T)). Hence

W x

j,k = W xn

j,k =

∫ ∞

−∞
xn(t)ψj,k(t) dt, (10)

for all (j, k) ∈ In, where

In
def
= {(j, k) : j ≥ 0, 0 ≤ k ≤ 2−j(n− T + 1) − T} . (11)

For any j, the wavelet coefficients {W x

j,k}k∈Z are obtained by discrete convo-
lution and downsampling. More precisely, under (W-1), for all j ≥ 0, k ∈ Z,

W x

j,k =
∑

l∈Z

xl hj,2jk−l = (hj,· ⋆ x)2jk = (↓j [hj,· ⋆ x])k, (12)

where hj,l
def
= 2−j/2

∫∞
−∞ φ(t+ l)ψ(2−jt) dt, ⋆ denotes the convolution of discrete

sequences and, for any sequence {ck}k∈Z and any integer l, (↓j c)k = ck2j . For

all j ≥ 0, Hj(λ)
def
=
∑

l∈Z
hj,le

−iλl denotes the discrete Fourier transform of
{hj,l}l∈Z,

Hj(λ)
def
= 2−j/2

∫ ∞

−∞

∑

l∈Z

φ(t+ l)e−iλlψ(2−jt) dt. (13)

For all j ≥ 0 and all m = 0, . . . ,M − 1,
∑

l∈Z

hj,l l
m = 2−j/2

∫ ∞

−∞
ψ(2−jt)

∑

l∈Z

φ(t+ l)lmdt .

Under assumption (W-4), t 7→∑

l∈Z
φ(t+ l)lm is a polynomial of degree m and

(W-3) therefore implies that
∑

l∈Z
hj,l l

m = 0; equivalently, the trigonometric

polynomial Hj satisfies
dmHj(λ)

dλm

∣

∣

∣

λ=0
= 0, m = 0, . . . ,M − 1 and thus admits a
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zero at 0 of degree at least equal to M . Therefore, Hj(λ) can be factorized as

Hj(λ) = (1 − eiλ)MH̃j(λ), where H̃j(λ) is a trigonometric polynomial. Hence,
the wavelet coefficient (12) may be computed as

W x

j,k = (↓j [h̃j,· ⋆∆Mx])k (14)

where {h̃j,l}l∈Z are the coefficients of the trigonometric polynomial H̃j and
∆Mx is the M-th order difference of the sequence x. In words, the use of a
wavelet and a scaling function satisfying (W-4) and (W-3) implicitly perform
a M-th order differentiation of the time-series. Therefore, we may process a
K-th order integrated processes X without specific preprocessing, provided
that M ≥ K. This is in sharp contrast with Fourier methods: in this case, the
time series must be explicitly differentiated at least K times and a data taper
must be applied on the differenced series to avoid frequency-domain leakage
(see for instance Hurvich et al. (2002)).

3. Spectral Density of the Wavelet Coefficients

Because the wavelet coefficients at a given scale are obtained by applying
time-invariant linear filters, computing the covariance of the wavelet coeffi-
cients of K-th order stationary processes is an easy exercise. The following
proposition provides an integral expression for calculating the covariance be-
tween two wavelet coefficients on possibly different scales, expressed in terms
of the transfer function Hj of the wavelet filters and the generalized spectral
density of the process X. This proposition extends Theorem 2 in Masry (1993)
on the spectral measure of the DWT coefficients of increment stationary con-
tinuous time processes to the discrete-time setting and Lemma 1 in Craigmile
and Percival (2005) to functions ψ and φ that do not necessarily define a MRA.

For a K-th order integrated process X
def
= {Xk }k∈Z with generalized spectral

density f , we denote by Varf and Covf the variance and covariance of random
variables which can be expressed as linear transformations of the K-th order
increments of the process (note that these quantities only depend on f , and
not on the precise distribution of the process). In view of (14), the wavelet
coefficients are examples of such transformations, provided that M is larger
than K.

Proposition 1. Let X be a K-th order integrated process with generalized
spectral density f . Assume (W-1)-(W-4) with M ≥ K. Then, for all j, j′ ≥ 0
and k, k′ ∈ Z,

Covf(W
X
j,k,W

X
j′,k′) =

∫ π

−π

eiλ(k2j−k′2j′ ) f(λ)Hj(λ)Hj′(λ) dλ, (15)

where the wavelet coefficient WX
j,k is defined in (9).
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The proof follows from elementary results on time-invariant linear filtering
of covariance stationary processes, using the representation (12) of the wavelet
coefficients.

By (14), for a given scale j, the process {WX
j,k}k∈Z is covariance stationary.

The situation is more complicated when considering two different scales j 6= j′,
because the two-dimensional sequence {[WX

j,k W
X
j′,k]

T}k∈Z is not stationary for
j 6= j′. This is a consequence of the pyramidal wavelet scheme, where at scale
j, the wavelet coefficients are downsampled by a factor 2j which depends on
j. Thus, to obtain a stationary sequence, one should consider the process
{[WX

j,k W
X
j′,2j−j′k

]T}k∈Z for j > j′, which involves a downsampled subsequence

of the coefficients at the finer scale j′. One can also consider the process
{[WX

j,k W
X
j′,2j−j′k+l

]T}k∈Z for j > j′ any integer l. It turns out that the most

convenient is to merge the processes corresponding to l = 0, . . . , 2j−j′ − 1 and
hence to consider the between-scale process {[WX

j,k WX
j,k(j − j′)T ]T}k∈Z, where

for any j ≥ u ≥ 0,

WX
j,k(u)

def
=
[

WX
j−u,2uk, . . . ,W

X
j−u,2uk+2u−1

]T
. (16)

Proposition 1 allows to determine the spectral density of the within scale pro-
cess {WX

j,k}k∈Z and the between scale process {[WX
j,k WX

j,k(j − j′)T ]T}k∈Z in
terms of the generalized spectral density of X and the transfer function of the
wavelet filters folded on the interval [−π, π].

Corollary 2. Define for all 0 ≤ u ≤ j and λ ∈ [−π, π],

Dj,u(λ; f, φ, ψ)
def
= 2−j× (17)

2j−1
∑

l=0

eu(|λ| + 2lπ) f(2−j(|λ| + 2lπ))Hj(2
−j(|λ| + 2lπ))Hj−u(2−j(|λ| + 2lπ)) ,

where for all ξ ∈ R, eu(ξ)
def
= [1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T . Then,

• for all j ≥ 0, the within-scale process {WX
j,k}k∈Z is covariance stationary

with spectral density Dj,0(·; f, φ, ψ),
• for all j ≥ u > 0, the between-scale process {[WX

j,k WX
j,k(u)

T ]T}k∈Z is
covariance stationary with cross spectral density Dj,u(·; f, φ, ψ).

We now specialize the results above to the class of processes with memory
parameter d ∈ R (see (1)). To obtain bounds on the deviation of the correlation
and the spectral density of the wavelet coefficients from those of FBM, some
additional assumptions are required on the smoothness of f ∗ at zero frequency.
For 0 < β ≤ 2 and L > 0, define the function class H(β, L) as the set of positive
even functions g on [−π, π] such that, for all λ ∈ [−π, π],

|g(λ) − g(0)| ≤ Lg(0) |λ|β . (18)
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This type of assumption is typical in the semiparametric estimation setting
(see for instance Robinson (1995) and Moulines and Soulier (2002)). From (3)
and (4), f ⋆

ARMA always belongs to H(L, 2) (for some L) and f ⋆
FBM belongs to

H(L, 2d ∧ 2) (where a ∧ b = min(a, b)).
The expressions of the within- and between-scale wavelet coefficient spectral

densities Dj,u(·; d, f ∗, φ, ψ) given in corollary 2 depends both on d and the
function f ∗. However, we are going to show how these quantities may be
approximated by quantities which depend only on the memory parameter d
and f ∗(0). When X has a generalized spectral density f(λ) = |1−eiλ|−2df ∗(λ),
we use the notations Vard,f∗ , Covd,f∗ and Dj,u(λ; d, f ∗) for Varf , Covf and
Dj,u(λ; f), respectively. Define

σ2
j (d, f

∗)
def
= Vard,f∗ [WX

j,0] =

∫ π

−π

|1 − e−iλ|−2df ∗(λ)|Hj(λ)|2dλ , (19)

the variance of the wavelet coefficient of such process at scale j.

Theorem 3. Let M ≥ 1 be an integer and α, L, β be constants such that
α > 1, 0 < L <∞ and β ∈ (0, 2]. Assume that (W-1)-(W-4) hold with M and
α.

(a) Let dmin and dmax be two constants such that

[dmin, dmax] ⊂ ((1 + β)/2 − α,M + 1/2) . (20)

Then, there exists a constant C > 0 (only depending on the constants
β, dmin, dmax and the functions φ and ψ) such that, for all j ≥ 0, d ∈
[dmin, dmax] and f ∗ ∈ H(L, β),

∣

∣σ2
j (d, f

∗) − f ∗(0) K(d, ψ) 22jd
∣

∣ ≤ C f ∗(0)L 2(2d−β)j (21)

where K(d, ψ) is given by

K(d, ψ)
def
=

∫ ∞

−∞
|ξ|−2d |ψ̂(ξ)|2 dξ . (22)

(b) Let dmin and dmax be two constants such that

[dmin, dmax] ⊂ ((1 + β)/2 − α,M ] . (23)

Then, for all u ≥ 0, there exists C > 0 (only depending on the constants
β, dmin, dmax and the functions φ and ψ) such that, for all λ ∈ (−π, π),
j ≥ 0, f ∗ ∈ H(L, β) and d ∈ [dmin, dmax],
∣

∣Dj,u(λ; d, f ∗, φ, ψ) − f ∗(0)D∞,u(λ; d, ψ) 22jd
∣

∣ ≤ C f ∗(0)L 2(2d−β)j (24)

where | · | denotes the Euclidean norm in any dimension and, for all u ≥ 0,

D∞,u(λ; d, ψ)
def
=
∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)). (25)
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The proof is based on approximating the wavelet filter transfer function and
is postponed to the Section 5.

Proposition 3 states that for any u ≥ 0, f ∗(0)D∞,u(λ; d, ψ)22jd is a good
approximation of the spectral density Dj,u(λ; d, f ∗, φ, ψ). When the memory
parameter d belongs to (−1/2, 1/2), the limiting spectral density can be iden-

tified as the spectral density of the process
{

[WBH

0,k ,W
BH

0,k (u)]
}

k∈Z
, where, with

a slight abuse of notations, {WBH

j,k }k∈Z are the wavelet coefficients of the con-
tinuous time FBM with Hurst index H = d+ 1/2 defined as the integrals

d̃BH

j,k

def
=

∫ ∞

−∞
BH(s)ψj,k(s) ds, k ∈ Z .

The asymptotic properties of the within- and between-scale spectral density
Dj,u(λ; d, f ∗, φ, ψ) (and of the associated correlation function) may thus be
deduced from the corresponding properties of the DWT of the FBM.

Remark 1. If d = 0 and {2j/2ψ(2j(· − k)), k ∈ Z, j ∈ Z} is an orthonormal

system, then D∞,0(λ; 0, ψ) =
∑

l∈Z
|ψ̂(λ + 2lπ)|2 = 1 (see e.g. Cohen (2003))

and, by a straightforward computation based on the Parseval Formula,
∫ π

−π

|D∞,u(λ; 0, ψ)|2 dλ = 2u+1π
∑

k∈Z

∣

∣

∣

∣

∫

R

ψ(t)ψ(2ut− k)dt

∣

∣

∣

∣

2

which then vanishes for all integer u > 0. Hence, when the memory parameter
d = 0 and the wavelets are orthonormal, the wavelet coefficients {WX

j,k, k ∈ Z}
are asymptotically uncorrelated as j → ∞.

Remark 2. Let us examine how Theorem 3 applies when X is FBM with Hurst
index H . From the discussion above, we have d = H + 1/2 and f ∗ ∈ H(2d, L)
for some constant L. The condition on M is then M > H for (a) and M ≥
H + 1/2 for and (b). The condition on α is α > −H in (b) and α > 1/2
in (a), which are both satisfied because α > 1 and H ∈ (0, 1). Theorem 3 can
therefore be applied when ψ is a Daubechies wavelet with at least 2 vanishing
moments.

4. Analysis of the memory parameter estimator based on the

regression of the wavelet variance

We now apply Theorem 3 to study the wavelet estimator of the memory pa-
rameter d, based on the regression of the scale spectrum σ2

j (d, f
∗) with respect

to the scale index j. This is reasonable because, for large scale j, log σ2
j (d, f

∗)
is approximately an affine function of j with slope (2 log 2) d (see (21) in The-
orem 3). Given n observations X1, . . . , Xn, σ2

j (d, f
∗) can be estimated by the

empirical variance

σ̂2
j

def
= n−1

j

nj−1
∑

k=0

(

WX
j,k

)2
,
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where for any j, nj denotes the number of available wavelet coefficients at scale
index j, namely, from (11),

nj = [2−j(n− T + 1) − T + 1] , (26)

where T is the size of the time series and [x] denotes the integer part of x.
An estimator of the memory parameter d is then obtained by regressing the
logarithm of the empirical variance log(σ̂2

i ) for a finite number of scale indices
j ∈ {J0, . . . , J0 + ℓ} where J0 is the lower scale and 1 + ℓ ≥ 2 is the number
of scales in the regression. For a sample size equal to n, this estimator is well
defined for J0 and ℓ such that ℓ ≥ 1 and J0 + ℓ ≤ J(n) where

J(n)
def
= [log2(n− T + 1) − log2(T)] (27)

is the maximum index j such that nj ≥ 1. The regression estimator can be
expressed formally as

d̂n(J0,w)
def
=

J0+ℓ
∑

j=J0

wj−J0
log
(

σ̂2
j

)

, (28)

where the vector w
def
= [w0, . . . , wℓ]

T satisfies

ℓ
∑

i=0

wi = 0 and 2 log(2)

ℓ
∑

i=0

iwi = 1 . (29)

One may choose, for example, w corresponding to the weighted least-squares
regression vector, defined by

w = DB(BTDB)−1b ,

where B
def
=

[

1 1 . . . 1
1 2 . . . ℓ

]T

is the so-called design matrix, D is a definite

positive matrix and

b
def
= [0 (2 log(2))−1]T . (30)

Ordinary least square regression corresponds to the case whereD is the identity
matrix.

Consider now a Gaussian process X with memory parameter d and general-
ized spectral density f(λ) = |1−e−iλ|−2df ∗(λ), and let K ≥ (d−1/2)∨1. Then
the distribution of the K-th order increment process ∆KX only depends on d
and f ∗. In this section we denote by E

G
d,f∗ and VarGd,f∗ the expectation and the

variance computed on random variables which can be expressed as Φ(∆KX),
where Φ is a possibly non-linear function. Note that any function of the wavelet
coefficients of X can be written this way, provided that M ≥ d−1/2 (see (14)).
The superscript G indicates that X is Gaussian.

We now compute a bound of the mean square error and an asymptotic
equivalent of the variance of d̂n(J0,w) in the usual semiparametric framework
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adopted by Robinson and his co-authors for studying Fourier estimators. For
the wavelet estimator defined above, these quantities primarily depend on n
and on the scale index J0, while in the Fourier case, the bounds are generally
expressed as functions of n and a bandwidth parameter m, equal to the number
of discrete Fourier frequencies used. To ease comparison, we will express our
results with respect to n and m, where m is the number of wavelet coefficients
appearing in d̂n(J0,w), namely,

m
def
=

J0+ℓ
∑

j=J0

nj .

From (26), one gets immediately that |m− n2−J0(2− 2−ℓ)| ≤ 2(ℓ+ 1)(T− 1).
Thus m→ ∞ is equivalent to having n2−J0 → ∞, and, when these conditions
holds, we have

m ∼ n2−J0(2 − 2−ℓ) . (31)

The next result provides a bound to the bias E
G
d,f∗

[

d̂n(J0,w)
]

− d and to the

variance VarGd,f∗

[

d̂n(J0,w)
]

.

Theorem 4. Assume that (W-1)-(W-4) hold with M ≥ 1 and α > 1. Let
w be a vector satisfying (29) for some ℓ ≥ 1. Let dmin, dmax be two scalars
such that dmin < dmax and [dmin, dmax] ⊂ ((1 + β)/2 − α,M ], where β ∈ (0, 2].
Then, there exist a finite constant C and an integer Jmin (depending only on
w, β, L, dmin, dmax, φ and ψ) such that for all J0 ∈ {Jmin, . . . , J(n) − ℓ},
d ∈ [dmin, dmax], and f ∗ ∈ H(β, L) with f ∗(0) > 0

∣

∣

∣
E
G
d,f∗

[

d̂n(J0,w)
]

− d
∣

∣

∣
≤ C

{

(m

n

)β

+m−1

}

, (32)

VarGd,f∗

[

d̂n(J0,w)
]

≤ Cm−1 . (33)

By combining (32) and (33) it is possible to obtain a bound on the mean

square error of d̂n(J0,w). More precisely, there exist constants C and Jmin

(depending only onM , α, β, L, dmin and dmax) such that, for any f ∗ ∈ H(β, L),
d ∈ [dmin, dmax] and J0 ∈ {Jmin, . . . , J(n) − ℓ+ 1},

E
G
d,f∗

[

{

d̂n(J0,w) − d
}2
]

≤ C

{

(m

n

)2β

+m−1

}

. (34)

This shows in particular that, for any non-decreasing sequence {J0(n), n ≥ 0}
such that m−1+m/n→ 0, d̂n(w)

def
= d̂n(J0(n),w) is a consistent estimator of d.

If the regularity exponent β is known, it is possible to choose J0(n) to balance
these two terms, that is, set (m/n)2β ≍ m−1 or equivalently 2J0(n) ≍ n1/(1+2β)
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as n→ ∞. If we choose J0(n) in such a way, (31) and (34) imply

lim sup
n→∞

sup
d∈[dmin,dmax]

sup
f∗∈H(β,L)

n2β/(1+2β)
E
G
d,f∗

[

{

d̂n(w) − d
}2
]

<∞ .

As shown in Giraitis et al. (1997), n−2β/(1+2β) is the minimax rate of conver-
gence for the memory parameter d in this semi-parametric setting. Therefore,

Corollary 5. The wavelet estimator is rate optimal in the minimax sense.

We shall now obtain the asymptotic behavior of VarGd,f∗

[

d̂n(w)
]

as n→ ∞.

Theorem 6. Assume that (W-1)-(W-4) hold with M ≥ 1 and α > 1. Let w

be a vector satisfying (29) for some ℓ ≥ 1. Let {J0(n), n ∈ N} be a sequence
such that m → ∞ as n → ∞. For any f ∗ ∈ H(β, L), where β ∈ (0, 2], and
d ∈ ((1 + β)/2 − α,M ],

lim
n→∞

mVarGd,f∗

[

d̂n(w)
]

= (2 − 2−ℓ)wTV(d, ψ)w , (35)

where V(d, ψ) is the (1 + ℓ) × (1 + ℓ) matrix defined as

Vi,j(d, ψ)
def
=

4π22d|j−i|2i∧j

K(d, ψ)2

∫ π

−π

∣

∣D∞,|j−i|(λ; d, ψ)
∣

∣

2
dλ 0 ≤ i, j ≤ ℓ . (36)

Remark 3. The asymptotic expression of the variance (35) is a quadratic form
of w defined by the matrix V(d, ψ), which depends only on d and ψ (see (36)).
The standard theory of linear regression shows that, for any ℓ ≥ 1, the optimal
regression vector of length ℓ + 1 is

wopt(d, ψ)
def
= V−1(d, ψ)B(BTV−1(d, ψ)B)−1b

and the associated limiting variance is (2 − 2−ℓ)bT (BTV−1(d, ψ)B)−1b. This
optimal regression vector cannot be used directly since it depends on d which
is unknown, but one may apply a two-step procedure using a preliminary
estimate of d as in Bardet (2002) in a similar context.

If we choose m (or J0(n)) such that the bias in (32) is asymptotically
negligable, then we can obtain the asymptotic behavior of the mean square

error E
G
d,f∗

(

d̂n(w) − d
)2

. In view of (32) and (35), we need m → ∞ and

{(m/n)β +m−1}2 << m−1, or equivalently

n2−J0(n)(1+2β) + n−12J0(n) → 0, n→ ∞ . (37)

Corollary 7. If (37) holds, then for f ∗ ∈ H(β, L) and d ∈ ((1+β)/2−α,M ],

lim
n→∞

n2−J0(n)
E
G
d,f∗

(

d̂n(w) − d
)2

= wTV(d, ψ)w .
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This result of course hints at the existence of a central limit theorem for the
estimator d̂n(w). Such result can be obtained using a central limit of quadratic
form of Gaussian variables which is established in a companion paper Moulines
et al. (2005).

5. Proof of Theorem 3

From now on, we denote by C constants possibly depending on d, β, φ and
ψ, which may change from line to line and we omit the dependence in φ and
ψ in the notations. We assume, without loss of generality that f ∗(0) = 1.

Proof of (a). Let j ≥ 0 and define

Aj
def
= 2j

∫ π

−π

|1 − e−iλ|−2d f ⋆(λ) |φ̂(λ)ψ̂(2jλ)|2 dλ and Rj
def
= σ2

j (d, f
∗) − Aj .

Using (68), we have

|Rj| ≤ C 2j(1+M−α)

∫ π

−π

|1 − e−iλ|−2d f ⋆(λ) |λ|2M (1 + 2j|λ|)−α−M dλ . (38)

We consider Aj and Rj separately starting with Aj. Define the function g by

λ 7→ g(λ)
def
= f ∗(λ)|φ̂(λ)|2

∣

∣λ/(1 − eiλ)
∣

∣

2d
, λ ∈ (−π, π) . (39)

Since φ̂ is infinitely differentiable by (W-1), λ 7→ |φ̂(λ)|2
∣

∣λ/(1 − eiλ)
∣

∣

2d
is

infinitely differentiable on [−π, π]. Because f ∗ ∈ H(β, L) and f ∗(0) = 1, there
exists a constant C (depending only on dmin, dmax and φ) such that for all
λ ∈ [−π, π],

|g(λ) − g(0)| ≤ C L |λ|β . (40)

We can now express Aj as

Aj = 2j

∫ π

−π

g(λ)|λ|−2d |ψ̂(2jλ)|2 dλ . (41)

Observe that Aj is finite since q is bounded and (5) applies since M > d−1/2.
We now replace the function λ 7→ g(λ) by the constant g(0) = 1 and extends
the interval of integration from [−π, π] to the whole real line in (41). Eqs. (40)
and (41) imply

∣

∣

∣

∣

Aj − 2j

∫ π

−π

g(0) |λ|−2d |ψ̂(2jλ)|2 dλ
∣

∣

∣

∣

≤ C L 2j

∫ π

−π

|λ|β−2d |ψ̂(2jλ)|2 dλ .

First observe that, after a change of variable,

2j

∫ π

−π

|λ|β−2d |ψ̂(2jλ)|2 dλ ≤ 2j(2d−β)

∫ ∞

−∞

{

|λ|β−2dmin ∨ |λ|β−2dmax
}

|ψ̂(λ)|2 dλ

In the RHS of this inequality, using the behavior of |ψ̂(λ)| at infinity and at the
origin implied by (W-2) and (W-3) respectively, and because dmax < M + 1/2
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and dmin > (1+β)/2−α, the integral is a finite constant depending only on ψ
and β. We further observe that, by (W-2), since dmin > 1/2−α, we may write

2j

∫

|λ|>π

|λ|−2d |ψ̂(2jλ)|2 dλ ≤ C 2j(1−2α)

∫

|λ|>π

|λ|−2(α+dmin) dλ .

Therefore, there exists a constant C, depending only on β, φ, ψ, dmin and dmax

such that
∣

∣Aj − K(d) 22jd
∣

∣ ≤ C L 2(2d−β)j . (42)

We now compute a bound for Rj from (38). Note that, there exists a con-
stant C depending only on β, dmin and dmax such that, for all λ ∈ [−π, π],

f(λ) = f ∗(λ)

∣

∣

∣

∣

λ

1 − eiλ

∣

∣

∣

∣

2d

|λ|−2d ≤ C L|λ|−2d. (43)

Plugging into (38) and then separating λ < 1 and λ ≥ 1, we obtain

Rj ≤ CL22jd2−j(M+α)

∫ 2jπ

0

{

λ2(M−dmin) ∨ λ2(M−dmax)
}

(1 + λ)−α−M dλ

≤ CL2j(2d−β)2−j(M+α−β)

{

∫ 1

0

λ2(M−dmax)dλ+

∫ 2jπ

1

λM−2dmin−αdλ

}

.

Since 2(M − dmax) > −1, the first integral is a finite constant. Depending on
whether M − 2dmin − α is less than, equal to or larger than −1 the second
integral is bounded by a finite constant, log π + j log 2 or C2j(1+M−2dmin−α),
where C only depends on M , α and dmin. In the two first cases, we simply
observe that we always have M + α− β > 0, and in the last case that −(M +
α − β) + 1 +M − 2dmin − α = 1 − 2dmin − 2α − β ≤ 0 by (20) so that, in all
cases, Rj ≤ C L 2(2d−β)j . This, with (42), shows (21).

Proof of (b). For ease of notation, we only consider the case u = 0. Pick j ≥ 1.
In (17), the summands are 2j(2π)-periodic; hence, omitting the summands,
∑2j−1

l=0 =
∑2j−1−1

l=0 +
∑2j−1

j=2j−1 =
∑2j−1−1

l=0 +
∑−1

l=−2j−1 =
∑2j−1−1

l=−2j−1 . Note that,

for l ∈ {−2j−1, . . . , 2j−1 − 1} and λ ∈ (0, π), the 2−j(λ+ 2lπ ∈ (−π, π) so that
(68) applies. Hence, Dj,0(λ; d, f ∗) is expressed as the sum of two functions
Aj(λ) +Rj(λ), defined for all λ ∈ (0, π) by

Aj(λ)
def
=

2j−1−1
∑

l=−2j−1

|2−j(λ+ 2lπ)|−2d g(2−j(λ+ 2lπ)) |ψ̂(λ+ 2lπ)|2 (44)

where g is defined in (39) and

Rj(λ) ≤ C L 2j(2d−M−α)
2j−1

∑

l=−2j−1

|λ+ 2lπ|2(M−d) (1 + |λ+ 2lπ|)−α−M . (45)
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From (40), we get, for all λ ∈ (0, π),

∣

∣

∣

∣

∣

∣

Aj(λ) − 22dj g(0)

2j−1−1
∑

l=−2j−1

|λ+ 2lπ|−2d |ψ̂(λ+ 2lπ)|2
∣

∣

∣

∣

∣

∣

≤ C L 2(2d−β)j Bj(λ), (46)

where, by (5) and (6), for all λ ∈ (0, π),

Bj(λ)
def
=

2j−1−1
∑

l=−2j−1

|λ+ 2lπ|β−2d |ψ̂(λ+ 2lπ)|2

≤ C

(

|λ|β+2(M−d) + 2
∑

l≥1

|λ+ 2lπ|β−2d−2α

)

≤ C

(

1 + 2
∑

l≥1

(2l − 1)β−2dmin−2α

)

<∞

since |λ+ 2lπ| ≥ π(2l− 1), M ≥ d and β − 2dmin − 2α < −1. Using the same
arguments, for all λ ∈ (0, π),

∑

|l|≥2j−1−1

|λ+ 2lπ|−2d |ψ̂(λ+ 2lπ)|2 ≤ C2j(1−2(dmin+α)) .

Eqs. (25) with u = 0 and (46), and the above inequalities yield that, for all
λ ∈ (0, π),

∣

∣Aj(λ) − D∞,0(λ; d) 22dj
∣

∣ ≤ C L 2(2d−β)j .

We now turn to bounding Rj(λ). For or all λ ∈ (0, π),

Rj(λ) ≤ C L 2j(2d−β)2−j(M+α−β)



1 +
2j
∑

l=1

l−2dmin+M−α





and the proof follows as for bounding Rj in the proof of (a), by considering
the cases M − 2dmin − α <, = or > −1.

6. Proof of Theorem 4

From now on, we take d ∈ [dmin, dmax], f
∗ ∈ H(β, L) and denote by Jmin,

C, C1, C2, . . . some constants that depend only on w, β, dmin, dmax, φ,
and ψ but that may take different values upon each appearance. For any
measurable function vector-valued function ϕ on [−π,+π] and any p > 0,

‖ϕ‖p =
(

∫ π

−π
|ϕ(λ)|pdλ

)1/p

.
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Lemma 8. There exist a constant C and an integer Jmin such that, for all
j ≥ Jmin, and 1 ≤ q < p ≤ ∞,

‖Dj,0(·; d, f ∗)‖p

‖Dj,0(·; d, f ∗)‖q

≤ C(2π)1/p−1/q+1 . (47)

Proof. Using Lp([−π, π]) spaces embeddings, it suffices to prove the result for
p = ∞ and q = 1. Note that, for all d ∈ [dmin, dmax], 0 < Kmin ≤ K(d) ≤
Kmax <∞, where

Kmin
def
=

∫ ∞

−∞
(|ξ|−2dmin ∧ |ξ|−2dmax)|ψ̂(ξ)|2dξ , (48)

Kmax
def
=

∫ ∞

−∞
(|ξ|−2dmin ∨ |ξ|−2dmax)|ψ̂(ξ)|2dξ . (49)

By Theorem 3, (24), there exists a constant C0 such that

|Dj,0(λ; d, f ∗)| ≤ 22jd
(

KmaxD∞,0(λ; d) + C0L2−2βj
)

,

where D∞,0(λ; d) is defined in (25). Assumptions (W-2) and (W-3) imply that

|ψ̂(ξ)| ≤ C1|ξ|M(1 + |ξ|)−α−M for all ξ ∈ R. Therefore, for all λ ∈ (−π, π),
there exists a constant C2,

D∞,0(λ; d) ≤ C2

{

|λ|2(M−d) + 2
∑

l>0

|λ+ 2lπ|−2(α+d)

}

≤ C2

{

π2(M−dmin) + 2
∑

l>0

[(2l − 1)π]−2(α+dmin)

}

.

The two previous displays show that there exists a constant C3 such that, for
all j ≥ 0, d ∈ [dmin, dmax] and f ∗ ∈ H(β, L)

‖Dj,0(·; d, f ∗)‖∞ ≤ C32
2jd . (50)

On the other hand, we have

‖Dj,0(·; d, f ∗)‖1

≥ 22jd ‖D∞,0(·; d, f ∗)‖1 −
∥

∥Dj,0(·; d, f ∗) − 22jdD∞,0(·; d, f ∗)
∥

∥

1
.

By Theorem 3, (24),
∥

∥Dj,0(·; d, f ∗) − 22jdD∞,0(·; d, f ∗)
∥

∥

2

≤ (2π)1/2
∥

∥Dj,0(·; d, f ∗) − 22jdD∞,0(·; d, f ∗)
∥

∥

∞ ≤ (2π)1/2C0 L 22j(d−β) .

By definition, ‖D∞,0(d; ·)‖1 = K(d) ≥ Kmin. The two previous display there-
fore imply that if 2−βJ ≤ 4πC0L/Kmin, ‖Dj,0(·; d, f ∗)‖1 ≥ C22jd, which, with
(50), shows (47). �
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Proof of Theorem 4. The bias E
G
d,f∗ [d̂n(J0,w)]−d can be decomposed into two

terms as follows

J0+ℓ
∑

j=J0

wj−J0
Ef

[

log(σ̂2
j )
]

− d =

J0+ℓ
∑

j=J0

wj−J0
log
[

σ2
j (d, f

∗)
]

− d+

J0+ℓ
∑

j=J0

wj−J0

{

Ef

[

log(σ̂2
j )
]

− log
[

σ2
j (d, f

∗)
]}

. (51)

Using (29), the first term on the RHS of the previous display may be rewrit-
ten as

J0+ℓ
∑

j=J0

wj−J0
log
[

σ2
j (d, f

∗)
]

− d

=

J0+ℓ
∑

j=J0

wj−J0
log

[

1 +
σ2

j (d, f
∗) − K(d) 22jd

K(d) 22jd

]

Using Theorem 3-(21), there exists a constant C such that σ2
j (d, f

∗)−K(d) 22jd ≤
CL22j(d−β). Using that log(1 + x) ≤ 2x for x ∈ (−1/2, 1/2), for any J0 such
that CL2−βJ0 ≤ Kmin/2,

∣

∣

∣

∣

∣

J0+ℓ
∑

j=J0

wj−J0
log[σ2

j (d, f
∗)] − d

∣

∣

∣

∣

∣

≤ 2C

Kmin

2−jJ0βL
ℓ
∑

j=0

|wj|2−jβ . (52)

We now consider the second term in the RHS of the display (51). We apply
Lemma 10: the empirical wavelet coefficient variance at scale j is a quadratic
form in the wavelet coefficients at [Wj,0, . . . ,Wj,nj−1] which are, by Proposi-
tion 1, a part of a stationary process with spectral density Dj,0(·; d, f ∗), defined
in Corollary 2, (17) The spectral radius of the covariance matrix Γj(d, f

∗) of the
random vector [Wj,0, . . . ,Wj,nj−1] is bounded by the supremum of the spectral
density,

ρ [Γj(d, f
∗)] ≤ 2π ‖Dj,0(·; d, f ∗)‖∞ . (53)

On the other hand, the stationarity of the wavelet coefficients at scale j implies

VarGd,f∗(σ̂2
j ) =

1

n2
j

nj
∑

k,l=1

CovG
d,f∗

(

W 2
j,k,W

2
j,l

)

=
1

nj

nj−1
∑

k=1−nj

(

1 − |k|
nj

)

CovG
d,f∗

(

W 2
j,0,W

2
j,k

)

Because Wj,0 and Wj,k are jointly Gaussian,

CovG
d,f∗

(

W 2
j,0,W

2
j,k

)

= 2
(

CovG
d,f∗ [Wj,0,Wj,k]

)2
.
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The Parseval identity gives that

nj−1
∑

k=1−nj

(

1 − |k|
nj

)

CovG
d,f∗

(

W 2
j,0,W

2
j,k

)

≤ 2

∞
∑

k=−∞

{

CovG
d,f∗ (Wj,0,Wj,k)

}2
=

1

π
‖Dj,0(·; d, f ∗)‖2

2 ,

showing that the variance VarGd,f∗ [σ̂2
j ] of the empirical wavelet variance at scale

j satisfies

VarGd,f∗ [σ̂2
j ] ≤

1

πnj
‖Dj,0(·; d, f ∗)‖2

2 . (54)

By Lemma 10-(70), using (53) and (54),

∣

∣E
G
d,f∗

[

log(σ̂2
j )
]

− log
[

E
G
d,f∗

(

σ̂2
j

) ]∣

∣ ≤ Cn−1
j

‖Dj,0(·; d, f ∗)‖2
∞

‖Dj,0(·; d, f ∗)‖2
2

(55)

where C is a universal constant. The bound (32) on the bias follows from (52),
(55), Lemma 8 and (31).

We now compute the variance of the estimator d̂
def
= d̂n(J0,w). By Lemma 8

with p = ∞ and q = 2, Lemma 10, and using again (53) and (54), there are
constants C and Jmin such that, for all J0 ≥ Jmin,

∣

∣

∣

∣

∣

VarGd,f∗(d̂) −
J0+ℓ
∑

i,j=J0

wi−J0
wj−J0

CovG
d,f∗ [σ̂2

i , σ̂
2
j ]

σ2
i (d, f

∗)σ2
j (d, f

∗)

∣

∣

∣

∣

∣

≤
J0+ℓ
∑

i,j=J0

|wi−J0
wj−J0

|
∣

∣

∣

∣

∣

CovG
d,f∗

[

log(σ̂2
i ), log(σ̂2

j )
]

−
CovG

d,f∗ [σ̂2
i , σ̂

2
j ]

σ2
i (d, f

∗)σ2
j (d, f

∗)

∣

∣

∣

∣

∣

≤ C

J0+ℓ
∑

i,j=J0

|wi−J0
wj−J0

|
{

‖Di,0(·; d, f ∗)‖3
∞

n
3/2
i ‖Di,0(·; d, f ∗)‖3

2

∨ ‖Dj,0(·; d, f ∗)‖3
∞

n
3/2
j ‖Dj,0(·; d, f ∗)‖3

2

}

≤ Cn
−3/2
J0

≤ C(n2−J0)−3/2 . (56)

The Cauchy-Schwarz inequality and (54) yield

|CovG
d,f∗ [σ̂2

i , σ̂
2
j ]|

σ2
i (d, f

∗)σ2
j (d, f

∗)
≤ 1

π
√
ninj

‖Di,0(·; d, f ∗)‖2‖
‖Di,0(·; d, f ∗)‖1

Dj,0(·; d, f ∗)‖2

‖Dj,0(·; d, f ∗)‖1

.

Using Lemma 8 with p = 2 and q = 1 thus gives for all J0 ≥ Jmin,
∣

∣

∣

∣

∣

J0+ℓ
∑

i,j=J0

wi−J0
wj−J0

CovG
d,f∗ [σ̂2

i , σ̂
2
j ]

σ2
i (d, f

∗)σ2
j (d, f

∗)

∣

∣

∣

∣

∣

≤ C n−1
J0
.

This bound with (56) and (31) shows (33). �
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7. Proof of Theorem 6

For any 0 ≤ a ≤ b ≤ ℓ, set an
def
= J0(n) + a and bn

def
= J0(n) + b.

CovG
d,f∗

[

σ̂2
bn
, σ̂2

an

]

=
1

nan
nbn

nbn−1
∑

k,l=0

2b−a−1
∑

v=0

CovG
d,f∗

[

W 2
bn,k,W

2
an,l2b−a+v

]

=
2

nan
nbn

nbn−1
∑

k,l=0

∣

∣CovG
d,f∗ [Wbn,k,Wbn,l(b− a)]

∣

∣

2
, (57)

where we have used that if X and Y = [Y1 . . . YK]T are Gaussian vectors,

Cov(X2, |Y|2) = Cov

(

X2,

K
∑

k=1

Y 2
k

)

= 2

K
∑

k=1

Cov2(X, Yk) = 2 |Cov(X,Y)|2 .

By Corollary 2, using the fact that the processes {Wbn,k}k∈Z and {Wbn,k(b −
a)}k∈Z (see (16)) are jointly stationary and Gaussian, we may write

CovG
d,f∗

[

σ̂2
bn
, σ̂2

an

]

=
2

nan

nbn−1
∑

k=1−nbn

(

1 − |k|
nbn

)

∣

∣CovG
d,f∗ [Wbn,0,Wbn,k(b− a)]

∣

∣

2
(58)

≤ 2

nan

∞
∑

l=−∞

∣

∣CovG
d,f∗(Wbn,0,Wbn,l(b− a))

∣

∣

2 ≤ 4π

nan

‖Dbn,b−a(·; d, f ∗)‖2
2

where the last inequality follows from the Parseval inequality. Hence, by The-
orem 3, (21)-(24), since nan

∼ n2−J0(n)−a,

lim sup
n→∞

n2−J0(n)
CovG

d,f∗

[

σ̂2
bn
, σ̂2

an

]

σ2
an

(d, f ∗)σ2
bn

(d, f ∗)
≤ 4π

22d(b−a)2a

K(d)2
‖D∞,b−a(·; d)‖2

2 . (59)

For any given l ∈ Z, Theorem 3, (21)-(24) also shows that

lim
n→∞







(

1 − |l|
nbn

)1/2

+

CovG
d,f∗(Wbn,0,Wbn,l(b− a))
√

σ2
an

(d, f ∗)σ2
bn

(d, f ∗)







=
2d(b−a)

K(d)

∫ +π

−π

D∞,b−a(λ; d)eiλldλ ,
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where x+ = max(x, 0). The Parseval inequality then gives

∞
∑

l=−∞
lim

n→∞

{

(

1 − |l|
nbn

)

+

∣

∣CovG
d,f∗(Wbn,0,Wbn,l(b− a))

∣

∣

2

σ2
an

(d, f ∗)σ2
bn

(d, f ∗)

}

=
2π22d(b−a)

K(d)2
‖D∞,b−a(·; d)‖2

2 .

Hence, by the Fatou Lemma and (58),

4π
22d(b−a)2a

K(d)2
‖D∞,b−a(·; d)‖2

2 ≤ lim inf
n→∞

n 2−J0(n)
CovG

d,f∗

[

σ̂2
bn
, σ̂2

an

]

σ2
an

(d, f ∗)σ2
bn

(d, f ∗)
(60)

Observe that the RHS of (59) and the LHS of (60) both are equal to Va,b(d, ψ)
defined in (36). The proof then follows from (56), (59), (60) and (31).

Appendix A. Multiresolution Analysis

In a multiresolution analysis, the scaling function φ satisfies the dilation
equation φ(x) = 2

∑

k∈Z
ck φ(2x− k) where

∑

k ck = 1. In the Fourier domain,
the dilation equation reads

φ̂(ξ) = m(ξ/2)φ̂(ξ/2) , (61)

where m is the “symbol” associated to the function φ defined as

m(ξ) =
1

2

∑

k∈Z

cke
−ikξ . (62)

The scaling function φ has a finite support (assumption (W-1)) if the symbol
m in (62) is a trigonometric polynomial. The wavelet function ψ associated to
the scaling function φ is defined as ψ(x) =

∑

k∈Z
(−1)1−k c1−k φ(2(x− ℓ) − k)

or equivalently,

ψ̂(ξ) = e−iξ(ℓ+1/2)m(ξ/2 + π)φ̂(ξ/2) (63)

where ℓ ∈ Z is an arbitrarily chosen translation parameter. The key property of
MRA is that the family of dilated and translated wavelets {ψj,k, j ∈ Z, k ∈ Z}
(7) forms an orthonormal basis of L2(R).

Many properties of φ and ψ can be deduced from (61) and (63) and the
specific form of the symbol m. In particular, (W-3) and (W-4), or, equiva-
lently, (5) and (6) are equivalent to having that m can be factorized as

m(ξ) =

(

1 + e−iξ

2

)M

p(ξ), (64)

where p is a trigonometric polynomial (see (Cohen, 2003, Eq. (2.7.12) and
Section 2.8)).

The maximal M for which (64) (or, equivalently, (W-3) and (W-4)) is sat-
isfied is called the number of vanishing moments. For instance, the so-called
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Daubechies DB-M wavelets have M vanishing moments and are associated to
a trigonometric polynomial symbol m of degree 2M and admitting a zero at π
of multiplicity M (see Daubechies (1992), (see (Mallat, 1998, Proposition 7.3,
Page 242)). The maximal value of the α appearing in (W-2) (or equivalently,

using Eq. (63) supξ(1 + |ξ|α)|φ̂(ξ)| < ∞) has been studied for some families
of compactly supported wavelets (see for instance (Daubechies, 1992, Chapter
7) and (Cohen, 2003, Section 2.7)). For the DB-M wavelets, a lower bound
α ≥ (1 − log2(3)/2)M > 0.207M can been established, see (Cohen, 2003,
Eq 2.10.27). Therefore, α can be made arbitrarily large by increasing M . This
implies that, for a given value of M and α, it is always possible to find a
Daubechies wavelet DB-M ′ for some M ′ ≥M satisfying (W-1)-(W-4).

Appendix B. Approximation of wavelet filter transfer

functions

Proposition 9. Under (W-1)-(W-4), there exist positive constants Ci, i =
1, . . . , 4 only depending on φ and ψ, such that, for all j ≥ 0 and λ ∈ (−π, π),

|Hj(λ) − 2j/2φ̂(λ)ψ̂(2jλ)| ≤ C1 2j(1/2−α) |λ|M , (65)

|φ̂(λ)ψ̂(2jλ)| ≤ C2 |2jλ|M (1 + 2j |λ|)−α−M , (66)

|Hj(λ)| ≤ C3 2j/2 |2jλ|M (1 + 2j|λ|)−α−M , (67)
∣

∣

∣
|Hj(λ)|2 − 2j |φ̂(λ)ψ̂(2jλ)|2

∣

∣

∣
≤ C4 2j(1+M−α) |λ|2M (1 + 2j |λ|)−α−M .(68)

Proof. Under (W-1) and (W-2), we have that, for all t ∈ R,
∑

k∈Z
φ̂(λ +

2kπ) eit(λ+2kπ) is a 2π-periodic function, integrable on (−π, π) and whose l-th
Fourier coefficients is
∫ π

−π

∑

k∈Z

φ̂(λ+ 2kπ) eit(λ+2kπ) e−iλl dλ =

∫ ∞

−∞
φ̂(λ) eitλ e−iλl dλ = 2π φ(t− l).

It follows that, for all λ and t in R,
∑

l∈Z

φ(t− l) eiλl =
∑

k∈Z

φ̂(λ+ 2kπ) eit(λ+2kπ),

which is a form of the Poisson summation formula. Inserting this in (13) gives

Hj(λ) = 2−j/2

∫ ∞

−∞

(

∑

k∈Z

φ̂(λ+ 2kπ) eit(λ+2kπ)

)

ψ(2−jt) dt

= 2−j/2
∑

k∈Z

φ̂(λ+ 2kπ)

∫ ∞

−∞
eit(λ+2kπ)ψ(2−jt) dt

= 2j/2
∑

k∈Z

φ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ)).
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From this expression of Hj, we get, for all j ≥ 0 and λ ∈ (−π, π),

|Hj(λ) − 2j/2φ̂(λ)ψ̂(2jλ)| = 2j/2

∣

∣

∣

∣

∣

∣

∑

|k|≥1

φ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ))

∣

∣

∣

∣

∣

∣

. (69)

Now using successively (6) and (W-2), there is a constant C such that, for all

non-zero integer k and all λ ∈ (−π, π), |φ̂(λ+ 2kπ)| ≤ C|λ|M and

|ψ̂(2j(λ+ 2kπ))| ≤ C (2j |λ+2kπ|)−α ≤ C 2−αj (2|k|π−|λ|)−α ≤ C 2−αj

πα(2|k| − 1)α
.

Inserting these bounds into (69) gives (65).

The bound (66) follows from (W-1) (|φ̂(ξ)| ≤
∫∞
−∞ |φ(t)|dt), (W-2) (|ψ̂(ξ)| ≤

C(1 + |ξ|)α) and (W-3) (limxi→0+ ξ−M |ψ̂(ξ)| = 0).
The two last bounds (67) and (68) follow from the two first (65) and (66).

Indeed, let H̃j(λ)
def
= 2j/2 φ̂(λ)ψ̂(2jλ). For (67) we write

|Hj(λ)| ≤ |Hj(λ) − H̃j(λ)| + |H̃j(λ)|.
Applying (65) and (66), the RHS of this equation is bounded by

C1 2j(1/2−α) |λ|M + C2 2j/2|2jλ|M (1 + 2j|λ|)−α−M ≤
2j/2|2jλ|M (1 + 2j|λ|)−α−M (C1 2−j(α+M) (1 + 2j|λ|)α+M + C2).

By observing that, for all j ≥ 0 and λ ∈ (−π, π), the last term between
parentheses is bounded by C1 2−j(α+M) (21+jπ)α+M + 2C2 ≤ C1 (2π)α+M + C2,
we get (67). For (68), we write

∣

∣

∣
|Hj(λ)|2 − |H̃j(λ)|2

∣

∣

∣
≤
∣

∣

∣
Hj(λ) − H̃j(λ)

∣

∣

∣

(

|H̃j(λ)| + |Hj(λ)|
)

and apply (65), (66) and (67). �

Appendix C. A Useful Inequality

Denote by Tr(A) and ρ(A) the trace and the spectral radius of a matrix A.

Lemma 10. Let n be a positive integer. There exists a constant C (depending
only on n) such that for any n× n non-negative symmetric matrices A and Γ
satisfying Tr(AΓ) > 0,

∣

∣E
(

log[ξTAξ]
)

− log [Tr(AΓ)]
∣

∣ ≤ C

(

1 ∧ ρ2(A)ρ2(Γ)

Var(ξTAξ)

)

; (70)

Var
(

log[ξTAξ]
)

≤ C , (71)

where ξ is a zero-mean d× 1 Gaussian vector with covariance Γ.
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There exists a constant C (depending only on n) such that for any n × n
non-negative symmetric matrix A, Ã and Γ, Γ̃ satisfying Tr(AΓ) > 0 and

Tr(ÃΓ̃) > 0,
∣

∣

∣

∣

∣

Cov
(

log[ξTAξ], log[ξ̃T Ãξ̃]
)

− Cov(ξTAξ, ξ̃T Ãξ̃)

Tr(AQ)Tr(ÃQ̃)

∣

∣

∣

∣

∣

≤

C

{

ρ3(Ã)ρ3(Γ̃)

Var3/2(ξ̃T Ãξ̃)
∨ ρ3(Ã)ρ3(Γ̃)

Var3/2(ξ̃T Ãξ̃)

}

. (72)

where [ξT , ξ̃T ]T is a zero-mean Gaussian vector such that Cov(ξ) = Γ and

Cov(ξ̃) = Γ̃.

Proof. Let k be the rank of Γ and Q be n × k full rank matrix such that
QQT = Γ. Let ζ ∼ N (0, Ik), where Ik is the identity matrix of size k × k. For
any unitary matrix U , Uζ ∼ N (0, Ik) and hence QUζ has same distribution
as ξ. Moreover, since A is symmetric, so is QTAQ. We may choose an unitary

matrix U such that Λ
def
= UT (QTAQ)U is a diagonal matrix with non-negative

entries. Furthermore,

ζTΛζ = (QUζ)TA(QUζ)
d
= ξTAξ , (73)

where
d
= denotes the equality of distributions. Since Λ is diagonal, ζTΛζ is a

sum of independent r.v.’s of the form
∑k

i=1 λiζ
2
i where λi are the (non-negative)

diagonal entries of Λ. Since Eζ2
i = 1 and Var(ζ2

i ) = 2, we get from (73) that
∑k

i=1 λi = E
[

ξTAξ
]

= Tr(AΓ) and 2
∑k

i=1 λ
2
i = Var

[

ξTAξ
]

. Finally we may
write

E
(

log
[

ξTAξ
])

− log
[

E
(

ξTAξ
)]

= E (log[S]) (74)

where

S
def
=

ξTAξ

E[ξTAξ]
=

k
∑

i=1

diζ
2
i with di

def
=

λi
∑k

j=1 λj

. (75)

Set ‖d‖2 def
=
∑k

i=1 d
2
i and observe that ρ(Λ) = max1≤i≤k λi. Since

∑k
i=1 λi ≥

∑k
i=1 λ

2
i /max1≤i≤k λi, we get

‖d‖2 =

∑k
i=1 λ

2
i

(

∑k
i=1 λi

)2 ≤ ρ2(Λ)
∑k

i=1 λ
2
i

=
2ρ2(Λ)

Var(ξTAξ)
≤ 2ρ2(A) ρ2(Γ)

Var(ξTAξ)
, (76)

For t > −(2 max1≤i≤k di)
−1, we may write, using standard computations on

the central chi-square, that

E
[

e−tS
]

=
k
∏

i=1

E

[

e−tdiζ2
i

]

=
k
∏

i=1

(1 + 2dit)
−1/2 (77)
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Denote by F the distribution function of S, that is F (x) = P(S ≤ x). Observe
that F (0) = 0 since S is a non-negative weighted sum of independent central
chi-squares and that all the weights do not vanish. For any t > 0 and x > 0,

log [F (x)] ≤ log
[

ext
E(e−tS)

]

= xt− (1/2)

k
∑

i=1

log(1 + 2dit) , (78)

where the equality follows from (77). Because, for t ≥ 0,
∏k

i=1(1 + 2dit) ≥
1+2t

∑k
i=1 di = 1+2t,

∑k
i=1 log(1+2dit) ≥ log(1+2t). Plugging this inequality

in (78) and setting t = x/2 yields to

F (x) ≤ e1/2

(

x

1 + x

)1/2

, x > 0 . (79)

By (79), limx→0+ log(x)F (x) = 0 = F (0) and
∫ 1

0
x−1F (x)dx <∞. Integration

by parts together with (79) gives that
∫ 1

0

| log(x)|dF (x) =

∫ 1

0

x−1F (x)dx ≤ e1/2

∫ 1

0

x−1/2dx =
2√
e
.

Since log(x) ≤ x−1 ≤ x for all x ≥ 1 and ES = 1, we get
∫∞
1

log(x)dF (x) ≤ 1
and thus

E| logS| =

∫ 1

0

| log(x)|dF (x) +

∫ ∞

1

log(x)dF (x) ≤ 2√
e

+ 1 . (80)

This bound proves the left part of the ∧ sign in (70). We now provide a new
bound for F (x) which will yield the right part. Since the second derivative of
the log(x) has absolute value at most 1 for all x ≥ 1, we have that, for any
t ≥ 0,

log (1 + 2dit) ≥ 2dit− 2d2
i t

2

which gives that

log[F (x)] ≤ (x− 1) t+ t2‖d‖2 .

Setting t = ‖d‖−1 yields to the following exponential bound

F (x) ≤ exp
[

(x− 1)‖d‖−1 + 1
]

, x > 0 . (81)

Having this new bound of F at hand, we can improve the bound established
in (80) as follows. Integration by parts together with (81) and (79) gives that,
for any 0 < b < a < 1,

∫ a

0

| log(x)|dF (x) = | log(a)|F (a) +

∫ a

0

x−1F (x)dx

≤ | log(a)|F (a) + C

∫ b

0

x−1/2dx+ Cb−1

∫ a

b

exp
[

−(1 − x)‖d‖−1
]

dx

≤ 2Cb1/2 + (| log(a)| + Cb−1‖d‖) exp
[

−(1 − a)‖d‖−1
]

.
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Set b
def
= exp

[

−2
3
(1 − a)‖d‖−1

]

∧ a/2, so that b1/2 ≤ exp
[

−1
3
(1 − a)‖d‖−1

]

and

b−1 ≤ 2/a exp
[

2
3
(1 − a)‖d‖−1

]

(since both 2/a and the latter exponential are
larger than 1). The latter displayed inequality then implies that there exists
a constant C only depending on a such that

E (| log(S)|1{S ≤ a}) ≤ C(1 + ‖d‖) exp
[

−(1 − a)‖d‖−1/3
]

≤ C‖d‖α , (82)

where the last inequality is valid for all α ≥ 1 with C only depending on a
and α. Pick a ∈ (0, 1). Since the second derivative of the log(x) has absolute
value at most a−2 for all x ≥ a and that | log(x) − (x − 1)| ≤ | log(x)| for all
x ∈ (0, 1), we have that, for any x > 0,

| log(x) − (x− 1)| ≤ 1

2a2
(1 − x)21[a,∞)(x) + | log(x)|1[0,a](x) . (83)

Since E[(1 − S)2] = Var(S) = ‖d‖2Var(ζ2
1) = 2‖d‖2 and using (82) and (83),

we get , for some positive constant C only depending on a,

|E [log(S)]| ≤ 1

2a2
E[(1 − S)2] + E [|log(S)|1{|S| ≤ a}]

≤ a−2‖d‖2 + C‖d‖2 ,

which shows (70) by applying (74) and (76).
We now prove (71). We have, by definition of S,

Var
(

log[ξTAξ]
)

= Var (log(S)) ≤ E log2 S . (84)

By arguing as for (80), that is, by using the bound (79) for F (x), x ∈ [0, 1],
that the derivative of log2(x) is 2 log x/x and that log2(x) ≤ 2x for all x ≥ 1,
we obtain E log2 S ≤ 8√

e
+ 2, which yields (71).

We now prove (72). Define k̃, d̃i and S̃ as we did k, di and S. The LHS
in (72) then reads

E

[

log(S) log(S̃)
]

− E

[

(S − 1)(S̃ − 1)
]

= E

[

(S − 1)(log(S̃) − (S̃ − 1))
]

+E

[

(S̃ − 1)(log(S) − (S − 1))
]

+E

[

(log(S) − (S − 1)) (log(S̃) − (S̃ − 1))
]

.

We will provide a bound for the first term of the RHS of this display, the
other terms being treated similarly. By using (83) for some a ∈ (0, 1) and the
Cauchy-Schwarz inequality,
∣

∣

∣
E

[

(S − 1)
(

log(S̃) − (S̃ − 1)
)]∣

∣

∣

≤ 1

2a2
E

[

(S − 1)(S̃ − 1)2
]

+ E

[

(S − 1)| log(S̃)|1[0,a](S̃)
]

≤ 1

2a2

(

E|S − 1|2 E|S̃ − 1|4
)1/2

+
(

E|S − 1|2 E

[

| log(S̃)|21[0,a](S̃)
])1/2

.
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By (76), it remains to show that the two last terms are O(‖d‖3 ∨ ‖d̃‖3). By

definition, S̃−1 =
∑k̃

i=1 d̃i(ζ
2
i −1), where {ζi}1≤k≤k̃ are i.i.d. standard normal.

Therefore,

E|S̃ − 1|4 =

k̃
∑

i=1

d̃4
i cum4(ζ

2
1 ) + 3

(

k
∑

i=1

d̃2
i

)2

Var(ζ2
1 ),

where cum4(Z) is the fourth-order cumulant of the random variable Z. Since
∑k̃

i=1 d̃
4
i ≤

(

∑k̃
i=1 d̃

2
i

)2

, we obtain that E|S̃ − 1|4 ≤ C‖d̃‖4 for some constant

C. Therefore,

(

E|S − 1|2
)1/2

(

E|S̃ − 1|4
)1/2

≤ C‖d‖‖d̃‖2 ≤ C(‖d‖3 ∨ ‖d̃‖3) .

Proceeding as in (82), it can be shown that

E

[

| log(S̃)|21[0,a](S̃)
]

≤ C‖d‖α ,

for all α ≥ 0 with C only depending on a and α. In particular

(

E|S − 1|2
)1/2

(

E

[

| log(S̃)|21[0,a](S̃)
])1/2

≤ C(‖d‖3 ∨ ‖d̃‖3) ,

for some constant C, which concludes the proof. �
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