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Abstract

Let X be genus 2 curve defined over an algebraically closed field of characteristic p and
let X1 be its p-twist. Let MX (resp. MX1

) be the (coarse) moduli space of semi-stable rank
2 vector bundles with trivial determinant over X (resp. X1). The moduli space MX is
isomorphic to the 3 dimensional projective space and is endowed with an action of the group
J [2] of order 2 line bundles over X. When 3 ≤ p ≤ 7, we show that the Verschiebung (i.e.,
the separable part of the action of Frobenius by pull-back) V : MX1

99K MX is completely
determined by its restrictions to the lines that are invariant under the action of a non zero
element of J [2]. As those lines correspond to elliptic curves that appear as Prym varieties,
the Verschiebung restricts to the morphism induced by multiplication by p and we are able
to compute the explicit equations for the Verschiebung.

1 Introduction

Let k be a algebraically closed field of positive characteristic p and let X be a proper and
smooth (connected) curve of genus 2 over k. Let Xs (s ∈ Z since k is perfect) be the ps-twist
of X and let J (resp. Js) denote its Jacobian variety (resp. the ps-twist of its Jacobian
variety). Denote by MX(r) the (coarse) moduli space of semi-stable rank r vector bundles
with trivial determinant over X. The map E 7→ F ∗

absE defines a rational map the separable
part of which, the generalized Verschiebung, will be denoted by Vr : MX1

(r) 99K MX(r).
For r = 2 and k = C, we let MX (resp. V ) be MX (resp. V2). [NR] have constructed

an isomorphism D : MX → |2Θ| ∼= P3 that remains valid for an algebraically closed field
of positive characteristic (it is straightforward for p 6= 2 and [LP1] (section 5) give a sketch
of proof for p = 2). Furthermore, the semistable boundary of MX identifies with the
Kummer surface KumX , which is canonically contained in the linear system |2Θ|. We have
the commutative diagram

(1.1)
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MX1
MX

|2Θ1| |2Θ|

-

-
? ?

D D

V

Ṽ

and the induced rational map Ṽ is given by degree p polynomials ([LP2]). Note that all
the map in that diagram are equivariant under the action of J [2].

Our interest in the situation described by the diagram (1.1) comes from the fact ([LS])
that, given a proper and smooth curve of genus g over a field k, a semistable rank r vector
bundle E over X corresponds to an (irreducible) continuous representation of the algebraic
fundamental group π1(X) in GLr(k̄) (endowed with the discrete topology) if and only if

one can find an integer n > 0 such that F
(n)
abs

∗
E ∼= E. Thus, natural questions about the

generalized Verschiebung Vr : MX1
(r) 99K MX(r) arise like, e.g., its surjectivity, its degree,

the density of Frobenius-stable bundles, and the loci of Frobenius-destabilized bundles.
For general (g, r, p), not much seems to be known (see the introductions of [LP1] and

[LP2] for an overview of this subject).

When g = 2, r = 2, and p = 2 and X is an ordinary curve, [LP1] determined the

quadric equations of Ṽ in terms of the generalized theta constants of the curve X. In
[LP2] (resp. in [Du]), one could give the equations of Ṽ in case of a nonordinary curve
X with Hasse-Witt invariant equal to 1 (resp. a supersingular curve X) by specializing a
family X of genus 2 curves parameterized by a discrete valuation ring with ordinary generic
fiber and special fiber isomorphic to X.

When g = 2, r = 2, and p = 3, [LP2] determined the cubic equations of Ṽ in showing
that this rational map coincided with the polar map of a Kummer surface, isomorphic to
KumX , in P3. To reach this result, they used a striking relationship (see [vG]) between
cubics and quartics on |2Θ1|.

In this paper, we shall suppose that p ≥ 3. Given τ a line bundle of order 2 over X
and a τ -invariant semi-stable vector bundle E, i.e., satisfying E⊗ τ

∼
−→ E, of degree 0, one

can give E a structure of invertible OX ⊕ τ -module. In other words, if π : X̃ → X is the
degree 2 étale cover corresponding to τ , there is a degree 0 line bundle q over X̃ such that
E ∼= π∗(q). On the one hand, the τ -invariant locus of MX is the union of two projective
lines. On the other hand, π being étale, one has F ∗

abs(π∗(q))
∼= π∗(F

∗
abs(q)). Requiring that

E has trivial determinant forces q to be in some translate of the Prym variety P associated
to π (which is an elliptic curve) and, as multiplication by p over an elliptic curve commutes
with the inversion, it induces a map P/{±} ∼= P1 → P/{±} ∼= P1. Let VP1 be the separa-
ble part of the latter map and choose a τ -invariant line ∆(τ) in MX . There is a natural
isomorphism P/{±}

∼
−→ ∆(τ) and VP1 coincides with the restriction of V : MX1

99K MX to
∆(τ). The main result of this paper is the following theorem (4.16) :

Theorem Let X be a smooth and proper curve of genus 2, sufficiently general, over an
algebraically closed field of characteristic p = 3, 5 or 7. The generalized Verschiebung
V : MX1

99K MX is completely determined by its restriction to the projective lines that are
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invariant under the action of a non zero element of J [2].

In particular, V can be computed explicitly in these cases and we recover the result of
[LP2] in the characteristic 3 case. As an application, we recover if p = 3, and we show if
p = 5, that there is a degree 2p− 2 surface S is |2Θ1| such that the equality of divisors in
|2Θ1|

Ṽ −1(KumX) = KumX1
+ 2S

holds scheme-theoretically. The computations have been carried out using Maple 9 and
Magma.

I would like to thank Y. Laszlo for having introduced me to this question, for his help
and encouragements all along my thesis. I would like to thank D. Bernardi, P.-V. Koseleff,
M. Chardin and more specially G. Lecerf, for their help and explanations in the use of the
computation softwares.

2 The (coarse) moduli space MX

2.1 Preliminaries

Let k be an algebraically closed field of odd characteristic. Let X be a proper and smooth
curve of genus 2 over k and let J (resp. J1) be its Jacobian variety (resp. the moduli
space of degree one line bundles over X, which is a principal homogeneous space under the
action J). The embedding X →֒ J1 defined by O(∆), where ∆ is the diagonal ∆ ⊆ X×X,
defines a theta divisor Θ.

Let MX be the (coarse) moduli space of semi-stable rank 2 vector bundles with trivial
determinant over X. The set of its closed points is the set of S-equivalence classes [E] of
semi-stable rank 2 vector bundles E with trivial determinant over X. Note that MX is
endowed with a natural action of J [2] defined set-theoretically by (τ, [E]) 7→ [E ⊗ τ ]. If
E is strictly semi-stable, i.e., semi-stable but non-stable, there is a degree 0 line bundle j
such that E is an extension 0 → j−1 → E → j → 0, i.e., E is S-equivalent to j ⊕ j−1.
If L is the Poincaré’s bundle over X × J , one can consider the family E = L ⊕ L−1, pa-
rameterized by J , of semi-stable rank 2 bundles with trivial determinant over X. Because
of the coarse moduli property, there is a unique b : J → MX such that, for any j in J ,
b(j) = [E|X×{j}] = [j ⊕ j−1]. Note that the semi-stable boundary in MX , i.e., the image of
b, is (globally) J [2]-invariant and that b is J [2]-equivariant.

When k = C (but this result extends straightforwardly to any algebraically closed field
with characteristic different from 2, and, with a little more work (see [LP1] for a sketch
of proof) to an algebraically closed field of characteristic 2), it has been shown ([NR])
that there is a canonical isomorphism D : MX

∼
−→ PH0(J1, O(2Θ)) that maps a semi-

stable bundle E over X to the reduced (hence linearly equivalent to 2Θ) divisor over J1

with support the set {ξ ∈ J1/h0(X, E ⊗ ξ) ≥ 1} and recall by the way that any divisor
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linearly equivalent to 2Θ is completely determined by its support ([NR], Proposition 6.4).
In particular, this divisor is reducible if and only if it is of the form D[j ⊕ j−1]. In other
words, D maps the semi-stable boundary of MX onto the set of reducible divisors of |2Θ|,
namely D[j⊕ j−1] = T ∗

j Θ+T ∗
j−1Θ, where Tj (resp. Tj−1) is the isomorphism J1 ∼

−→ J1 that

corresponds to j (resp. j−1) via the action of J on J1 .
Choose once for all an effective theta characteristic κ0 of X (that is to say one of the

6 Weierstrass points of X) and consider the corresponding isomorphism J
∼
−→ J1 given by

j 7→ j ⊗ κ0. We still denote by Θ the divisor of J obtained as the inverse image of Θ by
means of this isomorphism. Its support is the set {ζ ∈ J/H0(ζ ⊗ κ0) ≥ 1) and using the
Riemann-Roch theorem, Θ is symmetric. It defines the canonical principal polarization on
J . Using this isomorphism, we obtain an isomorphism

D : MX
∼
−→ PH0(J, O(2Θ)) = |2Θ|

that maps [E] to the (unique) divisor in |2Θ| with support {ζ ∈ J/h0(E ⊗ κ0 ⊗ ζ) ≥ 1}.
Of course, the semi-stable boundary is MX still coincides with the set of reducible divisors
in |2Θ|.

Now, we recall the basic facts of the theory of theta group schemes associated to an
ample line bundle L over an abelian variety A over k, as presented in [Mu2], Section 1.
Let G(L) (resp. K(L)) be the group scheme (resp. the finite group scheme) such that, for
any k-scheme S,

G(L)(S) = {(x, γ)| x ∈ A(S), γ : L
∼
−→ T ∗

xL} (resp. K(L)(S) = {x ∈ A(S)| T ∗
xL

∼= L})

We suppose that K(L) is reduced-reduced, in which case L is said to be of separable type.
The theta group G(L) is a central extension

1 → Gm → G(L) → K(L) → 0

Note that G(L) has a natural action on H0(A, L) and that this action has weight 1 in the
sense that, being given λ in Gm and s in H0(A, L), λ.s = λId(s). More generally, if G(L)
acts on a vector space W , one says that this action has weight r if, being given λ in Gm

and s in H0(A, L), one has λ.s = λrId(s). As an example, one can consider the space of
r-symmetric powers Symr H0(A, L) on which G(L) has a natural action of weight r.

Theorem 2.1 The vector space H0(A, L) is the unique (up to isomorphism) irreducible
representation of weight 1 of G(L).

Proof : Combine the Proposition 3 and the Theorem 2 of [Mu2], Section 1.

Being given α, β in K(L), α̃, β̃ in G(L) above α and β respectively, the invertible scalar

α̃β̃α̃−1β̃−1 depends only on the choice of α and β and it induces a skew-symmetric bilinear
form eL : K(L) × K(L) → Gm that is non degenerate because Gm is the center of G(L).
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Now, let π : A → B be a separable isogeny between abelian varieties and suppose that
L ∼= π∗M where M is an ample line bundle over B. Because L descends on B, there is an
action of ker π on L covering the action of ker π on A, i.e., a lifting ker π

∼
−→ K̃ ⊆ G(L) and

M ∼= (π∗L)K̃ . In particular, ker π must be an isotropic subgroup of K(L) with respect to
eL. Furthermore, γ in G(L) induces an isomorphism π∗(γ) of G if and only if γ lies in the

centralizer Z(K̃) of K̃ in G(L) and, when it is the case, π∗(γ) depends only on the class of

γ in Z(K̃)/K̃. More precisely,

Theorem 2.2 (1) Suppose that π : A→ B is a separable isogeny between abelian varieties
and let L be an ample line bundle over A. Then, there is a one-to-one correspondence
between :

- The set of isomorphism classes of line bundles M over B such that L ∼= π∗M . Such
an M is necessarily ample.

- The set of homomorphisms ker π → G(L) lifting the inclusion ker π →֒ A.

(2) Being given a homomorphism ker π → K̃ ⊆ G(L) as in (1) and letting M ∼= (π∗L)K̃ be
the corresponding ample line bundle over B, there are canonical isomorphisms

G(M) ∼= Z(K̃)/K̃ and K(M) ∼= (ker π)⊥/ ker π

where (ker π)⊥ = {α ∈ K(L)| eL(α, β) = 1 for any β ∈ ker π}.
In particular, if M is a principal polarization, ker π is a maximal isotropic subgroup of
K(L).

Proof : (1) [Mu1], Section 23, Theorem 2. The fact that M is necessarily ample comes
from [Mu1], Section 6, Proposition 6 and the finiteness of K(M).
(2) [Mu2], Section 1, Theorem 4 and [Mu1], Section 23, Theorem 4 for the last assertion.

Returning to our situation, consider the ample line bundle O(2Θ) over J and the
associated theta group scheme G(O(2Θ)). Its natural action on H0(J, O(2Θ)) induces an
action of J [2] onto |2Θ| and the morphism

KX : J → |2Θ|, j 7→ T ∗
j Θ + T ∗

−jΘ

which obviously factors through the quotient of J under the involution j 7→ j−1, is J [2]-
equivariant. The following lemma is an obvious consequence of the definitions :

Lemma 2.3 The diagram

J

MX

|2Θ|

���������:

XXXXXXXXXz
?

b

KX

D
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of J [2]-equivariant morphisms is commutative.

Let H be the hyperplan in |2Θ| consisting in those effective divisors passing through
the origin of J . The corresponding line bundle is OP3(1). We let ∆ be the reduced divisor
over MX with support D−1(H). The associated invertible sheaf O(∆) is isomorphic to
D∗(OP3(1)) and one has

H0(MX , O(∆)) ∼= H0(|2Θ|, O(1)) ∼= H0(J, O(2Θ))

Furthermore, b∗(O(∆)) ∼= O(2Θ). It can be shown that O(∆) is a determinant line bundle
is the following sense : Let S be a k-scheme S and let E be a rank 2 vector bundle with
trivial determinant overX×S such that E(s) := E|X×{s} is semi-stable for any closed point s
in S. Because of the coarse moduli property, there is a map ϕ : S →MX such that, for any
closed point s ∈ S, one has ϕ(s) = [E(s)]. Denote by q the second projection X × S → S
and suppose moreover that h0(X, E(s)⊗κ0)) = 0 (which implies that h1(X, E(s)⊗κ0) = 0)
for s generic in S. Therefore, q∗(E ⊠ κ0) = 0 and one can find a locally free resolution

0 → E0
u
−→ E1 → R1q∗(E ⊠ κ0) → 0

The map u is generically bijective and the section det(u) defines an effective divisor on S
that does not depend on the choice of the projective resolution, and that coincides with
ϕ−1(∆) (notice that Suppϕ−1(∆) = {s ∈ S| h1(X, E(s) ⊗ κ0) ≥ 1}). The associated line
bundle (detR1q∗(E ⊠ κ0))

−1 therefore coincides with ϕ∗(O(∆)).

Let ϕ2Θ : J → PH0(J, O(2Θ))∗ = |2Θ|∗ be the canonical morphism associated to
O(2Θ). It is of course J [2]-equivariant. One has the following lemma due to Wirtinger.

Lemma 2.4 (Wirtinger) There is a non degenerate bilinear pairing on the vector space
W ∗ := H0(J, O(2Θ))∗ such that the induced isomorphism BW : W ∗ ∼

−→ W makes the
following diagram commutative

J

|2Θ|∗

|2Θ|

���������:

XXXXXXXXXz
?

ϕ2Θ

KX

PBW

This pairing is well-defined up to a non zero constant.

Proof : : We only sketch the proof that can be found in ([Mu3]). The key idea is to consider
the isogeny ξ : J×J → J×J given by (x, y) 7→ (x+y, x−y), the kernel of which is the finite
group J [2], embedded diagonally in J×J . One proves that the pullback ξ∗(O(Θ)⊠O(Θ))
of the principal polarization for J × J is isomorphic to O(2Θ) ⊠ O(2Θ). Hence, there

is a unique maximal level subgroup H̃ of the Heisenberg group G(O(2Θ) ⊠ O(2Θ)) such
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that the H̃-invariant part of ξ∗(O(2Θ) ⊠ O(2Θ)) is isomorphic to O(Θ) ⊠ O(Θ). If θ is

”the” non-zero element of H0(J, O(Θ)), ξ∗(θ ⊠ θ) is ”the” non-zero H̃-invariant element
of H0(J × J, O(2Θ) ⊠ O(2Θ)) ∼= W ⊗W and the corresponding bilinear form on W ∗ is
non degenerate because the action of G(O(2Θ)) over W is irreducible.�

2.5. Remark. Note that Wirtinger’s result remains true whenever J is a principally po-
larized abelian variety and Θ is a symmetric representative for this polarization. In the
sequel, we will always identify |2Θ|∗ = PH0(J, O(2Θ))∗ and |2Θ| = PH0(J, O(2Θ))) using
the isomorphism PBW .

The diagram in the lemma above is J [2]-equivariant as well. Thus, gathering these
preliminary results, we obtain the following proposition (also found in [B]):

Proposition 2.6 The diagram

J |2Θ|∗

MX

|2Θ|
?

@
@

@
@@R

�
�

�
���

-����������������1

PPPPPPPPPPPPPPPPq

D∼

ϕ2Θ

b

KX

∼PBW

∼

of J [2]-equivariant morphisms is commutative.

2.2 Choosing a Theta structure

Most of the material in that section comes from [Mu2], Section 1.

Let us define the two groups

{
H = (Z/2Z)2

Ĥ = Hom((Z/2Z)2, k∗)

We identify H and Ĥ by means of the bilinear form (x, y) 7→ (−1)
tx.y and the canonical

evaluation map H × Ĥ → k∗ maps (x, y∗) to y∗(x) = (−1)
ty.x, where y corresponds to y∗

via the above mentioned identification Ĥ
∼
−→ H . Define the Heisenberg group H as the set

k∗ ×H × Ĥ, endowed with the group structure given by

(t, x, x∗)(s, y, y∗) = (sty∗(x), x+ y, x∗ + y∗)

7



Denote by E : (H × Ĥ) × (H × Ĥ) → k∗ the non degenerate bilinear form defined by the
commutator in H, namely

E((x, x∗), (y, y∗)) = [(1, x, x∗), (1, y, y∗)] = x∗(y)y∗(x)

It makes H× Ĥ self-dual, the sub-groups H and Ĥ are isotropic with respect to E and the
isomorphism of H induced by the restriction of E to (H×{0})× ({0}× Ĥ) is the identity.

Let e2 denote the bilinear pairing defined onto J [2] by the commutator in the theta
group G(O(2Θ)). As it is non degenerate, it induces an isomorphism

φ : H × Ĥ
∼
−→ J [2]

symplectic with respect to E and e2, namely a Göpel system for J [2].

Because H (resp. Ĥ) is isotropic, one can choose a lifting H
∼
−→ H̃ (resp. Ĥ

∼
−→

˜̂
H) in

G(O(2Θ)). There is a unique isomorphism

φ̃ : H
∼
−→ G(O(2Θ))

that induces identity on the centers, that maps H (resp. Ĥ) onto H̃ (resp.
˜̂
H). Such an

isomorphism is a theta structure on G(O(2Θ)) and we choose one once for all. In particular,
W := H0(J, O(2Θ)) is an irreducible representation U : H → GL(W ) of weight 1.

Given such a representation, one can construct a basis {Xx| x ∈ H}, defined up to a
multiplicative scalar, satisfying the following properties :

y.Xx = Xx+y for any x, y ∈ H, x∗.Xx = x∗(x)Xx for any x, x∗ ∈ H × Ĥ.

Namely, the subgroup Ĥ ⊂ H being abelian, the induced representation onW is completely
reducible and splits in a direct sum of dimensional 1 subspaces indexed by the group of
character of Ĥ, i.e., by H . Let X00 be a non-zero element of W Ĥ and set Xx = (1, x, 0).X00

for any x ∈ H . Then, for any x∗ ∈ Ĥ , the equalities

(1, 0, x∗)Xx = (1, 0, x∗)(1, x, 0)X00 = x∗(x)(1, x, 0)(1, 0, x∗)X00 = x∗(x)Xx

show that Xx spans the subspace Wx on which (1, 0, x∗) acts like x∗(x)Id. Because the
canonical evaluation map (x, x∗) 7→ x∗(x) is non degenerate, the family {Xx| x ∈ H} is
free and, since it contains 4 elements, we can conclude.

We call {X00, X01, X10, X11} the theta basis of W (associated to the theta structure
φ : H

∼
−→ G(O(2Θ))). In terms of that basis, one can give an explicit description of

U : H → GL(W ) : Set

α01 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ; α10 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 α11 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




8



and

β01 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ; β10 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ; β11 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




For convenience, set also α00 = β00 = Id and notice that α11 = α01α10 = α10α01 and
β11 = β01β10 = β10β01. Then U(t, x, x∗) = tβx∗αx for any (t, x, x∗) ∈ H. These six matrices
are order 2 elements of GL(W ) with determinant 1 and the same statements hold for any
product βx∗αx with (x, x∗) non-zero in H × Ĥ .

2.7. Remark. Note that the isomorphism BW (Lemma 2.2) allows us to identify W and
W ∗. We let {x•} be the corresponding dual basis of W ∗. It gives a set of homogeneous
coordinates for PW = |2Θ|, canonical in the sense that it depends only on the choice of
the Göpel system H × Ĥ

∼
−→ J [2].

2.3 The Kummer quartic surface

Let KumX denote the image of the map KX : J → |2Θ| appearing in Lemma 2.3. We have
the following lemma

Lemma 2.8 Let X be a genus 2 curve and let J be its Jacobian. The map KX : J → |2Θ|
identifies with the quotient of J under the action of {±}. Its image is a reduced, irreducible,
J [2]-invariant quartic in |2Θ| with 16 nodes and no other singularities, i.e., a Kummer
surface.

Proof : Because KX coincides with ϕ2Θ (Lemma 2.4) and because of the Riemann-Roch
Theorem for abelian varieties (see, e.g., [Mu1]), one has

deg(ϕ2Θ). deg(KumX) = (2Θ)2 = 8

Therefore, deg(KumX) = 4. Because J is an irreducible abelian surface, KumX is reduced.
Thus, it is a quartic and KX coincides with the quotient J → J/{±} (see [GD], Proposition
4.23 for details). It is therefore finite, surjective and separable, generically 2-1 hence of
degree 2 (see, e.g., [Mu1], Section 7) and KumX is irreducible. The map KX is furthermore
generically étale and it ramifies only at the 2-torsion points of J thus the singular locus of
KumX is contained in the image of J [2]. An easy calculation in the formal completion of
the local ring at a point of J [2] shows that it is a node (see [GD], Note 4.16). The fact
that it is J [2]-invariant is clear. �

2.9. Remark. Let us consider a principally polarized abelian surface A and let Θ be a
symmetric representative for that polarization. Either A is an irreducible abelian variety
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or A is the product of two elliptic curves. In the former case, one can show that Θ is a non
singular genus 2 curve the Jacobian of which is isomorphic to A and this is the situation
of the lemma above. In the latter case, Θ is the union of two elliptic curves meeting
transversally in one point and the morphism ϕ2Θ : A → |2Θ|∗ associated to O(2Θ) makes
the following diagram commutative

E1 ×E2

P1 × P1 |2Θ|∗ ∼= P3
?

-

PPPPPPPPPPPq

ϕ2Θ

Segre embedding

where the map E1×E2 → P1×P1 is the product of the canonical maps Ei → P1 (i = 1, 2),
which identifies with the quotient Ei → Ei/{±}. The image of the Segre embedding is a
non singular quadric in P3.

2.10. Remark. Conversely, it corresponds to any quartic surface S in P3 with the proper-
ties described in the lemma (i.e., a Kummer surface) a principally polarized abelian surface
A whose principal polarization is a non-singular curve ([GD], Proposition 4.22), hence a
genus 2 curve the Jacobian of which is isomorphic to A (see the previous Remark). In
other words, one recovers the moduli space of proper and smooth curves of genus 2 over k
(see [H], Chapter IV, Ex. 2.2 for another (much more basic) description).

Lemma 2.11 (1) In the coordinate system {x•} defined above, there are scalars k00, k01, k10

and k11 such that the equation defining the Kummer quartic surface KumX is

S + 2k00P + k01Q01 + k10Q10 + k11Q11 (2.1)

where

S = x4
00 + x4

01 + x4
10 + x4

11, P = x00x01x10x11,
Q01 = x2

00x
2
01 + x2

10x
2
11, Q10 = x2

00x
2
10 + x2

01x
2
11, Q11 = x2

00x
2
11 + x2

01x
2
10.

(2) These scalars k00, k01, k10 and k11 satisfy the cubic relationship

4 + k01k10k11 − k2
01 − k2

10 − k2
11 + k2

00 = 0 (2.2)

and one has




k01 6= ±2, k10 6= ±2, k11 6= ±2,
k01 + k10 + k11 + 2 ± k00 6= 0,
k01 + k10 − k11 − 2 ± k00 6= 0,
k01 − k10 + k11 − 2 ± k00 6= 0,
−k01 + k10 + k11 − 2 ± k00 6= 0

(2.3)
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Proof : (1) Using the fact that the Kummer surface in |2Θ| is J [2]-invariant, the element
of Sym4W ∗ that generates its ideal is invariant (up to scalar) under the natural action (of
weight −4) of H on Sym4W ∗. Thus ([GD], Theorem 2.20), one can look for the equation
of KumX under the form (2.1).
(2) We let (ϑ00 : ϑ01 : ϑ10 : ϑ11) be the homogeneous coordinates of the image ϕ2Θ(0)
of the origin of J in |2Θ|∗, i.e., the generalized theta constants in classical terminology
of theta functions. Note that the orbit of that point under the action of J [2] consists in
16 distinct points. Because these points are the points of a 16-6 configuration (see [GD],
Section 1), the corresponding conditions on the ϑ• are equivalent to the following :

ϑ00ϑ01 6= ±ϑ10ϑ11, ϑ00ϑ10 6= ±ϑ01ϑ11, ϑ00ϑ11 6= ±ϑ01ϑ10,
ϑ2

00 + ϑ2
01 6= ϑ2

10 + ϑ2
11, ϑ2

00 + ϑ2
10 6= ϑ2

01 + ϑ2
11, ϑ2

00 + ϑ2
11 6= ϑ2

01 + ϑ2
10,

ϑ2
00 + ϑ2

01 + ϑ2
10 + ϑ2

11 6= 0

The fact that ϕ2Θ(0) is a node means that the four partial derivatives of the equation (2.1)
vanish at (ϑ00 : ϑ01 : ϑ10 : ϑ11). It gives a linear system of four equations (depending on
the ϑ•) that the k• must satisfy. Solving the system, we can express the k• in terms of the
ϑ•. Namely, one has

k01 = −
ϑ4

00 + ϑ4
01 − ϑ4

10 − ϑ4
11

ϑ2
00ϑ

2
01 − ϑ2

10ϑ
2
11

, k10 = −
ϑ4

00 − ϑ4
01 + ϑ4

10 − ϑ4
11

ϑ2
00ϑ

2
10 − ϑ2

01ϑ
2
11

,

k11 = −
ϑ4

00 − ϑ4
01 − ϑ4

10 + ϑ4
11

ϑ2
00ϑ

2
11 − ϑ2

01ϑ
2
10

,

and k00 can then be computed directly from (2.1). A few more calculations ([GD], Lemma
2.21) show that one can eliminate the ϑ• from the expressions of the k• to find the cubic
relationship

4 + k01k10k11 − k2
01 − k2

10 − k2
11 + k2

00 = 0

From this equation, we obtain the following four equations

(k01 + 2)(k10 + 2)(k11 + 2) = (k01 + k10 + k11 + 2 − k00)(k01 + k10 + k11 + 2 + k00)

(k01 − 2)(k10 − 2)(k11 + 2) = (k01 + k10 − k11 − 2 − k00)(k01 + k10 − k11 − 2 + k00)

(k01 − 2)(k10 + 2)(k11 − 2) = (k01 − k10 + k11 − 2 − k00)(k01 − k10 + k11 − 2 + k00)

(k01 + 2)(k10 − 2)(k11 − 2) = (−k01 + k10 + k11 − 2 − k00)(−k01 + k10 + k11 − 2 + k00)

Note that neither

k01 − 2 = −

[
(ϑ2

00 + ϑ2
01 − ϑ2

10 − ϑ2
11)(ϑ

2
00 + ϑ2

01 + ϑ2
10 + ϑ2

11)

ϑ2
00ϑ

2
01 − ϑ2

10ϑ
2
11

]

nor

k01 + 2 = −

[
(ϑ2

00 − ϑ2
01 + ϑ2

10 − ϑ2
11)(ϑ

2
00 − ϑ2

01 − ϑ2
10 + ϑ2

11)

ϑ2
00ϑ

2
01 − ϑ2

10ϑ
2
11

]

can be zero. By symmetry, one has k10 6= ±2 and k11 6= ±2 as well. Together with the
four equations deduced from (2.2), one can conclude. �
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2.4 Invariant lines in MX

We are interested in those linear subspaces of |2Θ| on which a non zero τ in J [2] acts like
identity. Let τ = (x, x∗) be an order 2 element in J [2].

A lifting (t, x, x∗) of τ in H has order 2 if and only if t2 = x∗(x). Choose once for all a
square root i of −1 in k and let τ̃ be (µ, x, x∗) with µ = 1 (resp. µ = i) if x∗(x) = 1 (resp.
x∗(x) = −1). The corresponding element µβx∗αx in GL(W ) has order 2 and determinant
µ4 = 1. As it cannot be the identity matrix (because τ 6= 0), W splits in the direct sum

W = W τ̃ ⊕W−τ̃

of two 2-dimensional spaces of eigenvectors, associated to the eigenvalues +1 and −1 of τ̃
respectively.
We construct a basis adapted to this decomposition, that will be useful in the computations
of the Section 4.

Proposition 2.12 Let τ be any non-zero element of J [2] and let τ̃ be the order 2 element of
H defined above. There is a basis {Λ0(τ), Λ1(τ), Λ̄0(τ), Λ̄1(τ)} for W that splits into bases
{Λ0(τ), Λ1(τ)} and {Λ̄0(τ), Λ̄1(τ)} for W τ̃ and W−τ̃ respectively. Furthermore, one can
find a theta structure, i.e., an automorphism of Heisenberg groups ρ : H → H, mapping
(1, 00, 10) to τ̃ , such that this basis coincides with the theta basis corresponding to the

representation H
ρ
−→ H

U
−→ GL(W ).

Proof : Denote again by τ̃ the element Uτ̃ of GL(W ) and by 1 the identity matrix. As
τ̃ 2 = 1, it is easily seen that

p+
τ = (τ̃ + 1)/2 and p−τ = (1 − τ̃ )/2)

is rank 2 projectors of the linear space W , and that their images are W τ̃ and W−τ̃ re-
spectively. One can extract a basis of W τ̃ (resp. W−τ̃ ) from the family {p+

τ (X•)} (resp.
{p−τ (X•)}). Let us distinguish whether x = 00 or not.

If x is zero, one has

p+
τ (Xz) =

1 + x∗(z)

2
Xz =

∣∣∣∣
Xz if x∗(z) = 1
0 if x∗(z) = −1

and

p−τ (Xz) =
1 − x∗(z)

2
Xz =

∣∣∣∣
0 if x∗(z) = 1
Xz if x∗(z) = −1

Therefore, we let Λ•(τ) (resp. Λ̄•(τ)) be the non zero elements p+
τ (X•) (resp. p−τ (X•)))

with corresponding lexical order. In other words, we permute the elements of the basis
{X•}. Notice that one always has Λ0(τ) = X00 and let {z1, z2, z3} be the permutation of
{01, 10, 11} such that

Λ1(τ) = Xz1
, Λ̄0(τ) = Xz2

, Λ̄1(τ) = Xz3

12



Because z1 + z2 + z3 = 00, the bijection ρH : H → H well-defined by the conditions
ρH(00) = 00, ρH(01) = z1 and ρH(10) = z2 is a group automorphism of H . Furthermore,
there is a unique automorphism ρĤ of Ĥ such that the automorphism

H × Ĥ
ρH×ρ

Ĥ−−−−→ H × Ĥ

is symplectic with respect to E. The automorphism ρ of H acting like ρH × ρĤ on H × Ĥ
and acting like 1 on the centers is the one we are looking for. Indeed, X00 = Λ0(τ) is
invariant under the action of Ĥ and one has

ρH(01).Λ0(τ) = Λ1(τ), ρH(10).Λ0(τ) = Λ̄0(τ), ρH(11).Λ0(τ) = Λ̄1(τ)

thus the basis {Λ0(τ), Λ1(τ), Λ̄0(τ), Λ̄1(τ)} is the theta basis corresponding to the repre-

sentation H
ρ
−→ H

U
−→ GL(W ).

If x is non zero, τ̃ = (µ, x, x∗) with µ2 = x∗(x) and one has

p+
τ (Xz) =

1

2
(Xz + µx∗(x+ z)Xx+z)

Thus, the elements of the family {p+
τ (X•)} are pairwise colinear. In particular, we find

that p+
τ (Xx) = µp+

τ (X00). We let Λ0(τ) be p+
τ (X00) and we let z0 be the first (for lexical

order) non-zero element of H such that

{Λ0(τ), p
+
τ (Xz0

)}

is a basis for W τ̃ = Im p+
τ . This z0 is necessarily different from 00 and x (more precisely,

z0 = 10 if x = 01 and z0 = 01 in the two other cases). We set

Λ1(τ) = p+
τ (Xz0

), Λ̄0(τ) = p−τ (X00), Λ̄1(τ) = p−τ (Xz0
)

and we obtained the announced basis of W . Taking γ̃ = (t, y, y∗) in H, one has

γ̃ (Λ0(τ)) =
1 + x∗(y)y∗(x)τ̃

2
(γ̃(X00)) =

ty∗(y)

2
(Xy + µ(x∗ + y∗)(x)Xx+y)

If γ̃ (Λ0(τ)) = Λ0(τ), then either y = 0 or y = x. In the former case, one must have t = 1
and y∗(x) = 1. There is a unique non-zero element in Ĥ (say z∗1) fulfilling this condition
and because x and z0 generate H , one must have z∗1(z0) = −1. In the latter case, one must
have t = µ and y∗(x) = x∗(x). The two elements of Ĥ fulfilling this condition are x∗ and
x∗ + z∗1 .
Consider the abelian subgroup {1, (1, 00, z∗1), τ̃ , (µ, x, x∗ + z∗1)} of H. By construction, it
fixes Λ0(τ). Still by construction, one has

τ̃(Λ1(τ)) = Λ1(τ), τ̃ (Λ̄0(τ)) = −Λ̄0(τ), τ̃ (Λ̄1(τ)) = −Λ̄1(τ)
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Finally, because E((00, z∗1), τ) = z∗1(x) = 1 and z∗1(z0) = −1, one obtains

(1, 00, z∗1)(Λ1(τ)) = −Λ1(τ), (1, 00, z∗1)(Λ̄0(τ)) = Λ̄0(τ), (1, 00, z∗1)(Λ̄1(τ)) = −Λ̄1(τ)

Now, choose two elements z∗2 and z∗3 in Ĥ, not necessarily different, such that z∗2(x) = x∗(z0)
and z∗3(x) = −1. It is easily checked that, on the one hand,

(z∗2(z0), z0, z
∗
2)(Λ0(τ)) = z∗2(z0)

2 1 + x∗(z0)z
∗
2(x)τ̃

2
Xz0

= Λ1(τ)

and

(1, 00, z∗3)(Λ0(τ)) =
1 + z∗3(x)τ̃

2
X00 = Λ̄0(τ)

and that, on the other hand,

[(z∗2(z0), z0, z
∗
2), (1, 00, z∗1)] = z∗1(z0) = −1, [(z∗2(z0), z0, z

∗
2), τ̃ ] = x∗(z0)z

∗
2(x) = 1

and
[(1, 00, z∗3), (1, 00, z∗1)] = 1, [(1, 00, z∗3), τ̃ ] = z∗3(x) = −1

where [., .] is the commutator is H. Hence, one can define an automorphism ρ : H
∼
−→ H

by setting

ρ((1, 00, 01)) = (1, 00, z∗1), ρ((1, 00, 10)) = τ̃ ,
ρ((1, 01, 00)) = (z∗2(z0), z0, z

∗
2), ρ((1, 10, 00)) = (1, 00, z∗3),

and by asking that the map induced on the centers is 1. �

2.13. Remark. The bases {X00, X01, X10, X11} and {Λ0(τ), Λ1(τ), Λ̄0(τ), Λ̄1(τ)} are the
same for τ = (0010).

Corollary 2.14 (1) Given τ in J [2] \ {0}, there are two (disjoint) τ -invariant lines in
|2Θ|. The τ -invariant locus in |2Θ| is globally invariant under the action of J [2] and a
element α in J [2] permutes the connected components if and only if e2(α, τ) = −1.
(2) If ∆(τ) is a line of (1), there are coordinates {λ0, λ1} such that ∆(τ)∩KumX consists
in four reduced points with homogeneous coordinates

(a : b), (a : −b), (b : a) and (b : −a)

These scalars don’t depend on the choice of the τ -invariant line ∆(τ).

Proof : Because of the proposition, it is enough to prove the corollary for a particular τ so
let τ be the element (0010) of J [2] and let τ̃ = (1, 00, 10) in H. We will denote by ∆+(τ)
(resp. ∆−(τ)) the projective line in |2Θ| corresponding to W τ̃ (resp. W−τ̃ ). If X is any
eigenvector of τ̃ and if α̃ is any element in H with class α in H × Ĥ , one has

τ̃ (α̃(X)) = e2(α, τ) = α̃(τ̃(X))
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which proves (1).
The ideal (x10, x11) of ∆+(τ) coincides with the kernel of the dual map W ∗

։ (W τ̃ )∗.
Denote by λ0 (resp. λ1) the image of x00 (resp. x01) in (W τ̃ )∗. The equation (2.1) of
KumX maps to

λ4
0 + λ4

1 + k01λ
2
0λ

2
1 = 0

in Sym4 (W τ̃ )∗ and this quartic generates the ideal of the scheme-theoretic intersection
∆+(τ) ∩ KumX . Hence, because k01 6= ±2 (Lemma 2.11.(2)), ∆+(τ) ∩ KumX consists in
four reduced points with homogeneous coordinates

(a : b : 0 : 0), (b : a : 0 : 0), (a : −b : 0 : 0), (b : −a : 0 : 0).

where a and b are pairwise different non zero scalars satisfying the equality k01 = −
b4 + a4

a2b2
.

Because KumX is J [2]-invariant and because α10 maps X00 to X10 and X01 to X11, it
is clear that one would have similar results concerning ∆−(τ). �

We let ω(τ) be the unique scalar such that the equation of the Kummer surface restricts
to

λ0(τ)
4 + λ1(τ)

4 + ω(τ)λ0(τ)
2λ1(τ)

2 = 0 (2.4)

on ∆(τ). The equations (2.3) exactly tell us that ω(τ) 6= ±2 for any τ in J [2] \ {0} and
we gather their expression in terms of the k•, computed thanks to the bases constructed
in the Proposition 2.12, in the following chart.

x \ x∗ 00 01 10 11
00 ⋆ k10 k01 k11

01
2(k00 + k10 + k11)

2 + k01

2(−k00 + k10 − k11)

2 − k01

2(−k00 + k10 + k11)

2 + k01

2(k00 + k10 − k11)

2 − k01

10
2(k00 + k01 + k11)

2 + k10

2(−k00 + k01 + k11)

2 + k10

2(−k00 + k01 − k11)

2 − k10

2(k00 + k01 − k11)

2 − k10

11
2(k00 + k01 + k10)

2 + k11

2(k00 + k01 − k10)

2 − k11

2(−k00 + k01 − k10)

2 − k11

2(−k00 + k01 + k10)

2 + k11

(2.5)

2.15. Remark. Let ∆(τ) be a τ -invariant line in |2Θ|. We will prove in the next section
that this line identifies with the quotient P/{±}, where P is the Prym variety associated
to τ , which is an elliptic curve in that case. Furthermore, the points of the intersection
∆(τ) ∩ KumX are the Weierstrass points of P . This gives another proof of the fact that
ω(τ) 6= ±2 for any τ in J [2] \ {0}.
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3 Prym varieties

Most of the material in that section has been adapted to our situation from the very clear
exposition found in [Mu3].

3.1 Etale double cover

Choose a non-zero element τ of J [2]. One can construct an étale double cover π : X̃ → X
as follows : An isomorphism φ : τ ⊗ τ

∼
−→ OX allows us to give the direct sum OX ⊕ τ a

structure of OX -algebra with product

(a, l)(b, m) = (ab+ φ(lm), am+ bl)

and we set X̃ := Spec(OX ⊕ τ), which is of genus 3 (Hurwitz). Of course, it does not
depend (up to isomorphism) on the choice of the isomorphism φ : τ ⊗ τ

∼
−→ OX . Denote by

J̃ the Jacobian of X̃. If J̃ 2 stands for the moduli space of degree 2 line bundles over X̃,
there is a canonical theta divisor Θ̃ ⊆ J̃ 2. As π is étale, Hurwitz’s formula assures that
the canonical divisor K̃ on X̃ coincides with the pull-back π∗K of the canonical divisor on
X. Therefore, π∗κ0 is a theta characteristic on X̃ and pulling-back Θ̃ by the isomorphism
J̃

∼
−→ J̃2 defined by j 7→ j ⊗ π∗κ0), we obtain a symmetric divisor (still denoted Θ̃) that

represents the canonical polarization of J̃ .

We have homomorphisms π∗ : J → J̃ and Nm : J̃ → J , the latter being deduced
from the push-forward of divisors via π. We easily check that the composite Nm.π∗ is
multiplication by 2. Therefore, ker π∗ ⊆ J [2] and it is easily seen to be equal to < τ >.
Furthermore, using divisors, one can show (see, e.g., [H], Chapter IV, Ex. 2.6) that, for

any j ∈ J̃ ,

det(π∗j) ∼= det(π∗OX̃) ⊗ Nm(j) ∼= τ ⊗ Nm(j) (3.1)

The homomorphisms π∗ and Nm are dual one to each other, i.e., the following diagrams
(equivalent by duality) commute

(3.2)
J̃

̂̃
J

J Ĵ

-

-

6 6

∼

∼

λ
Θ̃

π∗

λΘ

N̂m

J̃
̂̃
J

J Ĵ

-

-
? ?

∼

∼

λ
Θ̃

Nm
λΘ

π̂∗

where λΘ : J
∼
−→ Ĵ (resp. λΘ̃ : J̃

∼
−→

̂̃
J) is the isomorphism of abelian varieties defined by

j 7→ O(T ∗
j Θ − Θ) (resp. j 7→ O(T ∗

j Θ̃ − Θ̃)). This implies that the third diagram

(3.3)
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J̃
̂̃
J

J Ĵ

-

-

6
?

∼
λΘ̃

π∗

2λΘ

π̂∗

is also commutative. One checks that, from a set-theoretical point of view,

(π∗)−1(Supp Θ̃) = {j ∈ J |h0(X̃, π∗(j ⊗ κ0) ≥ 1}

= {j ∈ J |h0(X, π∗OX̃ ⊗ j ⊗ κ0) ≥ 1}

= {j ∈ J |h0(X, (j ⊗ κ0) ⊕ (τ ⊗ j ⊗ κ0)) ≥ 1} = Supp Θ ∪ Supp T ∗
τ Θ

Therefore, the divisor (π∗)−1(Θ̃) is defined and the commutativity of the latter diagram
assures that it is algebraically equivalent to 2Θ.

3.1. Remark. Note that this result holds for any representative of the principal polarization
λΘ̃, i.e., for any j in J̃ , as soon as the divisor (π∗)−1(T ∗

j Θ̃) is defined, it is algebraically
equivalent to 2Θ.

Let us introduce the set

Sτ = {z ∈ J/z2 = τ} ⊆ J [4]

which is a principal homogeneous space under J [2]. For any z in Sτ , π
∗(z) belongs to

J̃ [2] for π∗(z)2 = π∗(z2) = π∗(τ) = 0. Let Θ̃z be the effective divisor T ∗
π∗(z)Θ̃, which is a

symmetric representative for the principal polarization λΘ̃. From a set-theoretical point of
view,

(π∗)−1(Supp Θ̃z) = {j ∈ J |h0(X̃, π∗(j ⊗ z ⊗ κ0) ≥ 1}

= {j ∈ J |h0(X, (j ⊗ z ⊗ κ0) ⊕ (z−1 ⊗ j ⊗ κ0)) ≥ 1}

= Supp T ∗
z Θ ∪ Supp T ∗

−zΘ

The divisor (π∗)−1(Θ̃z) is therefore defined and algebraically equivalent to 2Θ. Note fur-
thermore that π∗ being a degree 2 map onto its image, we have, in terms of divisors, the
equality (π∗)−1(Θ̃z) = T ∗

z Θ + T ∗
−zΘ and the latter is linearly equivalent to 2Θ.

3.2 Prym varieties

Denote by P the abelian variety ker(Nm : J̃ → J)0, and choose z in Sτ . Denote by σ the
homomorphism

J × P → J̃ ; (x, q) 7→ π∗(x) + q

One easily sees that σ has finite kernel Kσ ⊆ J [2] × P [2]. Thus, it is a separable isogeny
and P is an abelian variety of dimension 1, i.e., an elliptic curve.

Lemma 3.2 (1) The composite

J × P
σ
−→ J̃

λ
Θ̃z−−→

̂̃
J

σ̂
−→ Ĵ × P̂
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defines a polarization for J × P that splits into a product 2λΘ × ρ, where ρ : P → P̂ is a
polarization for P .
(2) There is a isomorphism

ϕ : τ ⊥/ < τ >
∼
−→ P [2]

where τ ⊥ = {α ∈ J [2]| e2(α, τ) = 1}, symplectic with respect to e2, J and e2, P .

In particular, ρ = 2λP , where λP : P
∼
−→ P̂ is a principal polarization.

Proof : The results in that lemma can be found in [Mu3], Sections 2 and 3. We only sketch
Mumford’s arguments.

(1) The polarization defined in the lemma may be viewed as a 2 × 2 matrix

(
α β
γ ρ

)
,

where α, β, γ and ρ are the expected homomorphisms of abelian varieties. Because of
the diagram (3.3) and the Remark 3.1 in the previous subsection, α = 2λΘ. Because any

polarization is symmetric, β = γ̂ and because J̃
λ
Θ̃z−−→

ˆ̃
J

π̂∗

−→ Ĵ is zero by the very definition
of P (see the diagram (3.2)), β = 0. Therefore, the considered polarization splits into the
product 2λΘ × ρ, where ρ : P → P̂ is a polarization for P .
(2) On the one hand, because Kσ ∩ ({0}×P [2]) = {0}, one can find a subgroup K ⊂ J [2],
containing ker π∗ =< τ >, and an injective homomorphism ϕ : K/ < τ >→ P [2] such that
Kσ identifies with K by means of the map

K
∼
−→ Kσ, α 7→ (α, ϕ(ᾱ))

where ᾱ is the class of α via the quotient map H ։ H/ < τ >. It is clear that

(a) ϕ(K/ < τ >) ⊂ ker ρ ⊂ P [2].

On the other hand, because λΘ̃z
is a principal polarization, Kσ is a maximal isotropic

subgroup of ker(2λΘ×ρ) ∼= J [2]×ker(ρ), with respect to the product bilinear form e2, J ×eρ

(see Theorem 2.2.(2)). Thus,

(b) card(K)2 = card(Kσ)2 = card(J [2])card(ker ρ),

(c) for any α, β in K, e2, X(α, β)eρ(ϕ(ᾱ), ϕ(β̄)) = 1.

Use (c) to obtain the inclusion < τ >⊆ K⊥ and combine (a) and (b) to show that it is an
equality. Thus, because P is an elliptic curve, the inclusions of (a) are equalities and (b)
assures that the corresponding isomorphism is symplectic.
It ends the proof of the lemma since the fact that ker(ρ) = P [2] implies that ρ is twice the
principal polarization of P . �

Choose a symmetric divisor Ξ representing the principal polarization λP . The line
bundle O(2Ξ) is canonical and because the polarization defined above splits, one has

σ∗(O(Θ̃z)) ∼= O(2Θ) ⊠ O(2Ξ)
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Consider the Heisenberg group G(O(2Θ) ⊠ O(2Ξ)) associated to that ample line bundle
over J × P . It is a central extension

1 → Gm → G(O(2Θ) ⊠ O(2Ξ)) → J [2] × P [2] → 1

and it is isomorphic to G(O(2Θ))×G(O(2Ξ))/((t, t−1), t ∈ Gm). Because of the Theorem

2.2.(1), there is a unique level subgroup K̃σ ⊂ G(O(2Θ) ⊠ O(2Ξ)), isomorphic to Kσ =
ker σ, such that

σ∗(O(2Θ) ⊠ O(2Ξ))K̃σ ∼= O(Θ̃z)

Denote by τ̃ the image of τ via the lifting Kσ
∼
−→ K̃σ.

Proposition 3.3 (1) There is an isomorphism (well defined up to a multiplicative scalar)

χ : H0(J, O(2Θ))τ̃ ∼
−→ H0(P, O(2Ξ))∗ (3.4)

(2) The application δτ, z : P → |2Θ| that maps a point q in P to the well-defined divisor

(π∗)−1(T ∗
q Θ̃z) is a morphism that factors as the composite

P
ϕ2Ξ

−−→ PH0(P, O(2Ξ))∗
∼
−→ PH0(J, O(2Θ))τ̃ ⊂ |2Θ|

where the (well-defined) isomorphism is deduced from χ.

Proof : The results of that proposition can be found in [Mu3], Sections 4 and 5, and we
sketch Mumford’s arguments again.
(1) Consider the homomorphism π∗ : J → J̃ . Its kernel is < τ > and its image identifies

with J/ < τ >. We let i1 be the (separable) isogeny J → J/ < τ > and σ : J × P → J̃
factors as

J × P
i1×Id
−−−→ J/ < τ > ×P

i2−→ J̃

One has (Theorem 2.2)

i∗2(O(Θ̃z)) ∼= ((i1 × Id)∗(O(2Θ) ⊠ O(2Ξ)))τ̃ ∼= (i1∗O(2Θ))τ̃
⊠ O(2Ξ)

and, letting Z(τ̃ ) be the centralizer of τ̃ in G(O(2Θ)), one has the isomorphism of Heisen-
berg groups (of weight 1 in the sense that it induces the identity on the centers Gm)

G((i1∗O(2Θ))τ̃) ∼= Z(τ̃ )/ < τ̃ >

Furthermore, the space H0(J, O(2Θ))τ̃ is the unique (up to isomorphism) irreducible rep-
resentation of weight 1 of the Heisenberg group Z(τ̃)/ < τ̃ >.
The symplectic isomorphism ϕ : τ ⊥/ < τ >

∼
−→ P [2] constructed in the Lemma 3.2 allows

us to construct an isomorphism of Heisenberg groups (of weight −1 in the sense hat it
induces λ 7→ λ−1 on the centers)

ϕ̃ : Z(τ̃ )/ < τ̃ >→ G(O(2Ξ))
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Indeed, since e2, X(α, β) = e2, P (ϕ(ᾱ), ϕ(β̄))−1 for any α, β in τ ⊥ (see (c) in the proof
of the Lemma 3.2), one can find an homomorphism ϕ̃ such that the following diagram
commutes

1 → Gm → Z(τ̃)/ < τ̃ > → τ ⊥/ < τ > → 1
≀ ↓ λ−1 ≀ ↓ ϕ̃ ≀ ↓ ϕ

1 → Gm → G(O(2Ξ)) → P [2] → 1

and since ϕ is an isomorphism, ϕ̃ ditto. Let H0(P, O(2Ξ))∗ be the dual vector space of
H0(P, O(2Ξ)). It is the unique irreducible representation of weight −1 of G(O(2Ξ)) and
the latter isomorphism of Heisenberg groups, together with the Theorem 2.1, assures that
we have an isomorphism (unique up to scalar as it can be shown using Schur’s lemma)

χ : H0(J, O(2Θ))τ̃ ∼
−→ H0(P, O(2Ξ))∗

(2) Let s0 be a non zero section of H0(J̃ , O(Θ̃z)). Its pull-back σ∗(s0) is the unique

(up to scalar) K̃σ-invariant element of the space of global sections

H0(J × P, O(2Θ) ⊠ O(2Ξ)) ∼= H0(J, O(2Θ)) ⊗H0(P, O(2Ξ))

Let q be a point of P . The zero locus of σ∗(s0)|J×{q} identifies set-theoretically with the

inverse image (π∗)−1(Supp (T ∗
q Θ̃z)). Suppose that is proper subset of J . Then,

(π∗)−1(T ∗
q Θ̃z)

is a well-defined divisor on J , that is algebraically equivalent to 2Θ (see the Remark 3.1).
Because one has taken q in P , it is in fact linearly equivalent to 2Θ. Indeed, the line bundle
associated to the algebraically trivial divisor (π∗)−1(T ∗

q Θ̃z)−(π∗)−1(Θ̃z) corresponds to the

point π̂∗(λΘ̃(q)) in Ĵ . Because of the diagrams (3.2), P identifies with λ−1

Θ̃
(ker(π̂∗)0), and

we find that
(π∗)−1(T ∗

q Θ̃z) ∼lin (π∗)−1(Θ̃z) ∼lin 2Θ

Thus σ∗(s0) determines a rational map

δτ, z : P 99K |2Θ|

that maps q to the divisor δτ, z(q) = (π∗)−1(T ∗
q Θ̃z) when defined.

Choose a basis {Λ0, Λ1} of H0(J, O(2Θ))τ̃ . The isomorphism χ allows us to construct
a basis {Γ0, Γ1} of H0(P, O(2Ξ)), uniquely defined up to a multiplicative scalar, and
satisfying the conditions

χ(Λi)(Γj) = δij for any i, j = 0 or 1

By construction,
∑

i Λi ⊠ Γi is K̃σ-invariant, hence equal to σ∗(s0) after suitable normal-
ization. Therefore, the restriction σ∗(s0)|J×{q} coincides with the section

∑

i

Γi(q).Λi
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of H0(J, O(2Θ)), that is non zero since the linear system |2Ξ| is base-point free. Thus the
rational map δτ, z is actually a morphism P → |2Θ|. Furthermore, the corresponding linear
map H0(J, O(2Θ))∗ → H0(P, O(2Ξ)) obviously factors as

H0(J, O(2Θ))∗ ։ (H0(J, O(2Θ))τ̃)∗
∼
−→ H0(P, O(2Ξ))

where the surjection is the dual of the inclusion and the isomorphism is deduced from χ,
hence the proposition. �

3.3 Prym varieties and MX

For any q in P , one can construct a semi-stable rank 2 vector bundle with trivial determi-
nant over X, namely

π∗q ⊗ z, where z ∈ Sτ = {z ∈ J | z2 = τ}

Indeed, the corresponding sheaf is locally free because π is flat, it has determinant

Nm(q) ⊗ τ ⊗ z2 ∼= OX

(see the isomorphism (3.1)) and if there were an invertible sub-sheaf L ⊂ π∗q⊗ z with non
negative degree, the projection formula would give a non zero map π∗L→ q⊗π∗(z), which
is contradictory since degπ∗L > deg(q ⊗ π∗(z)) = 0.

Taking the universal line bundle L over X̃ × P and considering

((π × Id)∗L) ⊠ z

as a family of semi-stable rank 2 vector bundles with trivial determinant over X, parame-
terized by P , we obtain, using the universal property of MX , a morphism

dτ, z : P →MX

depending on τ and z.

Lemma 3.4 The following diagram is commutative.

P

MX

|2Θ|

���������:

XXXXXXXXXz
?

dτ, z

δτ, z

D

The intersection δτ, z(P ) ∩ KumX in |2Θ| is the image δτ, z(P [2]) of P [2].
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Proof : For any q in P , the set Supp (δτ, z(q)) is by definition the set

Supp ((π∗)−1(T ∗
q Θ̃z)) = {j ∈ J | h0(X̃, π∗(j ⊗ z ⊗ κ0) ⊗ q) ≥ 1}

Because of the adjunction formula, it coincides with the set

{j ∈ J | h0(X, (π∗q ⊗ z) ⊗ j ⊗ κ0) ≥ 1}

which is precisely the support of the divisor D([π∗q⊗z]). As the divisors linearly equivalent
to 2Θ are determined by their support (see [NR], Proposition 6.4), the diagram commutes.

Suppose δτ, z(q) is in δτ, z(P ) ∩KumX . It means that π∗q ⊗ z is a non-stable bundle. If
L is a degree 0 invertible sub-sheaf of π∗q⊗ z, then the projection formula gives a non zero
morphism of invertible sheaves

π∗L→ q ⊗ π∗z

over X̃ and q⊗ π∗(z⊗L−1) must be the trivial sheaf. Thus, with the notations of Section
3.2, z⊗L−1 must be an element of K = τ⊥ and q must be an element of P [2], corresponding
to the class z ⊗ L−1 of z ⊗ L−1 in τ⊥/ < τ > via the symplectic isomorphism ϕ of the
Lemma 3.2. As ϕ is surjective, we are done. �

3.5. Remark. One can ask what happens if one takes z′ 6= z in Sτ . In particular, we
shall compare δτ, z and δτ,−z in the next section. Let α in J [2] be the difference z′ − z and
consider the maps dτ, z′ and δτ, z′. The map dτ, z′ (resp. δτ, z′) coincides with the composite
of dτ, z (resp. δτ, z) with the automorphism of MX (resp. |2Θ|) induced by the action of α.

More precisely, the unique (up to scalar) isomorphism O(Θ̃z′)
∼
−→ T ∗

π∗(α)O(Θ̃z) provides an

isomorphism Ψ(α) defined as the composite

O(2Θ) ⊠ O(2Ξ)

T ∗
αO(2Θ) ⊠ O(2Ξ) T ∗

α(σ∗O(Θ̃z)) σ∗(T ∗
π∗(α)O(Θ̃z)) σ∗O(Θ̃z′)

O(2Θ) ⊠ O(2Ξ)

∼
−→

∼
−→

∼
−→

?

6
≀ ≀

-

α̃ ⊗ 1

Ψ(α)

where α̃ is any lifting of α in G(O(2Θ)) and where we use the splitting of σ∗(O(Θ̃z) into
O(2Θ) ⊠ O(2Ξ). Now, the automorphism of G(O(2Θ) ⊠ O(2Θ)) defined by

γ 7→ Ψ(α̃) ◦ γ ◦ Ψ(α̃)−1

depends only on the choice of z and z′ and it gives an isomorphism K̃σ
∼
−→ K̃ ′

σ, where

K̃ ′
σ is the unique lifting of Kσ in the theta group scheme G(O(2Θ) ⊠ O(2Θ)) such that

σ∗(G(O(2Θ) ⊠ O(2Θ)))K̃ ′

σ ∼= O(Θ̃z′). Let γJ be the image of γ through the quotient map
G(O(2Θ) ⊠ O(2Ξ)) → J [2] × P [2] → J [2]. We find that

Ψ(α̃) ◦ γ ◦ Ψ(α̃)−1 = e2,X(α, γJ) .γ
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If τ̃ (resp. τ̃ ′) is the image of τ via the isomorphism Kσ
∼
−→ K̃σ (resp. Kσ

∼
−→ K̃ ′

σ), one has

τ̃ ′ = Ψ(α̃) ◦ τ̃ ◦ Ψ(α̃)−1 = e2,X(α, τ) .τ̃

and one finds that if α is not in τ⊥, δτ, z and δτ, z′ don’t map P onto the same projective

line in |2Θ|. If α belongs to τ⊥, then K̃σ = K̃ ′
σ and the automorphism of K̃σ induced by

γ 7→ Ψ(α̃)◦γ ◦Ψ(α̃)−1 only depends on the class of α in τ⊥/ < τ >∼= P [2]. In other words,
the morphisms δτ, z and δτ, z′ differ from the involutional translation on P corresponding to
the class of α in P [2]. In particular, one has δτ,−z = δτ, z.

3.6. Remark. Recall (Corollary 2.14) that we are able to give the homogeneous coordinates
of the points in δτ, z(P )∩KumX in |2Θ| in terms of the coefficients of the Kummer surface
(see the equation (2.4) and the chart (2.5)). As δτ, z coincides with the canonical map ϕ2Ξ,
this set is precisely the set of ramification points of the canonical map ϕ2Ξ. Therefore, we
are able to characterize the elliptic curves arising that way.

4 The generalized Verschiebung V : MX1 99K MX

4.1 Review of Theta groups in characteristic p

The curve X is now supposed to have p-rank 2, i.e., to be an ordinary genus 2 curve.
Because of the Remark 2.10, one knows that a general Kummer surface KumX in P3 is
associated to such a curve.

Let X1 be the p-twist of X. Denote by i the semi-k-linear isomorphism X1 → X and
by F the relative Frobenius X → X1, which is radicial and flat. Notice that there is a
canonical bijection from the set of Weierstrass points of X to the set of Weierstrass points
of X1. Thus, the choice of the effective theta characteristic κ0 for X determines an effective
theta characteristic i∗(κ0) for X1, still denoted by κ0.
Denote by J1 the p-twist of J and let F : J → J1 (resp. i : J1 → J) the relative Frobenius
(resp. the semi-k-linear isomorphism) which is flat. The abelian variety J1 coincides with
the Jacobian of X1 and κ0 enables us, as before, to give a symmetric representative Θ1 for
the principal polarization on J1. It is easily seen that Θ1 = i∗Θ.

Let Ĝ denote the kernel of F : J → J1. It is a local group scheme and as J is an
ordinary abelian variety, Ĝ is the local part of the group scheme J [p ] of p-torsion points of
J . Denote by G the reduced part of J [p ]. The relative Frobenius maps G isomorphically
onto the kernel of the isogeny

J1
∼= J/Ĝ→ J/J [p ] ∼= J

which is separable and of degree pg = p2, and is called the Verschiebung V . It maps a
degree 0 line bundle ζ1 over X1 to the degree 0 line bundle F ∗ζ1 over X. Note that both
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composites

J
F
−→ J1

V
−→ J and J1

V
−→ J

F
−→ J1

are multiplication by p.

The finite group J1[p ] is self-dual and consequently, we have the Göpel system

J1[p ] ∼= G× Ĝ ∼= (Z/pZ)g × (µp)
g

Consider the line bundle O(pΘ1) over J1. Its automorphism group G(O(pΘ1)) which can
be obtained as a central extension

1 → Gm → G(O(pΘ1)) → J1[p ] → 0

and O(pΘ1) is no longer of separable type. Nevertheless, [Sek] proves that the main
results about theta groups (recalled in Theorems 2.2 and 2.3) extend to line bundles of
non-separable type. We gather some useful results given in [LP1] in the

Lemma 4.1 (1) There are the three isomorphisms O(pΘ1) ∼= V ∗O(Θ), O(pΘ) ∼= F ∗O(Θ1)
and O(Θ1) ∼= i∗O(Θ).
(2) The restrictions of G(O(pΘ)) to both G and Ĝ are canonically split. Therefore, the
decomposition J [p ] ∼= G× Ĝ is symplectic (with respect to ep).
(3) There exists a basis {Xg}g∈G of H0(J,O(pΘ)), unique up to a multiplicative scalar,
which satisfies the following relations

a.Xg = Xa+g α.Xg = ep(α, g)Xg ∀a, g ∈ G, α ∈ Ĝ

(4) For any g ∈ G, there is a unique Yg in H0(J1,O(pΘ1)) such that Xp
g = F ∗Yg. The

family {Yg}g∈G is a basis of H0(J1,O(pΘ1)) that corresponds to the basis {Xg}g∈G via
i∗ : H0(J,O(pΘ)) → H0(J1,O(pΘ1)).

Sketch of Proof (Complete proofs can be found in [LP1]) : One needs to define a splitting

G →֒ G(O(pΘ1))

for the central extension above. Because G is reduced, it is enough to find it at the level
of k-point and because k∗ is divisible, this can be worked out. Furthermore, because the
skew-symmetric form

ep : J1[p ] × J1[p ] → Gm

(associated to the commutator in G(O(pΘ1))) takes its value in µp, this splitting is unique
(another one would differ from the first one by a morphism G → µp and µp(k) = {1}).
Therefore, the analog of Theorem 2.3.(1) in the non separable case assures the existence
and the uniqueness of a line bundle M over J such that O(pΘ1) ∼= V ∗M .
One can show that M defines a principal polarization and that the isomorphism

V ∗F ∗O(Θ1) ∼= O(p2 Θ1)
∼
−→ V ∗M⊗p
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obtained in taking p-powers commutes with the action of G, hence descends onto an iso-
morphism

F ∗O(Θ1)
∼
−→M⊗p

Furthermore, if D is the unique effective divisor on J such that L = O(D), on has, set-
theoretically,

V −1(Supp(D)) =
⋃

g∈G

T ∗
g (Supp(Θ1))

Because Θ1 is symmetric, V −1(Supp(D)) is symmetric and finally M is a symmetric rep-
resentative for the principal polarization on J . Thus, the difference between M and O(Θ)
lies in J [p ] ∩ J [2] = {0} and M ∼= O(Θ). The third isomorphism announced by (1) is
tautological (see our definition of Θ1).
(2) is the Lemma 2.3 of [LP1].
(3) can be obtained in a very similar way as in the construction of the basis {X•} in Section
2.2, taking of the fact that the invertible sheaf O(pΘ) is of non separable type.
(4) Each vector Xp

g is invariant under the action of Ĝ hence of the form F ∗Yg with Yg in
H0(J1,O(pΘ1)). Since k is divisible, the family {Yg} is free, hence a basis. �

4.2. Remark. These results remain true, mutatis mutandis, for any ordinary principally
polarized abelian variety (see [LP1]).

4.2 Extending Verschiebung to |2Θ1|

Let E1 be a semi-stable bundle with trivial determinant over X1. Then, F ∗E1 is a rank
2 vector bundle with trivial determinant over X, which may not be semi-stable since the
pull-back by Frobenius destabilizes some vector bundles ([R]). Nevertheless, F induces a
rational map V : MX1

99K MX . If E1 is the non stable bundle j ⊕ j−1, its pull-back
F ∗j ⊕ (F ∗j)−1 is semi-stable but non stable and we find that the following diagram is
commutative

(4.1)

MX1
MX

J1 J-

? ?
-

V

V

b1 b

It is a diagram of J [2]-equivariant morphisms in the following sense : On the one hand, be-
cause p is odd, [p ] induces identity on J [2]. Therefore, F : J [2] → J1[2] and V : J1[2] → J [2]
are isomorphisms, inverse one to each other. Thus, one can define an action of J [2] on
both J1 and MX1

, compatible with the maps involved in the diagram.
In particular, the indeterminacy locus of V does not meet the Kummer surface. Thus, it
is a finite set I and we let U be the Zariski open subset MX1

\ I.

Let O(∆1) be the determinant line bundle over MX1
. It has been shown ([LP2]) that
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Proposition 4.3 There is an isomorphism V ∗
2 (O(∆)) ∼= (O(∆1)

⊗p)|U .

Because I is a finite set, they obtain that the rational map V is given by degree p polyno-
mials.

Using the Proposition 2.6, one obtains a rational map Ṽ : |2Θ1|
∗

99K |2Θ|∗ and the
vertical arrows in (4.1) become the canonical maps ϕ2Θ1

and ϕ2Θ. Thus, the pull-back by
the Verschiebung V ∗ : H0(J, O(2Θ)) → H0(J1, O(2pΘ1)) factors as the composite

H0(J, O(2Θ))
Ṽ ∗

−→ SympH0(J1, O(2Θ1)) → H0(J1, O(2pΘ1)) (4.2)

where the last arrow is the canonical evaluation map.

Recall (Section 2.2) that we have chosen a theta structure H
∼
−→ G(O(2Θ)) and that

W := H0(J, O(2Θ)) is the unique (up to isomorphism) irreducible representation of H (of
weight 1). We let W1 denote the vector space

W1 := H0(J1, O(2Θ1))

It is, analogously, the unique irreducible representation of the Theta group G(O(2Θ1)).

Lemma 4.4 (1) One can endow SympW1 and H0(J1, O(2pΘ1)) with an action (of weight
p) of G(O(2Θ1)).
(2) The evaluation map SympW1 → H0(J1, O(2pΘ1)) is G(O(2Θ1))-equivariant for these
actions.

Proof : (1) The homomorphism

εp : G(O(2 Θ1)) → G(O(2pΘ1))

that maps an isomorphism γ : O(2 Θ1)
∼
−→ T ∗

xO(2 Θ1) to the isomorphism

γ⊗p : O(2pΘ1)
∼
−→ T ∗

xO(2pΘ1)

fits into the commutative diagram

0 → Gm

0 → Gm

0

0

G(O(2Θ1))

G(O(2pΘ1))

J1[2]

J1[2p ]

-

-

-

-

-

-
? ? ?

p-power εp inclusion

It gives the action of G(O(2Θ1)) onto H0(J1, O(2pΘ1)). The other case is straightforward.
(2) The evaluation map W1 ⊗OX1

→ O(2Θ1) is of course G(O(2Θ1))-equivariant and tak-
ing its p-symmetric power, one obtains, at the level of global sections, the canonical map
SympW1 → H0(J1, O(2pΘ1)), which is still G(O(2Θ1))-equivariant for the induced actions
on both spaces. These are the ones of (1), hence the lemma. �
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Lemma 4.5 (1) There is an homomorphism of theta groups H → G(O(2Θ1)) (of weight
p). Therefore, H has an action of weight p2 on SympW1.

(2) The map Ṽ ∗ : W → SympW1 is injective and H-equivariant, up to a multiplicative
scalar.

Proof : (1) On the one hand, the isomorphism of sheaves V ∗O(2Θ) ∼= O(2pΘ1) induces (by
pull-back) a homomorphism V ∗ : H → G(O(2pΘ1) (of weight 1). On the other hand, for
any γ : O(2pΘ1)

∼
−→ T ∗

xO(2pΘ1), there is a unique isomorphism ρ : O(2Θ1)
∼
−→ T ∗

p xO(2Θ1)
such that the following diagram commutes

O(2p2 Θ1)

[p ]∗O(2Θ1)

6≀

T ∗
xO(2p2 Θ1)

[p ]∗T ∗
p xO(2Θ1)

-

-

6≀

γ⊗p

[p ]∗ρ

where the vertical isomorphisms come from the fact that O(2Θ1) is a symmetric line bundle.
We let ηp : G(O(2pΘ1)) → G(O(2 Θ1)) be the homomorphism that maps γ to ρ. It fits
into the commutative diagram of central extensions

0 → Gm

0 → Gm

0

0G(O(2Θ1))

G(O(2pΘ1))

J1[2]

J1[2p ]

-

-

-

-

-

-

? ? ?
p-power ηp [p ]

Now, we consider the composite homomorphism

H
V ∗

−→ G(O(2pΘ1))
ηp

−→ G(O(2Θ1))

It has weight p. Using the latter and the natural action (of weight p) of G(O(2Θ1)) on
SympW1, one obtains an action of weight p2 of H on Symp W1.
(2) Let

G(O(2pΘ1))2

be the maximal subgroup of G(O(2pΘ1)) lying above J1[2], viewed as a sub-group of J1[2p ].
It is obviously the image of the homomorphism εp and since [p ] acts trivially on J1[2], ηp

restricts to an homomorphism

G(O(2pΘ1))2 → G(O(2Θ1))

with kernel µp. The composite homomorphism εp ◦ ηp fits into the commutative diagram
of central extensions

0 → Gm

0 → Gm

0

0G(O(2pΘ1))2

G(O(2pΘ1))2

J1[2]

J1[2]

-

-

-

-

-

-

? ? ?
p2-power εp ◦ ηp Id
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Now, since V ∗(H) ⊆ G(O(2pΘ1))2, the map V ∗ : W → H0(J1, O(2pΘ1)) is H-equivariant
(up to a multiplicative scalar) when one endows H0(J1, O(2pΘ1)) with the action H in-

duced by the composite εp ◦ηp ◦V
∗. As this map is non-zero, it is injective and the map Ṽ ∗

is injective as well. The evaluation map must induce an isomorphism between the image
of Ṽ ∗ and the image of Ṽ ∗, that is H-equivariant (Lemma 4.5) and Ṽ ∗ is H-equivariant
(up to a multiplicative scalar) as well. �

4.6. Remark. The reason why Ṽ ∗ is not H-equivariant is that the action of H on the spaces
W and Symp W1 do not have the same weight, in contradiction with the k-linearity of Ṽ ∗.
This obstruction vanishes when one considers the induced action of the subgroup Ĥ ⊆ H
(resp. H ⊆ H) on both spaces.

4.7. Remark. One notices that taking ρ = i∗γ : O(2Θ1) → T ∗
α1
O(2Θ1) makes the following

diagram commutative

O(2p2 Θ1)

[p ]∗O(2Θ1)

6≀

T ∗
α1
O(2p2Θ1)

[p ]∗T ∗
α1
O(2Θ1)

-

-

6

(V ∗ γ)⊗p

[p ]∗ρ
≀

Namely, one has, using the fact that F ∗
abs is the p-power, that

[p ]∗i∗γ = V ∗(F ∗i∗)γ = V ∗(γ⊗p) = (V ∗ γ)⊗p

Therefore, the homomorphism ηp ◦ V ∗ (of weight p) coincides with the homomorphism
i∗ : H → G(O(2Θ1)) induced by the pull-back by the quasi-isomorphism i∗.

4.8. Remark. Using the map ηp ◦ V ∗, one finds that, for any two elements ᾱ and β̄ in
J [2], e2(F (ᾱ), F (β̄)) = e2(ᾱ, β̄)p. Because J [2] is reduced and because e2 takes its values
in µ2,we find that F (hence V ) is a symplectic isomorphism. This implies that the Göpel
system J [2] ∼= H × Ĥ determines a Göpel system J1[2] ∼= H × Ĥ , that a theta struc-
ture H

∼
−→ G(2Θ) determines a theta structure H1

∼
−→ G(2Θ1) (where H1 := H ⊗Fabs, k k),

and that the basis {Xα}α∈H determines a basis {Yα1
}α1∈H1

, compatible in the sense that
Yα1

= i∗XV (α1).

Proposition 4.9 Let X be a smooth and proper ordinary curve of genus 2 over an al-
gebraically closed field of characteristic p ≥ 3. Then, the generalized Verschiebung V :
MX1

99K MX is completely determined by an irreducible sub-representation of the G(O(2Θ))
in SympH0(J1, O(2Θ1))

∗ (isomorphic to H0(J, O(2Θ))∗ as a vector space).

Proof : As previously, we identify the space W (resp. W1) with its dual W ∗ (resp. W1)
by means of the isomorphism of the Lemma 2.4, and we let {x•} (resp. {y•}) be the basis
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of W ∗ (resp. W ∗
1 ) dual to {X•} (resp. {Y•}) constructed in the Section 2.2 (resp. in the

Remark 4.8). Denote by Vi (i = 00, 01, 10 and 11) the degree p homogeneous polynomials

(see the Proposition 4.3 above, due to [LP2]) such that the rational map Ṽ : |2Θ1| 99K |2Θ|
corresponding to V is given by

Ṽ : |2Θ1| 99K |2Θ|
(yi) 7→ (Vi(y))

(4.3)

Using the Lemma 4.5 and the Remark 4.6, we find that V00 is invariant under the action
of the subgroup Ĥ of H. It coincides therefore, up to a multiplicative scalar, with Ṽ (x00)
and upon normalizing suitably V00, one can suppose that

Ṽ ∗(x00) = V00

By construction again, Ṽ ∗ is H-equivariant thus one obtains Vi (for i = 01, 10, 11) as the
transform of V00 under the action of the unique element of H that maps x00 to xi. �

4.3 Prym varieties and Frobenius

Let τ be a non zero element of J [2] and let π : X̃ → X be the corresponding étale double
cover. The base change induced by the Frobenius morphism on the base field gives an étale
double cover π1 : X̃1 → X1 corresponding to a non zero τ1 of J [2] which is the image of
τ under the isomorphism J [2] → J1[2] defined earlier. The following lemma is well-known
(see [SGA1]) :

Lemma 4.10 If F is the relative Frobenius, the following diagram

X̃ X̃1

X X1

-

-
? ?

F

F

π π1

is cartesian.

Proof : The diagram is certainly commutative, because of Frobenius functoriality, thus
there is a unique h : X̃ → X̃1 ×X1

X that makes the following diagram commutative

X̃XXXXXXXXXXXXz
J
J
J

J
J

JĴ

Q
QQs
X̃1 ×X1

X X̃1

X X1

-

-
? ?

F

pr1

pr2 π1�

h

π

F
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As π and π1 are étale and proper, we find that pr2, hence h, are étale and proper as well,
hence a finite étale covering. Now, F being radicial, h is radicial as well and therefore, an
isomorphism. �

As above, write J̃1 for the Jacobian variety of X̃1. It coincides with the p-twist of J̃
and we can define the relative Frobenius and the Verschiebung. Denote again by Θ̃1 the
Theta divisor obtained as the pull-back of the canonical Theta divisor on J̃1

2 by means of
the Theta characteristic π∗

1(κ0) (where κ0 has to be understood here as the effective Theta
characteristic of X1 we have constructed).

Lemma 4.11 The morphisms π∗ : J → J̃ and Nm : J̃ → J commute with V . In other
words, the two following diagrams are commutative

J̃1 J̃

J1 J

-

-

6 6

V

π∗
1

V

π∗

J̃1 J̃

J1 J

-

-
? ?

V

Nm

V

Nm

Proof : The commutation of the left-hand diagram is a straightforward consequence of the
commutation of the diagram in the Lemma 4.10. For the right-hand one, one takes an
element j ∈ J̃1 and sees, using the Lemma 4.10 again, that F ∗(π∗j) ∼= π∗(F

∗j). Thus,
using (3.1), one can write that

Nm(V (j)) = det(F ∗j) ⊗ τ ∼= F ∗(det(π∗ j)) ⊗ τ
∼= F ∗(det(π∗ j) ⊗ τ1) = V (Nm(j)) �

Proposition 4.12 The following diagram

J × P

J1 × P1

6

J̃1

J̃-

-

6

σ

σ1

VV × V

is commutative.
Furthermore, σ induces an isomorphism J [p ] × P [p ]

∼
−→ J̃ [p ]. In particular, if J is an

ordinary abelian variety, then J̃ is ordinary if and only if P is ordinary.

Proof : Because of the right-hand diagram in the previous lemma, the Prym variety

P1 := ker(Nm)0 ⊆ J̃1

coincides with the p-twist of P := ker(Nm)0 ⊆ J̃ and it is mapped by V onto P . Further-

more, the restriction V|P1
: P1 → P being the pull-back of particular line bundles over X̃1

by the relative Frobenius, it coincides with the Verschiebung V : P1 → P for P . Therefore,
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the commutation of the diagram in the proposition follows from the left-hand commutative
diagram in the lemma and from the fact that V is a homomorphism.
One knows that ker σ ⊆ J [2] × P [2] and, as A[p ] ∩ A[2] = {0} for any abelian variety, we
have the isomorphism announced. Recalling that X was supposed to be ordinary, the last
assertion follows from the induced isomorphism

J [p ]red × P [p ]red
∼
−→ J̃ [p ]red

on the reduced parts of these group schemes. �

The following result enables us to apply the rsults gathered in the Lemma 4.1 to both
J̃ and P for any sufficiently general curve X.

Proposition 4.13 (B. Zhang) Let X be a general, proper and smooth connected curve
over an algebraically closed field of characteristic p and let f : Y → X be an étale cover
with abelian Galois group G. Then Y is ordinary.

Proof : [Zh]

Let us investigate a bit further in the relationship between P and P1. Choose an
element z in Sτ = {z ∈ J | z2 = τ} ⊂ J [4]. In particular, it determines the image of the
map δτ, z : P → |2Θ|, namely, one of the two τ -invariant projective line in |2Θ|.

As [p ] : J → J induces [−1]
p−1

2 on J [4], F and V induce isomorphisms between J [4] and

J1[4], and we let z1 be the isomorphic image of z via F . Thus, F ∗z1 = V (z1) = (−1)
p−1

2 z
and as

F ∗((π1)∗(q1) ⊗ z1) ∼= π∗(F
∗(q1)) ⊗ F ∗z1

for any q1 of P1 (Lemma 4.10), one sees (Lemma 3.4 and Remark 3.5) that the following
diagram commutes

(4.4)
P

P1

6

MX1

MX
-

-

6

dτ, z

dτ1, z1

VV

Let Ξ (resp. Ξ1) be a symmetric representative for the principal polarization of P (resp.
P1). Upon choosing Ξ and Ξ1 suitably, one can ask that O(pΞ1) ∼= V ∗O(Ξ) (Lemma 4.1).
Let ϕ2Ξ (resp. ϕ2Ξ1

) be the canonical map

P → PH0(P, O(2Ξ))∗ (resp. P1 → PH0(P1, O(2Ξ1))
∗)

Because V commutes with [−1], it induces a map Ṽ such that the following diagram
commutes
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PH0(P1, O(2Ξ1)) PH0(P, O(2Ξ))

ϕ2Ξ1

P1 P-

? ?
-

V

Ṽ

ϕ2Ξ

In other words, V ∗ : H0(P, O(2Ξ)) → H0(P1, O(2pΞ1)) factors as the composite

H0(P, O(2Ξ))
Ṽ ∗

−→ SympH0(P1, O(2Ξ1)) → H0(P1, O(2pΞ1)) (4.5)

Let τ̃ (resp τ̃1) be the lifting of τ (resp. τ1) in H (resp. H1) corresponding to our choice
of z in Sτ (resp. to z1 = F (z) in Sτ1). Consider the basis {Λ0, Λ1} of W τ̃ constructed in
the Proposition 2.12 and construct the basis {Γ0, Γ1} of H0(P, O(2Ξ)) by means of the
isomorphism χ, as it is done in the proof of the Proposition 3.3. Upon normalizing χ1

suitably, the two bases

{Λ
(p)
0 , Λ

(p)
1 } (of W τ̃1

1 ) and {Γ
(p)
0 , Γ

(p)
1 } (of H0(P1, O(2Ξ1)))

obtained via i∗ correspond one to the other via χ1.
Now, let Q0, Q1 be the degree p homogeneous polynomials such that

Ṽ ∗(Γi) = Qi(Γ
(p)) (4.6)

These polynomials depend only on the elliptic curve P , hence on τ , and can be explicitly
computed (see Section 5). The diagram 4.4, together with the Proposition 3.3.(2), gives
the following commutative diagram

(4.7)
PH0(P, O(2Ξ))

PH0(P1, O(2Ξ1))

6
Ṽ

⊂ |2Θ|

⊂ |2Θ1|

6

PW τ̃1
1

PW τ̃-∼

-∼

V

Therefore, there corresponds to Ṽ a morphism PW τ̃1
1 → PW τ̃ still denoted by Ṽ and letting

{λ•} (resp. {λ
(p)
• }) be the basis of (W τ̃ )∗ (resp. (W τ̃1

1 )∗), dual to the basis {Λ•} (resp.

{Λ
(p)
• }, obtained thanks to the Lemma 2.4, one has Ṽ (λi) = Qi(λ

(p)) for i = 0, 1.

4.4 Determining the equations of the Verschiebung

Proposition 4.14 Let λ0 be the image of x00 via W ∗
։ (W τ̃ )∗. Via the canonical surjec-

tion
Sym pW ∗

1 → Sym p (W τ̃1
1 )∗

the element V00 of Sym pW ∗
1 (defined at (4.3)) maps to

Ṽ ∗(λ0) = Q0(λ
(p)
• )

(where Q0 is the polynomial defined at (4.6)).
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Proof : Let KV ×V := J1[p ]red×P1[p ]red denote the kernel of V ×V and let f : J1×P1 → J̃
be the diagonal map σ ◦ (V × V ) = V ◦ σ1 in the diagram of the Proposition 4.12. Its
kernel Kf is isomorphic to Kσ1

×KV ×V and we let

ϑ : Kf
∼
−→ K̃f ⊆ G(O(2pΘ1) ⊠ O(2pΞ1))

be the unique level structure such that

f∗(O(2pΘ1) ⊠ O(2pΞ1))
K̃f ∼= O(Θ̃z)

Let s0 (resp. s1) be the unique (up to scalar) non zero section of O(Θ̃z) (resp. O(Θ̃z1
).

Upon normalizing suitably s1, one has

V ∗(s0)
p = [p ]∗(s1)

or, equivalently, s1 = i∗(s0) (see Remark 4.7 for an analogous fact). The morphism δτ, z

(resp. δτ1, z1
) is defined by σ∗(s0) (resp. σ∗(s1)) (see Proposition 3.3).

The pull-back f ∗(s0) has to be the unique non zero section (up to scalar) of

H0(J1, O(2pΘ1)) ⊗H0(P1, O(2pΞ1))

invariant under the action of K̃f and it induces an arrow

H0(J1, O(2pΘ1))
∗ → H0(P1, O(2pΞ1))

Now, insert this map in the following diagram

H0(J, O(2Θ))∗

(
H0(J, O(2Θ))τ̃

)∗

H0(P, O(2Ξ)) SympH0(P1, O(2Ξ1))

Sym p
(
H0(J1, O(2Θ1))

τ̃1
)∗

Sym p (H0(J1, O(2Θ1)))
∗

H0(J1, O(2pΘ1))
∗

H0(P1, O(2pΞ1))

-

-

-

-

??

?

??

? ?

≀ ≀

where

• the top line is the factorization (4.2) of V ∗ : H0(J, O(2Θ))∗ → H0(J1, O(2pΘ1))
∗

• the bottom line is the factorization (4.5) of V ∗ : H0(J, O(2Ξ)) → H0(J1, O(2pΞ1)))

• the isomorphisms are deduced from χ and χ1 (see Proposition 3.3)
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• the surjections are deduced from the canonical restriction maps.

It is enough to show that the left-hand square is commutative. Note that the composite
map in the left-hand column is the one induced by σ∗(s0). Therefore, the big square is
commutative for f ∗(s0) = (V × V )∗(σ∗(s0)). Note as well that the composite map in the
middle column is the one induced by σ∗

1(s1) by taking symmetric p-powers. Because

σ∗
1((s1)

p) = σ∗
1(V

∗(s0)) = (V × V )∗(σ∗(s0)) = f ∗(s0)

the right-hand square commutes as well. The following lemma ends the proof. �

Lemma 4.15 The evaluation map SympH0(P1, O(2Ξ1)) → H0(P1, O(2pΞ1)) is injective.

Proof : On the one hand, as the evaluation map H0(P1, O(2Ξ1)) ⊗OP1
→ O(2Ξ1) corre-

sponds to the canonical map ϕ2Ξ1
, the map

SympH0(P1, O(2Ξ1)) ⊗OP1
→ O(2pΞ1)

corresponds to the composite

P1

ϕ2Ξ1−−→ P
1 ρp

−→ P
p

where ρp is the p-uple embedding. On the other hand, because O(2pΞ1) is very ample for
any p > 2, the map

H0(P1, O(2pΞ1)) ⊗OP1
→ O(2pΞ1)

corresponds to the embedding P1 →֒ PH0(P1, O(2pΞ1))
∗. Now, the evaluation map

SympH0(P1, O(2Ξ1)) → H0(P1, O(2pΞ1))

induces a map
PH0(P1, O(2pΞ1))

∗ → P
p

and the former is injective if and only if the latter is non-degenerate. But all these maps
fit into the commutative diagram

P1

P1

Pp

PH0(P1, O(2pΞ1))
∗

-

-

? ?

and the required injectivity comes from the fact that the image of the p-uple embedding
is non-degenerate. �

This enables us to state the main result of this paper :
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Theorem 4.16 Let X be a smooth, proper, curve of genus 2, sufficiently general, over
an algebraically closed field of characteristic p = 3, 5 or 7. The generalized Verschiebung
V : MX1

99K MX is completely determined by its restriction to the projective lines that are
invariant under the action of a non zero element of J [2].

Corollary 4.17 For p = 3, 5, 7, one can compute the homogeneous degree p polynomials
Vi (i = 00, 01, 10 and 11) such that

Ṽ : |2Θ1| 99K |2Θ|
yi 7→ Vi(y)

4.4.1 Proof of the Theorem 4.16 : A digression in combinatorial algebra.

Using Remark 3.5 and Lemma 4.5, we find that the direct sum Symp (W τ̃1
1 )∗⊕Symp (W−τ̃1

1 )∗

(which depends only on the choice of τ) is endowed with an action of H (of weight p2) and
the canonical map SympW ∗

1 → Symp (W τ̃1
1 )∗ ⊕ Symp (W−τ̃1

1 )∗ is equivariant for the action
of H on both spaces. Taking all order 2 elements of J [2] together, we find a morphism of
H-representations

RP : Sym pW ∗
1 → BG :=

⊕

τ∈ J [2]\{0}

Symp (W τ̃1
1 )∗ ⊕ Symp (W−τ̃1

1 )∗

Because of the Proposition 4.14, one knows the image of the irreducible sub-representation
W ∗ ⊂ Sym pW ∗

1 that determines V (see Proposition 4.9) in BG and one can ask whether
or not these data allow us to determine completely this sub-representation.

A necessary condition is that the above map RP is injective. It cannot be the case for
large p since

dim (Sym pW ∗
1 ) =

(
p+ 3

3

)
∼
p3

6
for large p

and
dimBG = 30(p+ 1)

More precisely, it cannot be injective for any prime p > 7.

As the map RP is H-equivariant, it is injective if and only if its restriction to the

subspace (Symp W ∗
1 )Ĥ is. One has the

Lemma 4.18 The reunion of the two families

A(p) =



Af = y00

[∏

i∈H

yfi

i

]2

, with |f | =
p− 1

2





and

B(p) =



Bf = y01y10y11

[∏

i∈H

yfi

i

]2

, with |f | =
p− 3

2




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(where f is, in both cases, a multi-index (f00, f01, f10, f11) with |f | =
∑
fi) is a basis for

the space (SympW ∗
1 )Ĥ .

In particular, there are scalars af and bf such that

V00 = Ṽ ∗(x00) =
∑

|f |= p−1

2

afAf +
∑

|f |= p−3

2

bfBf (4.8)

Proof : The subspace (SympW ∗
1 )Ĥ is generated by the free family of monomials

∏
i∈H y

ei

i

with e01 + e10 ≡ e01 + e11 ≡ e10 + e11 ≡ 0 (mod. 2) and we can divide it into the two
families of the lemma. �

Let τ = (x, x∗) be an non zero element of J [2] and τ̃ = (µ, x, x∗) with µ = 1 if x∗(x) = 1
and µ = i if x∗(x) = −1. We will use the basis {Λ0(τ), Λ1(τ)} (resp. {Λ̄0(τ), Λ̄1(τ)}) of
W τ̃ (resp. W−τ̃) constructed in the Proposition 2.12. Taking account of the fact that we
are working over the p-twist J1 of J , one can give the images of the y• via the restriction
maps

W ∗
1 → (W τ̃1

1 )∗ (resp. W ∗
1 → (W−τ̃1

1 )∗)

for every τ , in terms of the λ
(p)
• (τ1) (resp. the λ̄

(p)
• (τ1)) and one can then deduce the images

of the Af and the Bf in

Symp (W τ̃1
1 )∗ (resp. Symp (W−τ̃1

1 )∗)

For sake of readability, we shall write λ• (resp. λ̄•) instead of λ
(p)
• (τ1) (resp. λ̄

(p)
• (τ1)).

If x = 00, the Af map to 0 in Symp (W−τ̃1
1 )∗ for y00 maps to 0 in (W−τ̃1

1 )∗, and the Bf

map to 0 in both Symp (W τ̃1
1 )∗ and Symp (W−τ̃1

1 )∗ for at least one of the three y01, y10 and
y11 maps to 0 in the corresponding space (W τ̃1

1 )∗ or (W−τ̃1
1 )∗. In the following chart, we

have gathered the images of the Af in Symp (W τ̃1
1 )∗.

τ Af

0001 λ2f00+1
0 λf10

1 if f01 = f11 = 0, 0 else.

0010 λ2f00+1
0 λf01

1 if f10 = f11 = 0, 0 else.

0011 λ2f00+1
0 λf11

1 if f01 = f10 = 0, 0 else.

(4.9)

If x 6= 00, upon identifying λ• and λ̄•, the Af (resp. the Bf) have the same images in

both Symp (W τ̃1
1 )∗ and Symp (W−τ̃1

1 )∗. Straightforward calculations give the results gath-
ered in the following chart (4.10) on the next page.
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Now, write an element of (SympW ∗
1 )

˜̂
H under the form

∑

|f |= p−1

2

afAf +
∑

|f |= p−3

2

bfBf

and suppose that it is in the kernel of RP .
Because of the computations summed up in (4.9), one has af = 0 as soon as two of the
f01, f10, f11 are zero.

τ Af Bf

0100 λ
1+2(f00+f01)
0 λ

2(f10+f11)
1 λ

1+2(f00+f01)
0 λ

2(f10+f11+1)
1

0101 (−1)f01+f11λ
1+2(f00+f01)
0 λ

2(f10+f11)
1 (−1)1+f01+f11λ

1+2(f00+f01)
0 λ

2(f10+f11+1)
1

0110 λ
1+2(f00+f01)
0 λ

2(f10+f11)
1 −λ

1+2(f00+f01)
0 λ

2(f10+f11+1)
1

0111 (−1)f01+f11λ
1+2(f00+f01)
0 λ

2(f10+f11)
1 (−1)f01+f11λ

1+2(f00+f01)
0 λ

2(f10+f11+1)
1

1000 λ
1+2(f00+f10)
0 λ

2(f01+f11)
1 λ

1+2(f00+f10)
0 λ

2(f01+f11+1)
1

1001 λ
1+2(f00+f10)
0 λ

2(f01+f11)
1 −λ

1+2(f00+f10)
0 λ

2(f01+f11+1)
1

1010 (−1)f10+f11λ
1+2(f00+f10)
0 λ

2(f01+f11)
1 (−1)1+f10+f11λ

1+2(f00+f10)
0 λ

2(f01+f11+1)
1

1011 (−1)f10+f11λ
1+2(f00+f10)
0 λ

2(f01+f11)
1 (−1)f10+f11λ

1+2(f00+f10)
0 λ

2(f01+f11+1)
1

1100 λ
1+2(f00+f11)
0 λ

2(f01+f10)
1 λ

1+2(f00+f11)
0 λ

2(f01+f10+1)
1

1101 (−1)f10+f11λ
1+2(f00+f11)
0 λ

2(f01+f10)
1 (−1)f10+f11λ

1+2(f00+f11)
0 λ

2(f01+f10+1)
1

1110 (−1)f10+f11λ
1+2(f00+f11)
0 λ

2(f01+f10)
1 (−1)1+f10+f11λ

1+2(f00+f11)
0 λ

2(f01+f10+1)
1

1111 λ
1+2(f00+f11)
0 λ

2(f01+f10)
1 −λ

1+2(f00+f11)
0 λ

2(f01+f10+1)
1

(4.10)

Because of the computations summed up in the chart (4.10) above, one finds that, for any

0 ≤ k ≤
p− 1

2
,

∑

f00+f01=k and f01+f11 even

af = 0;
∑

f00+f01=k and f01+f11 odd

af = 0

∑

f00+f10=k and f10+f11 even

af = 0;
∑

f00+f10=k and f10+f11 odd

af = 0

∑

f00+f11=k and f10+f11 even

af = 0;
∑

f00+f11=k and f10+f11 odd

af = 0

and we have analogous results for the bf (with 0 ≤ k ≤
p− 3

2
).
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Thus, we have reduced our problem to the following combinatorial situation : Being
given a set of scalars af , where the f are four-letters multi-index f with |f | = r, satisfying
the 6(r + 1) relations stated above, are these scalars meant to be zero ? If they are for

r =
p− 3

2
but are not for r =

p− 1

2
, does the indetermination only concern the af for

which two of the f01, f10, f11 are zero (the indetermination would therefore vanish because
of the additional data deduced from (4.9)) ?

In fact, the first question has a positive answer for r = 0, 1, 2, 3 (we leave the proof of
this assertion to the reader) and the theorem follows.

5 Computing the equations of V2 for small p

5.1 Multiplication by p on an elliptic curve

Let k be an algebraically closed field of characteristic p ≥ 3 and let (E, q0) be an elliptic
curve.

Let us recall briefly how the group law of E can be recovered from the geometry of
the curve (see, e.g., [Sil] for further references on that question). The sheaf O(q0) gives a
principal polarization thus O(3q0) is very ample and determines an embedding E →֒ P2.
Three points q1, q2 and q3 on the curve lie on the same projective line in P2 if and only
if O(q1 + q2 + q3) ∼= O(3q0). On the other hand, any projective line in P

2 intersects with
E in three points (counted with multiplicities). It is easily seen that E is isomorphic to
its Jacobian variety by means of q 7→ O(q − q0) and the group law on the latter gives the
group law on the former. Namely, one sets q1 + q2 = −q3, where q3 is the unique point in
E such that O(q1 + q2 + q3) ∼= O(3q0).

The projection P2 → P1 from the point q0 induces the canonical map E → P1, which is
a ramified double cover, and the choice of a suitable rational coordinate x on the projective
line allows us to give a birational model

y2 = x(x− 1)(x− µ)

of E, with µ different from 0 and 1.

One can determine explicitly the group law over E in intersecting this plane curve with
lines. Namely, one has the following duplication and addition formulae found in [Sil] (III,
§2). For convenience, we let P be the polynomial x(x − 1)(x − µ) and we let P ′ be its
derivative.

Duplication formula : Let q1 be a k-point on the curve with coordinates (x1, y1) and
let q2, with coordinates (x2, y2), be [2] (q1). The opposite of the latter is the unique point
of E (different from q1) lying on the tangent line to E at the point q1. This tangent line
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has equation y = αx+ β with

α =
P ′(x1)

2y1

=
3x2

1 − 2(µ+ 1)x1 + µ

2y1

and β =
2P (x1) − x1P

′(X1)

2y1

=
x1(µ− x2

1)

2y1

Thus, one has




x2 = α2 + (µ+ 1) − 2x1 =
(P ′(x1))

2 − 4(2x1 − (µ+ 1))P (x1)

4P (x1)

=
1

4

(x2
1 − µ)2

x1(x1 − 1)(x1 − µ)

y2 = −(αx2 + β)

(5.1)

Addition formula : Let q1 and q2 be two k-points on the curve with coordinates (xi, yi)
(i = 1, 2) and let q3, with coordinates (x3, y3), be the sum q1 + q2. Suppose that q1 6= ±q2,
i.e., that x1 6= x2. The unique line passing through q1 and q2 has equation

y = αx+ β with α =
y2 − y1

x2 − x1
and β =

y1x2 − y2x1

x2 − x1

Thus, the third intersection point of that line and the plane curve being −(q1 + q2), q3 has
coordinates





x3 = α2 + (µ+ 1) − (x1 + x2)

=

(
y2 − y1

x2 − x1

)2

+ (µ+ 1) − (x1 + x2)

y3 = −(αx3 + β)

(5.2)

Combining these two formulae, we are theoretically able to give the coordinates (xn, yn)
of the point qn = [n](q1), in terms of x1 and y1, at least for a general point q1. Note that
two opposite points of E collapse in P1, i.e., that the canonical E → P1 is a quotient under
the action of {±} and that the branched points 0, 1, ∞ and µ of that map are precisely
the order 2 points of E. As the action of {±} commutes with multiplication by p, the
latter induces a map P

1 → P
1. It has total degree p2 and separable degree p. Hence, if we

let z be 1/x, so that {x, z} is a basis for H0(E, O(2q0)) ∼= H0(P1, O(1)), one can find two
homogeneous polynomials of degree p (say D and N) such that the map induced by [p ] on
P1 is given by

P
1 → P

1

(x : z) 7→ (N(xp, zp) : D(xp, zp))

If E1 is the p-twist of E, the map P
1 → P

1, induced by the separable part V : E1 → E of
multiplication by p, is therefore given by

(x(p) : z(p)) 7→ (N(x(p), z(p)) : D(x(p), z(p))) (5.3)
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where x(p) and z(p) are the p-twisted coordinates of P1 corresponding to x and z respectively.

Division Polynomials : In the case p ≥ 5, [Sil] gives, as an exercise (Ex. 3.7.), the
following formulae, that are more convenient to implement when trying to determine the
polynomials N and D using a computer. Take an elliptic curve

y′2 = x′3 + Ax′ +B (5.4)

Define ψm in Z[A, B, x′, y′] inductively by :





ψ1 = 1,
ψ2 = 2y′,
ψ3 = 3x′4 + 6Ax′2 + 12Bx′ − A2,
ψ4 = 4y′(x′6 + 5Ax′4 + 20Bx′3 − 5A2x′2 − 4ABx′ − 8B2 − A3),
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 (m ≥ 2)

2y′ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 2).

(5.5)

Define furthermore

φm = x′ψ2
m − ψm+1ψm−1 (5.6)

Then, using the equation (5.4), one checks that, for m odd, the polynomials φm and ψm

(of degree m2 and m2−1 respectively) lie in fact in Z[A, B, x′], and that the map P1 → P1

induced by [p ] is given by

P
1 → P

1

(x′ : z′) 7→
(
z′p

2

φp(x
′/z′) : z′p

2

ψp(x
′/z′)

)

where z′ is the rational coordinate of P1 defined by z′ = 1/x′. We let N ′ (resp. D′)
be the homogeneous degree p polynomial such that N ′(x′p, z′p) = z′p

2

φp(x
′/z′) (resp.

D′(x′p, z′p) = z′p
2

φp(x
′/z′)). As above, the map P1 → P1 induced by V : E1 → E is

therefore given by

P
1 → P

1

(x′(p) : z′(p)) 7→ (N ′(x′(p), z′(p)) : D′(x′(p), z′(p)))

where x′(p) and z′(p) are the p-twisted coordinates of P1 corresponding to x′ and z′ respec-
tively.

One finds a coordinates change transforming the elliptic curve y2 = x(x− 1)(x− µ) in
the (isomorphic) elliptic curve y′2 = x′3 + Ax+B, e.g.,

x′ = x−
µ+ 1

3
z, z′ = z,
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and the scalars A and B are therefore

A =
µ2 − µ+ 1

3
, B =

(µ+ 1)3 − 3(µ3 + 1)

27
.

Finally, one obtains the polynomials N and D defined in (5.3) as follows :




N(x(p), z(p)) = N ′

(
x(p) −

µp + 1

3
z(p), z(p)

)
+
µ+ 1

3
D′

(
x(p) −

µp + 1

3
z(p), z(p)

)

D(x(p), z(p)) = D′

(
x(p) −

µp + 1

3p
z(p), z(p)

) (5.7)

Using the Proposition 2.12, the Corollary 2.13 and the Lemma 3.4, we find that there
is a unique linear automorphism of P1, i.e., an element of PGL(k, 2), which maps (a : b)
to 0, (a : −b) to 1 and and (b : a) to ∞. It maps (b : −a) to (µ : 1) with

µ =

(
b2 + a2

2ab

)2

=
2 − ω(τ)

4

If x and z are the corresponding rational coordinates of P
1, one has

x = −
1

a
λ0 +

1

b
λ1, z =

−2a

a2 + b2
λ0 +

2b

a2 + b2
λ1,

and the elliptic curve P has equation y2 = x(x− 1)(x− µ).

If we let λ
(p)
0 and λ

(p)
1 be the p-twisted coordinates of P1 corresponding to λ0 and λ1,

and if we denote by Q0 and Q1 the homogeneous polynomials of degree p such that the
map P

1 → P
1 induced by V : E1 → E is given by

(λ
(p)
0 : λ

(p)
1 ) 7→ (Q0(λ

(p)
0 , λ

(p)
1 ) : Q1(λ

(p)
0 , λ

(p)
1 ))

then one has, writing λ• instead of λ
(p)
• for sake of readability

Q0(λ0, λ1) =
2ba

a2 + b2
N

(
−

1

ap
λ0 +

1

bp
λ1,

−2ap

(a2 + b2)p
λ0 +

2bp

(a2 + b2)p
λ1

)

−
1

b
D

(
−

1

ap
λ0 +

1

bp
λ1,

−2ap

(a2 + b2)p
λ0 +

2bp

(a2 + b2)p
λ1

) (5.8)

5.1. Remark. Note that we are only interested in Q0, onto which V00 restricts. Further-
more, Q1 can be obtained from Q0 under the action of a suitable element of P [2].

5.2. Remark. The final result Q0 should not depend on a and b but only on the constant

ω(τ) = −
a4 + b4

a2b2
.
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Lemma 5.3 With the notations given above, one has
• p = 3.

Q0(λ0, λ1) = λ3
0 − ωλ0λ

2
1 (5.9)

• p = 5.

Q0 = λ5
0 + ω(ω2 + 2)λ3

0λ
2
1 + (ω2 + 2)λ0λ

4
1 (5.10)

• p = 7.

Q0 = λ7
0 − 2ω(ω4 − 1)λ5

0λ
2
1 + ω2(ω2 − 1)(ω2 − 2)λ3

0λ
4
1 − ω(ω2 − 1)λ0λ

6
1 (5.11)

Proof : In the case p = 3, one computes x3 directly using formulae (5.1) and (5.2). One
finds

x3 =
x9

1 + 2µ(µ+ 1)x6
1 + µ2(µ+ 1)2x3

1

((µ+ 1)x3
1 + µ2)2

Thus, one has

N(x, z) = x(x+ µ(µ+ 1)z)2 and D(x, z) = z((µ + 1)x+ µ2z)2

This result is consistent with the fact that, in characteristic 3, the unique supersingular
elliptic curve has parameter µ equal to −1 (see [H], Chapter IV, Example 4.23.1). A
straightforward application of the formula (5.8) gives the formula (5.9).
In the cases p = 5 and 7, the computations cannot be worked out by hand. We use Maple 9
to compute the division polynomials defined in (5.5) and (5.6), then we apply the formula
(5.7) to find

N(x, z) = x
[
x2 − µ(µ+ 1)(µ2 − µ+ 1)xz + µ4(µ2 − µ+ 1)z2

]2

and
D(x, z) = z

[
(µ2 − µ+ 1)

[
x2 − µ2(µ+ 1)xz

]
+ µ6z2

]2

when p = 5 and

N(x, z) = x
[
x3 + 2µ(µ+ 1)(µ− 2)(µ− 4)(µ2 + 3µ+ 1)x2z

+µ4(µ+ 1)2µ− 2)(µ− 4)(µ2 + 1)xz2 + µ9(µ+ 1)(µ− 2)(µ− 4)z3
]2

and

D(x, z) = z
[
(µ+ 1)(µ− 2)(µ− 4)

[
x3 + µ2(µ+ 1)(µ2 + 1)x2z + µ6(µ2 + 3µ+ 1)xz2

]
+ µ12z3

]2

when p = 7. These results are consistent with the fact that, in characteristic 5 (resp. 7),
the only supersingular elliptic curves have parameter µ equal to j or −j with j3 = 1 (resp.
−1, 2 or 4) (see [H], Chapter IV, Example 4.23.2 (resp. 4.23.3)). Applying the formula
(5.8), we obtain the formulae (5.10) and (5.11). �
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5.2 Equations of V for p = 3

Let V00 be the
˜̂
H-invariant element of the sub-representation determining V . It can be

written under the form (4.8) (see Lemma 4.18) which is, for p = 3,

a00y
3
00 + a01y00y

2
01 + a10y00y

2
10 + a11y00y

2
11 + by01y10y11

We do not need to determine the Prym varieties for every non zero τ in J [2]. Doing it in
the cases τ = 0001, τ = 0010, τ = 0011 and τ = 0100 is enough.
We fix a00 = 1 and we obtain, using the formula (5.9) and the expression (given in the chart
(2.5)) of the needed ω(τ) in terms of the coefficients k• of the Kummer surface KumX , the
following :

V00(y) = y3
00 + 2k01y00y

2
01 + 2k10y00y

2
10 + 2k11y00y

2
11 + 2k00y01y10y11

Then, one can deduce the Vi (i = 01, 10, 11) by permuting suitably the coordinate func-
tions y• in V00 (see Proposition 4.9).

Notice that Vi is the partial (with respect to yi) of a quartic surface

S + 2k00P + k10Q01 + k01Q10 + k11Q11

(with

S = y4
00 + y4

01 + y4
10 + y4

11; P = y00y01y10y11;
Q01 = y2

00y
2
01 + y2

10y
2
11; Q10 = y2

00y
2
10 + y2

01y
2
11; Q11 = y2

00y
2
11 + y2

01y
2
10.)

isomorphic to KumX . Thus, one recovers the second assertion of the :

Theorem 5.4 (Laszlo-Pauly) Let X be a smooth and projective curve of genus 2 over
an algebraically closed filed of characteristic 3.
(1) There is an embedding α : KumX →֒ |2Θ1| such that the equality of divisors in |2Θ1|

Ṽ −1(KumX) = KumX1
+ 2α(KumX)

holds scheme-theoretically.
(2) The cubic equations of Ṽ are given by the 4 partial derivatives of the quartic equation of

the Kummer surface α(KumX) ⊆ |2Θ1|. In other words, Ṽ is the polar map of the surface
α(KumX).

Proof : [LP2], Theorem 6.1.

The inverse image Ṽ −1(KumX) can be computed explicitly in our situation as it is

defined by the ideal generated by the pull-back Ṽ ∗(K) of the equation (2.1) of KumX ,
more precisely by its image via the k-linear homogeneous ring map of degree p

Ṽ ∗ : SymW ∗ → SymW ∗
1
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In other words, a few more computations enable us to recover the first assertion of the
Theorem. Namely, one knows (see the diagram 4.1) that the equation K1 of KumX1

di-

vides Ṽ ∗(K). Let Q be the exact quotient Ṽ ∗(K)/K1. Using Magma, one computes the

square root of Q (e.g., as the greatest common divisor of the partial derivative
∂Q

∂y11

and

Q). This homogeneous polynomial furthermore coincides with KX .

Note by the way that the base locus I of the rational map Ṽ : |2Θ1| 99K |2Θ| is tauto-

logically contained in the zero locus of Ṽ ∗(K). As Ṽ restricts to a morphism on KumX1
,

I is contained in the zero locus of Q = Ṽ ∗(K)/K1 and one checks that it is actually con-
tained in the zero locus of A. In other words, I is a reduced zero dimensional sub-scheme
of α(KumX) which coincides furthermore with its singular locus.

5.5. Remark. Notice that this theorem is true for any curve X (in particular, with no
particular assumptions concerning its p-rank) whereas our calculations only give the result
for a sufficiently general ordinary curve.

5.3 Equations of V for p = 5

Proposition 5.6 Let X be a general proper and smooth curve of genus 2 over an alge-
braically closed field of characteristic 5. There are coordinates {x•} and {y•} for |2Θ| and
|2Θ1| respectively such that the Kummer surface KumX in |2Θ| has an equation of the form

(2.1) and such that, if the polynomials (V•) define Ṽ : |2Θ1| 99K |2Θ|, (yi) 7→ (Vi(y)), then

V00 = y5
00 + a1100y

3
00y

2
01 + a1010y

3
00y

2
10 + a1001y

3
00y

2
11 + a0200y00y

4
01 + a0110y00y

2
01y

2
10

+a0101y00y
2
01y

2
11 + a0020y00y

4
01 + a0011y00y

2
10y

2
11 + a0002y00y

4
11

+b00y
2
00y01y10y11 + b01y

3
01y10y11 + b10y01y

3
10y11 + b11y01y10y

3
11

with
a1100 = k01(k

2
01 + 2), a1010 = k10(k

2
10 + 2), a1001 = k11(k

2
11 + 2),

a0200 = (k2
01 + 2), a0020 = (k2

10 + 2), a0002 = (k2
11 + 2),

a0110 = 3k11(k
2
00 + k2

11) + k01k10(1 − k2
11),

a0101 = 3k10(k
2
00 + k2

10) + k01k11(1 − k2
10),

a0011 = 3k01(k
2
00 + k2

01) + k10k11(1 − k2
01),

b00 = 3k00(k
2
00 + 1) + k00k01k10k11,

b01 = k00(k01 + 3k10k11), b10 = k00(k10 + 3k01k11), b11 = k00(k11 + 3k01k10)

where the k• are the coefficients of the equation (2.1) of KumX. The Vi (i = 01, 10, 11)
can be deduced from V00 by a suitable permutation of the coordinate functions y•, namely
the unique pairwise permutation that exchanges y00 and yi.
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Proof : Define
ατ = ω(τ)(ω(τ)2 + 2)
βτ = ω(τ)2 + 2

so that the formula (5.10) can be written

λ5
0 + ατλ

3
0λ

2
1 + βτλ0λ

4
1

Using the equation (4.8) of the Lemma 4.10, normalized by the condition a2000 = 1, one
can look for V00 under the form given in the proposition.
Using the data (4.9) for τ = 0001, one finds that the two equations

λ5
0 + a1010λ

3
0λ

2
1 + a0020λ0λ

4
1

and
λ5

0 + α0001λ
3
0λ

2
1 + β0001λ0λ

4
1

coincide up to a multiplicative scalar. Therefore, one obtains

a1010 = α0001, a0020 = β0001,

Similarly, using the data (4.9) for τ = 0010 and 0011 respectively, one finds

a1010 = α0001, a0020 = β0001,
a1100 = α0010, a0200 = β0010,
a1001 = α0011, a0002 = β0011.

Now, using the data (4.10) for τ = 0100, one finds that the the two equations

(1+a1100+a0200)λ
5
0+(a1010+a1001+a0110+a0101+b00+b01)λ

3
0λ

2
1+(a0020+a0011+a0002+b10+b11)λ0λ

4
1

and
λ5

0 + α0100λ
3
0λ

2
1 + β0100λ0λ

4
1

coincide up to a multiplicative scalar. Therefore, one obtains

{
a1010 + a1001 + a0110 + a0101 + b00 + b01 = (1 + a1100 + a0200)α0100

a0020 + a0011 + a0002 + b10 + b11 = (1 + a1100 + a0200)β0100

Similarly, using the data (4.10) for τ = 0101, 0110 and 0111 respectively, one finds

{
a1010 − a1001 − a0110 + a0101 − b00 + b01 = (1 − a1100 + a0200)α0101

a0020 − a0011 + a0002 − b10 + b11 = (1 − a1100 + a0200)β0101{
a1010 + a1001 + a0110 + a0101 − b00 − b01 = (1 + a1100 + a0200)α0110

a0020 + a0011 + a0002 − b10 − b11 = (1 + a1100 + a0200)β0110{
a1010 − a1001 − a0110 + a0101 + b00 − b01 = (1 − a1100 + a0200)α0111

a0020 − a0011 + a0002 + b10 − b11 = (1 − a1100 + a0200)β0111
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Combining these results, one can express the a• as well as the b• in terms of the ατ and the
βτ . Finally, we use the data (2.5) to express the α• and the β• in terms of the coefficients of
KumX and Maple 9 gives expressions that, up to a multiple of the equation (2.2) between
the k•, are those stated in the Proposition. �

Using Magma to exploit these formulae, one can show the following corollary :

Corollary 5.7 There is a degree 2p− 2 = 8 hypersurface S is |2Θ1| such that the equality
of divisors in |2Θ1|

Ṽ −1(KumX) = KumX1
+ 2S

holds scheme-theoretically.

Proof : Define the field L as the extension

Fp(k01, k10, k11)[k00]/(k
2
00 − k2

01 − k2
10 − k2

11 + k01k10k11 + 4)

of the prime field Fp, and define R as the L vector space generated by y00, y01, y10 and y11.
The homogeneous polynomials V00, V01, V10 and V11 define a L-linear ring homomorphism
Ṽ ∗ : R → R (defined by Ṽ ∗(yi) = Vi). Letting K (resp. K1) be the equation (2.1) of the
Kummer surface KumX in |2Θ| (resp. KumX1

in |2Θ1|), Magma checks that K1 divides

Ṽ ∗(K). Letting Q be the exact quotient Ṽ ∗(K)/K1, Magma checks that it is a square. �

5.4 Equations of V for p = 7

Proposition 5.8 Let X be a general proper and smooth curve of genus 2 over an alge-
braically closed field of characteristic 7. There are coordinates {x•} and {y•} for |2Θ| and
|2Θ1| respectively such that the Kummer surface KumX in |2Θ| has an equation of the form

(2.1) and such that, if the polynomials (V•) define Ṽ : |2Θ1| 99K |2Θ|, (yi) 7→ (Vi(y)), then

V00 = y7
00 + a2100y

5
00y

2
01 + a2010y

5
00y

2
10 + a2001y

5
00y

2
11 + a1200y

3
00y

4
01 + a1110y

3
00y

2
01y

2
10

+a1101y
3
00y

2
01y

2
11 + a1020y

3
00y

4
10 + a1011y

3
00y

2
10y

2
11 + a1002y

3
00y

4
11

+a0300y00y
6
01 + a0210y00y

4
01y

2
10 + a0201y00y

4
01y

2
11 + a0120y00y

2
01y

4
10 + a0111y00y

2
01y

2
10y

2
11

+a0102y00y
2
01y

4
11 + a0030y00y

6
10 + a0021y00y

4
10y

2
11 + a0012y00y

2
10y

4
11 + a0003y00y

6
11

+b2000y
4
00y01y10y11 + b1100y

2
00y

3
01y10y11 + b1010y

2
00y01y

3
10y11 + b1001y

2
00y01y10y

3
11

+b0200y
5
01y10y11 + b0110y

3
01y

3
10y11 + b0101y

3
01y10y

3
11

+b0020y01y
5
10y11 + b0011y01y

3
10y

3
11 + b0002y01y10y

5
11

with

a2100 = −2k01(k
4
01 − 1), a2010 = −2k10(k

4
10 − 1), a2001 = −2k11(k

4
11 − 1),

a1200 = k2
01(k

2
01 − 1)(k2

01 − 2), a1020 = k2
10(k

2
10 − 1)(k2

10 − 2), a1002 = k2
11(k

2
11 − 1)(k2

11 − 2),
a0300 = −k01(k

2
01 − 1), a0030 = −k10(k

2
10 − 1), a0003 = −k11(k

2
11 − 1),
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a0111 = 3k6
00 + 2(k6

01 + k6
10 + k6

11) + 2(k4
00 + k4

01 + k4
10 + k4

11) + k2
00(k

2
00 + 4)k01k10k11

+(4k2
00 + 1)k2

01k
2
10k

2
11 − 2k2

00(k
4
01 + k4

10 + k4
11 + 4) − 2k01k10k11(k

2
01k

2
10k

2
11 − 1) + 1,

a0210 = 3k2
01k10k

4
11 + 3k3

01k
3
11 − 2k01k

2
10k

3
11 − k01k

5
11 + 4k3

10k
2
11 + 2k10k

4
11 + k3

01k11 + k01k
2
10k11

+k2
01k10 + 4k3

10 − 2k10k
2
11 + 3k01k11 − 2k10,

a0201 = 3k2
01k11k

4
10 + 3k3

01k
3
10 − 2k01k

2
11k

3
10 − k01k

5
10 + 4k3

11k
2
10 + 2k11k

4
10 + k3

01k10 + k01k
2
11k10

+k2
01k11 + 4k3

11 − 2k11k
2
10 + 3k01k10 − 2k11,

a0120 = 3k2
10k01k

4
11 + 3k3

10k
3
11 − 2k10k

2
01k

3
11 − k10k

5
11 + 4k3

01k
2
11 + 2k01k

4
11 + k3

10k11 + k10k
2
01k11

+k2
10k01 + 4k3

01 − 2k01k
2
11 + 3k10k11 − 2k01,

a0102 = 3k2
11k01k

4
10 + 3k3

11k
3
10 − 2k11k

2
01k

3
10 − k11k

5
10 + 4k3

01k
2
10 + 2k01k

4
10 + k3

11k10 + k11k
2
01k10

+k2
11k01 + 4k3

01 − 2k01k
2
10 + 3k11k10 − 2k01,

a0021 = 3k2
10k11k

4
01 + 3k3

10k
3
01 − 2k10k

2
11k

3
01 − k10k

5
01 + 4k3

11k
2
01 + 2k11k

4
01 + k3

10k01 + k10k
2
11k01

+k2
10k11 + 4k3

11 − 2k11k
2
01 + 3k10k01 − 2k11,

a0012 = 3k2
11k10k

4
01 + 3k3

11k
3
01 − 2k11k

2
10k

3
01 − k11k

5
01 + 4k3

10k
2
01 + 2k10k

4
01 + k3

11k01 + k11k
2
10k01

+k2
11k10 + 4k3

10 − 2k10k
2
01 + 3k11k01 − 2k10,

a1110 = k11(2(k4
00 − k2

00k
2
11 − k4

11) + 2k2
00 + k2

11) + k01k10(3k
4
11 − k4

00 + 2k2
00 − k11 + 2)

+k2
01k

2
10k11(4k

2
11 + k2

00 + 2) + 4k3
01k

3
10k

2
11,

a1101 = k10(2(k4
00 − k2

00k
2
10 − k4

10) + 2k2
00 + k2

10) + k01k11(3k
4
10 − k4

00 + 2k2
00 − k10 + 2)

+k2
01k

2
11k10(4k

2
10 + k2

00 + 2) + 4k3
01k

3
11k

2
10,

a1011 = k01(2(k4
00 − k2

00k
2
01 − k4

01) + 2k2
00 + k2

01) + k11k10(3k
4
01 − k4

00 + 2k2
00 − k01 + 2)

+k2
11k

2
10k01(4k

2
01 + k2

00 + 2) + 4k3
11k

3
10k

2
01,

b2000 = k00(2k
4
00 + k4

01 + k4
10 + k4

11 + 2k2
00(k01k10k11 − 2) + 4k2

01k
2
10k

2
11),

b0200 = k00(4k
2
00 + 2k2

01 + 1 + 4k2
10k

2
11),

b0020 = k00(4k
2
00 + 2k2

10 + 1 + 4k2
01k

2
11),

b0002 = k00(4k
2
00 + 2k2

11 + 1 + 4k2
01k

2
10),

b1100 = −k00(k01(k
4
01 + (k2

00 + 3)(k2
01 + 2k2

00 + 4)) − 3(k2
01 + 4)(k2

01 − 2k2
00 − 2)k10k11

−2k01(k
2
01 − 2)k2

10k
2
11,

b1010 = −k00(k10(k
4
10 + (k2

00 + 3)(k2
10 + 2k2

00 + 4)) − 3(k2
10 + 4)(k2

10 − 2k2
00 − 2)k01k11

−2k10(k
2
10 − 2)k2

01k
2
11,

b1001 = −k00(k11(k
4
11 + (k2

00 + 3)(k2
11 + 2k2

00 + 4)) − 3(k2
11 + 4)(k2

11 − 2k2
00 − 2)k01k10

−2k11(k
2
11 − 2)k2

01k
2
10,

b0110 = k00(k11(5k
4
11 + (k2

00 + 2)(3k2
11 + 1)) − 3(k2

11 + 2)(k2
11 + 1)k01k10,

b0101 = k00(k10(5k
4
10 + (k2

00 + 2)(3k2
10 + 1)) − 3(k2

10 + 2)(k2
10 + 1)k01k11,

b0011 = k00(k01(5k
4
01 + (k2

00 + 2)(3k2
01 + 1)) − 3(k2

01 + 2)(k2
01 + 1)k10k11,

where the k• are the coefficients of the equation (2.1) of KumX. The Vi (i = 01, 10, 11)
can be deduced from V00 by a suitable permutation of the coordinate functions y•, namely
the unique pairwise permutation that exchanges y00 and yi. .
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Proof : We make the same kind of calculations as in the case of the proof of the Proposition
5.6, except that we use the formula 5.11 instead of the formula 5.10 and that we must use
more data to determine all the coefficients involved. �

The computer the author used to carry out these computations was not powerful enough
to obtain the same result as in the case p = 5. Actually, one could only check that the
equation of the twisted Kummer surface KumX1

did divide the image of the the equation
on the Kummer surface KumX via the ring homomorphism defined by the above equations.

6 Further questions

Question 1 : Notice (Remark 5.5) that the Theorem 6.1 of [LP2] holds for any proper
and smooth curve of genus 2 over an algebraically closed field of characteristic 3. Therefore,
one can ask if the formulae given in Propositions 5.6 and 5.8 remain valid for any smooth
and proper curve in characteristic 5 and 7.

One way to answer this question is, being given any curve X over k, to consider a
family of genus 2 curve X over Spec k[[t]] with sufficiently general generic fiber and special
fiber isomorphic to X and to study how do the equations specialize (see [LP2] or [Du] for
examples of that method in characteristic 2). For that purpose, we would need a more
refined description of the moduli space MK(k) of Kummer surfaces in P3

k, or equivalently
(see Remark 2.10), of the moduli space of smooth and proper curve over k.

Note that, combining the chart 2.5 giving the expressions of the ω(τ) in terms of the k•
and the classification of supersingular elliptic curve in small characteristic (see [H], Chap-
ter IV, Examples 4.23.1 and followings), one can determine the open subset of MK(k) the
closed points of which correspond to curves with Prym varieties associated to étale double
cover that all are ordinary.

Question 2 : One would like to use the formulae given is Proposition 5.6 and 5.8 to
say if, as in the characteristic 3 case, the generalized Verschiebung base locus is reduced in
characteristics 5 and 7 (see [LnP] for a discussion on that topic). We would like to study
the singular locus of the surface S in Corollary 5.7, with the aim of showing that it is zero
dimensional and comparing it with the base locus of the Verschiebung. We plan to use
the computers of the MEDICIS at the Ecole Polytechnique to carry out these computations.

Question 3 : The most interesting question arisen by this work is how can we recover
the results obtained by computational means in a more geometric way. We plan to return
to this latter question in a future work.
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