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Abstract

In this paper we provide a new proof that the Grosse-Wulkenhaar non-
commutative scalar Φ4

4 theory is renormalizable to all orders in perturbation
theory, and extend it to more general models with covariant derivatives.
Our proof relies solely on a multiscale analysis in x space. We think this
proof is simpler. It also allows direct interpretation in terms of the physical
positions of the particles and should be more adapted to the future study of
these theories (in particular at the non-perturbative or constructive level).

1 Introduction

In this paper we recover the proof of perturbative renormalizability of non-com-
mutative Φ4

4 field theory [1, 2, 3] by a method solely based on x space. In this
way we avoid completely the sometimes tedious use of the matrix basis and of the
associated special functions of [1, 2, 3] and we recover the more physical direct
space representation of fields and particles. Moreover our proof works for the
optimal range ]0, 1] of the parameter Ω which was restricted to a much smaller
interval in a previous proof. We also extend the corresponding BPHZ theorem
to the more general complex Langmann-Szabo-Zarembo ϕ̄ ? ϕ ? ϕ̄ ? ϕ model with
covariant derivatives, hereafter called the LSZ model. This model has a slightly
more complicated propagator, and is exactly solvable in a certain limit [4].

Our method builds upon previous work of Filk and Chepelev-Roiban [5, 6].
These works however remained inconclusive [7], since these authors used the right
interaction but not the right propagator, hence the problem of ultraviolet/infrared
mixing prevented them from obtaining a finite renormalized perturbation series.
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The Grosse Wulkenhaar breakthrough was to realize that the right propagator in
non-commutative field theory is not the ordinary commutative propagator, but
has to be modified to obey Langmann-Szabo duality [8, 2].

Non-commutative field theories (for a general review see [9]) deserve a thorough
and systematic investigation. Indeed they may be relevant for physics beyond the
standard model. They are certainly effective models for certain limits of string
theory [10, 11]. Also they form almost certainly the correct framework for a
microscopic ab initio understanding of the quantum Hall effect which is currently
lacking. We think that x space-methods are probably more powerful for the future
systematic study of the noncommutative Langmann-Szabo covariant field theories.

Fermionic theories such as the two dimensional Gross-Neveu model can be
shown to be renormalizable to all orders in their Langmann-Szabo covariant ver-
sions, using either the matrix basis or the direct space version developed here
[12]. However the x-space version seems the most promising for a complete non
perturbative construction, using Pauli’s principle to controll the apparent (fake)
divergences of perturbation theory. In the case of φ4

4, recall that although the
commutative version is until now fatally flawed due to the famous Landau ghost,
there is some hope that the non-commutative field theory treated at the pertur-
bative level in this paper may also exist at the constructive level [13, 14]. Again
the x-space formalism is probably better than the matrix basis for a rigorous in-
vestigation of this question.

In the first section of this paper we establish the x-space power counting of the
theory using the Mehler kernel form of the propagator in direct space given in [15].
In the second section we prove that the divergent subgraphs can be renormalized by
counterterms of the form of the initial Lagrangian. The LSZ models are treated
in the Appendix. Note that we do not prove here the exact topological power
counting for irrelevant graphs. This should be doable with our methods but is not
necessary for our theorem.

Acknowledgment We thank V. Gayral and R. Wulkenhaar for useful discus-
sions on this work.

2 Power Counting in x-Space

2.1 Model, Notations

Beware that throughout this paper we will use many different notations for posi-
tion variables. To avoid any confusion for the reader we summarize these notations
at the end of the paper.
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The simplest noncommutative ϕ4
4 theory is defined on R

4 equipped with the asso-
ciative and noncommutative Moyal product

(a ? b)(x) =

∫
d4k

(2π)4

∫
d4y a(x+1

2
θ·k) b(x+y) eık·y . (2.1)

The renormalizable action functional introduced in [2] is

S[ϕ] =

∫
d4x
(1

2
∂µϕ?∂µϕ+

Ω2

2
(x̃µϕ)?(x̃µϕ)+

1

2
µ2

0 ϕ?ϕ+
λ

4!
ϕ?ϕ?ϕ?ϕ

)
(x) , (2.2)

where x̃µ = 2(θ−1)µνx
ν and the Euclidean metric is used.

In four dimensional x-space the propagator is [15]

C(x, x′) =
Ω̃2

[2π sinh Ω̃t]2
e−

eΩ coth eΩt
2

(x2+x′2)+
eΩ

sinh eΩt
x·x′−µ2

0t (2.3)

where Ω̃ = 2θ−1Ω and the (cyclically invariant) vertex is [5]

V (x1, x2, x3, x4) = δ(x1 − x2 + x3 − x4)e
ı

P
16i<j64(−1)i+j+1xiθ

−1xj (2.4)

where we notea xθ−1y ≡ 2
θ
(x1y2 − x2y1 + x3y4 − x4y3).

The main result of this paper is a new proof in configuration space of

Theorem 2.1 (BPHZ Theorem for Noncommutative Φ4
4 [2, 3]) The theory

defined by the action (2.2) is renormalizable to all orders of perturbation theory.

Let G be an arbitrary connected graph. The amplitude associated with this
graph is (with selfexplaining notations):

AG =

∫ ∏

v,i=1,...4

dxv,i

∏

l

dtl

∏

v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)e

ı
P

i<j (−1)i+j+1xv,iθ
−1xv,j

]

∏

l

Ω̃2

[2π sinh(Ω̃tl)]2
e
−

eΩ
2

coth(eΩtl)(x
2
v,i(l)

+x2
v′,i′(l)

)+
eΩ

sinh(eΩtl)
xv,i(l).xv′,i′(l)−µ2

0tl
.(2.5)

For each line l of the graph joining positions xv,i(l) and xv′ ,i′(l), we choose
an orientation and we define the “short” variable ul = xv,i(l) − xv′ ,i′(l) and the

“long” variable vl = xv,i(l) + xv′,i′(l). With these notations, defining Ω̃tl = αl, the
propagators in our graph can be written as:

∫ ∏

l

Ω̃dαl

[2π sinh(αl)]2
e−

eΩ
4

coth(
αl
2

)u2
l
−

eΩ
4

tanh(
αl
2

)v2
l
−

µ2
0

eΩ
αl . (2.6)

aOf course two different θ parameters could be used for the two symplectic pairs of variables
of R

4.
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2.2 Orientation and Position Routing

A rule to solve the δ functions at every vertex is a “position routing” exactly
analog to a momentum routing in the ordinary commutative case, except for the
additional difficulty of the cyclic signs which impose to orient the lines. It is well
known that there is no canonical such routing but there is a routing associated
to any choice of a spanning tree in G. Such a tree choice is also useful to orient
the lines of the graph, hence to fix the exact sign definition of the “short” line
variables ul, and to optimize the multiscale power counting bounds below.

Let n be the number of vertices of G, N the number of its external fields, and L
the number of internal lines of G. We have L = 2n−N/2. Let T be a rooted tree
in the graph (when the graph is not a vacuum graph it is convenient to choose for
the root a vertex with external fields but this is not essential). We orient first all
the lines of the tree and all the remaining half-loop lines or “loop fields”, following
the cyclicity of the vertices. This means that starting from an arbitrary orientation
of a first field at the root and inductively climbing into the tree, at each vertex we
follow the cyclic order to alternate entering and exiting lines as in Figure 1.

Figure 1: Orientation of a tree

Every line of the tree by definition of this orientation has one end exiting a
vertex and an other entering another one. This may not be true for the loop lines,
which join two “loop fields”. Among these, some exit one vertex and enter another;
they are called well-oriented. But others may enter or exit at both ends. These
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loop lines are subsequently referred to as “clashing lines”. If there are no clashing
lines, the graph is called orientable. If not, it is called non-orientable.

We will see below that non-orientable graphs are irrelevant in the renormaliza-
tion group sense. In fact they do not occur at all in some particular models such as
the LSZ model treated in the Appendix, or in the most natural noncommutative
Gross-Neveu models [12].

For all the well-oriented lines (hence all tree propagators plus some of the
loop propagators) we define in the natural way ul = xv,i(l) − xv′ ,i′(l) if the line
enters at xv,i(l) and exits from xv′ ,i′(l). Finally we fix an additional (completely
arbitrary) auxiliary orientation for all the clashing loop lines, and fix in the same
way ul = xv − xv′ with respect to this auxiliary orientation.

It is also convenient to define the set of “branches” associated to the rooted
tree T . There are n − 1 such branches b(l), one for each of the n − 1 lines l of
the tree, plus the full tree itself, called the root branch, and noted b0. Each such
branch is made of the subgraph Gb containing all the vertices “above l” in T , plus
the tree lines and loop lines joining these vertices. It has also “external fields”
which are the true external fields hooked to Gb, plus the loop fields in Gb for the
loops with one end (or “field”) inside and one end outside Gb, plus the upper end
of the tree line l itself to which b is associated. In the particular case of the root
branch, Gb0 = G and the external fields for that branch are simply all true external
fields. We call Xb the set of all external fields f of b.

We can now describe the position routing associated to T . There are n δ
functions in (2.5), hence n linear equations for the 4n positions, one for each
vertex. The momentum routing associated to the tree T solves this system by
passing to another equivalent system of n linear equations, one for each branch
of the tree. This equivalent system is obtained by summing the arguments of
the δ functions of the vertices in each branch. Obviously the Jacobian of this
transformation is 1, so we simply get another equivalent set of n δ functions, one
for each branch.

Let us describe more precisely the positions summed in these branch equations,
using the orientation. Fix a particular branch Gb, with its subtree Tb. In the branch
sum we find a sum over all the ul short parameters of the lines l in Tb and no vl

long parameters since l both enters and exits the branch. This is also true for
the set Lb of well-oriented loops lines with both fields in the branch. For the set
Lb,+ of clashing loops lines with both fields entering the branch, the short variable
disappears and the long variable remains; the same is true but with a minus sign
for the set Lb,− of clashing loops lines with both fields exiting the branch. Finally
we find the sum of positions of all external fields for the branch (with the signs
according to entrance or exit). For instance in the particular case of Figure 2, the
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delta function is

δ (ul1 + ul2 + ul3 + uL1 + uL3 − vL2 + X1 − X2 + X3 + X4) . (2.7)

−
+

−
+

+
−

+
−

+
−

+
−

+
−

+
−

X2

X1

X3X4

L1

L2−

L3

l1 l2

l3

Figure 2: A branch

The position routing is summarized by:

Lemma 2.1 (Position Routing) We have, calling IG the remaining integrand
in (2.5):

AG =

∫ [∏

v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)

] ]
IG({xv,i}) (2.8)

=

∫ ∏

b

δ



∑

l∈Tb∪Lb

ul +
∑

l∈Lb,+

vl −
∑

l∈Lb,−

vl +
∑

f∈Xb

ε(f)xf


 IG({xv,i}),

where ε(f) is ±1 depending on whether the field f enters or exits the branch.

Using the above equations one can at least solve all the long tree variables vl in
terms of external variables, short variables and long loop variables, using the n−1
non-root branches. To this end, recall that the unique Xi which is at the upper
end of each tree line should be written in (2.7) as 1/2(vl ± ul). There remains
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then the root branch δ function. If Gb is orientable, this δ function of branch b0

contains only short and external variables, since Lb,+ and Lb,− are empty. If Gb is
non-orientable one can solve for an additional “clashing” long loop variable. We
can summarize these observations in the following lemma:

Lemma 2.2 The position routing solves any long tree variable vl as a function of:

• the short tree variable ul of the line l itself,

• the short tree and loop variables with both ends in Gb(l),

• the long loop variables of the clashing loops with both ends in Gb(l) (if any),

• the short and long variables of the loop lines with one end inside Gb(l) and
the other outside.

• the true external variables x hooked to Gb(l).

The last equation corresponding to the root branch is particular. In the orientable
case it does not contain any long variable, but gives a linear relation among the
short variables and the external positions. In the non-orientable case it gives a
linear relation between the long variables w of all the clashing loops in the graph
some short variables u’s and all the external positions.

From now on, each time we use this lemma to solve the long tree variables
vl in terms of the other variables, we shall call wl rather than vl the remaining
n + 1 − N/2 independent long loop variables. Hence looking at the long variables
names the reader can check whether Lemma 2.2 has been used or not.

2.3 Multiscale Analysis and Crude Power Counting

In this section we follow the standard procedure of multiscale analysis [16]. First
the parametric integral for the propagator is sliced in the usual way :

C(u, v) = C0(u, v) +
∞∑

i=1

Ci(u, v), (2.9)

with

Ci(u, v) =

∫ M−2(i−1)

M−2i

Ω̃dα

[2π sinh α]2
e−

eΩ
4

coth α
2

u2−
eΩ
4

tanh α
2

v2−
µ2
0

eΩ
αl (2.10)

Lemma 2.3 For some constants K (large) and c (small):

Ci(u, v) 6 KM2ie−c[M i‖u‖+M−i‖v‖] (2.11)

(which a posteriori justifies the terminology of “long” and “‘short” variables).
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The proof is elementary. For i > 1, it relies only on second order approximation
of the hyperbolic functions near the origin. This bound is also true for the first
slice i = 0 with K depending on µ0.

Taking absolute values, hence neglecting all oscillations, leads to the following
crude bound:

|AG| 6
∑

µ

∫
duldvl

∏

l

Cil(ul, vl)
∏

v

δv , (2.12)

where µ is the standard assignment of an integer index il to each propagator of
each internal line l of the graph G, which represents its “scale”. We will consider
only amputated graphs. Therefore we have no external propagators, but only
external vertices of the graph; in the renormalization group spirit, the convenient
convention is to assign all external indices of these external fields to a fictitious
−1 “background” scale.

To any assignment µ and scale i are associated the standard connected com-
ponents Gi

k, k = 1, ..., k(i) of the subgraph Gi made of all lines with scales j > i.
These tree components are partially ordered according to their inclusion relations
and the (abstract) tree describing these inclusion relations is called the Gallavotti-
Nicolò tree [17]; its nodes are the Gi

k’s and its root is the complete graph G (see
Figure 3).

More precisely for an arbitrary subgraph g one defines:

ig(µ) = inf
l∈g

il(µ) , eg(µ) = sup
l external line of g

il(µ) . (2.13)

The subgraph g is a Gi
k for a given µ if and only if ig(µ) > i > eg(µ). As is

well known in the commutative field theory case, the key to optimize the bound
over spatial integrations is to choose the real tree T compatible with the abstract
Gallavotti-Nicolò tree, which means that the restriction T i

k of T to any Gi
k must

still span Gi
k. This is always possible (by a simple induction from leaves to root).

In figure 3a, an example of such a compatible tree is given with bold lines. We pick
such a compatible tree T and use it both to orient the graph as in the previous
section and to solve the associated branch system of δ functions according to
Lemma 2.2 We obtain:

|AG,µ| 6 Kn
∏

l

M2il

∫
duldvl

∏

l

e−c[M il‖ul‖+M−il‖vl‖]
∏

b

δb .

6 Kn
∏

l

M2il

∫
duldwl

∏

l

e−c[M il‖ul‖+M−il‖vl(u,w,x)‖]δb0 . (2.14)

The key observation is to remark that any long variable integrated at scale i
costs KM4i whereas any short variable integrated at scale i brings KM−4i, and
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(a) A ϕ4 graph
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(b) Example of scale attribution

G0
1 = G

G1
1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}

G2
1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}

G3
1 = {1, 2, 3, 4, 11}

G4
1 = {1, 2} G4

2 = {3, 4}

G3
2 = {5, 6, 7}

G4
3 = {5, 6, 7}

(c) The “Gallavotti-Nicolò” tree

Figure 3
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the variables “solved” by the δ functions bring or cost nothing. For an orientable
graph the optimal solution is easy: we should solve the n− 1 long variables vl’s of
the tree propagators in terms of the other variables, because this is the maximal
number of long variables that we can solve, and they have highest possible indices
because T has been chosen compatible with the Gallavotti-Nicolò tree structure.
Finally we still have the last δb0 function (equivalent to the overall momentum
conservation in the commutative case). It is optimal to use it to solve one external
variable (if any ) in terms of all the short variables and the external ones. Since
external variables are typically smeared against unit scale test functions, this leaves
power counting invariantb.

The non-orientable case is slightly more subtle. We remarked that in this case
the system of branch equations allows to solve n long variables as a functions of
all the others. Should we always choose these n long variables as the n − 1 long
tree variables plus one long loop variable? This is not always the optimal choice.
Indeed when several disjoint Gi

k subgraphs are non-orientable it is better to solve
more long clashing loop variables, essentially one per disjoint non-orientable Gi

k,
because they spare higher costs than if tree lines were chosen instead. We now
describe the optimal procedure, using words rather than equations to facilitate the
reader’s understanding.

Let C be the set of all the clashing loop lines. Each clashing loop line has a
certain scale i, therefore belongs to one and only one Gi

k and consequently to all
Gj

k′ ⊃ Gi
k. We now define the set S of n long variables to be solved via the δ

functions. First we put in S all the n − 1 long tree variables vl. Then we scan
all the connected components Gi

k starting from the leaves towards the root, and
we add a clashing line to S each time some new non-orientable component Gi

k

appears. We also remove p − 1 tree lines from S each time p > 2 non-orientable
components merge into a single one. In the end we obtain a new set S of exactly
n long variables.

More precisely suppose some Gi
k at scale i is a “non-orientable leaf”, which

means that is contains some clashing lines at scale i but none at scales j > i. We
then choose one (arbitrary) such clashing line and put it in the set S. Once a
clashing line is added to S in this way it is never removed and no other clashing

bIn the case of a vacuum graph, there are no external variables and we must therefore use
the last δb0 function to solve the lowest possible short variable in terms of all others. In this
way, we loose the M−4i factor for this short integration. This is why the power counting of a
vacuum graph at scale i is not given by the usual formula M (4−N)i = M4i below at N = 0, but
is in M8i, hence worse by M4i. This is of course still much better than the commutative case,
because in that case and in the analog conditions, that is without a fixed internal point, vacuum
graphs would be worse than the others by an ... infinite factor, due to translation invariance! In
any case vacuum graphs are absorbed in the normalization of the theory, hence play no role in
the renormalization.
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line is chosen in any of the Gj
k at lower scales j < i to which the chosen line

belongs. (The reader should be aware that this process allows nevertheless several
clashing lines of S to belong to a single Gi

k, provided they were added to different
connected components at upper scales.) When p > 2 non-orientable components
merge at scale i into a single non-orientable Gi

k, we can find p− 1 lines in the part
of the tree T i

k joining them together, (e.g. taking them among the first lines on the
unique paths in T from these p components towards the root) and remove them
from S.

We see that if we have added in all q clashing lines to the set S, we have
eliminated q − 1 tree lines. The final set S thus obtained in the end has exactly n
elements. The non trivial statement is that thanks to inductive use of Lemma 2.2
in each Gi

k, we can solve all the long variables in the set S with the branch system
of δ functions associated to T .

We perform now all remaining integrations. This spares the corresponding
M4i integration cost for each long variable in S. For any line not in S we see
that the net power counting is 1, since the cost of the long variable integration
exactly compensates the gain of the short variable integration. But for any line in
S we earn the M−4i power counting of the corresponding short variable u without
paying the M4i cost of the long variable.

Gathering all the corresponding factors together with the propagators prefac-
tors M2i leads to the following bound:

|AG,µ| 6 Kn
∏

l

M2il
∏

l∈S

M−4il . (2.15)

Remark that if the graph is well-oriented this formula remains true but the set S
consists of only the n − 1 tree lines.

In the usual way of [16] we write

∏

l

M2il =
∏

l

il∏

i=1

M2 =
∏

i,k

∏

l∈Gi
k

M2 =
∏

i,k

M2l(Gi
k
) (2.16)

and
∏

l∈S

il∏

i=1

M−4il =
∏

i,k

∏

l∈Gi
k
∩S

M−4, (2.17)

and we must now only count the number of elements in Gi
k ∩ S.

If Gi
k is orientable, it contains no clashing lines, hence Gi

k ∩ S = T i
k, and the

cardinal of T i
k is n(Gi

k) − 1.
If Gi

k contains one or more clashing lines and p clashing lines l1, ... , lp in Gi
k

have been chosen to belong to S, then p − 1 tree variables in T i
k have also been
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removed from S and Gi
k ∩ S = T i

k ∪ {l1, ... , lp} − {p − 1 tree variables}, hence the
cardinal of Gi

k ∩ S is n(Gi
k).

Using the fact that 2l(Gi
k)−4n(Gi

k) = −N(Gi
k) we can summarize these results

in the following lemma:

Lemma 2.4 The following bound holds for a connected graph (with external ar-
guments integrated against fixed smooth test functions):

|AG,µ| 6 Kn
∏

i,k

M−ω(Gi
k
) (2.18)

for some (large) constant K, with ω(Gi
k) = N(Gi

k) − 4 if Gi
k is orientable and

ω(Gi
k) = N(Gi

k) if Gi
k is non-orientable.

This lemma is optimal if vertices oscillations are not taken into account, and
proves that non-orientable subgraphs are irrelevant. But it is not yet sufficient for
a renormalization theorem to all orders of perturbation.

2.4 Improved Power Counting

Recall that for any non-commutative Feynman graph G we can define the genus
of the graph, called g and the number of faces “broken by external legs”, called B
[2, 3]. We have g > 0 and B > 1. The power counting established with the matrix
basis in [2, 3], rewritten in the language of this paper c is:

ω(G) = N − 4 + 8g + 4(B − 1) , (2.19)

hence we must (and can) renormalize only 2 and 4 point subgraphs with g = 0
and B = 1, which we call planar regular. They are the only non-vacuum graphs
with ω 6 0.

In the previous section we established that

ω(G) > N − 4 , if G orientable , ω(G) > N , if G non orientable . (2.20)

It is easy to check that planar regular subgraphs are orientable, but the converse
is not true. Hence to prove that orientable non-planar subgraphs or orientable
planar subgraphs with B > 2 are irrelevant requires to use a bit of the vertices
oscillations to improve Lemma 2.4 and get:

cBeware that the factor i in [3] is now 2i, and that the ω used here is the convergence rather
than divergence degree. Hence there is both a sign change and a factor 2 of difference between
the ω’s of this paper and the ones of [3].
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Lemma 2.5 For orientable subgraphs with g > 1 we have

ω(G) > N + 4 . (2.21)

For orientable subgraphs with g = 0 and B > 2 we have

ω(G) > N . (2.22)

This lemma although still not giving (2.19) is sufficient for the purpose of this
paper. For instance it implies directly that graphs which contain only irrelevant
subgraphs in the sense of (2.19) have finite amplitudes uniformly bounded by Kn,
using the standard method of [16] to bound the assignment sum over µ in (2.12).

The rest of this subsection is essentially devoted to the proof of this Lemma
2.5.

We return before solving δ functions, hence to the v variables. We will need
only to compute in a precise way the oscillations which are quadratic in the long
variables v’s to prove (2.21) and the linear oscillations in vθ−1x to prove (2.22). For-
tunately an analog problem was solved in momentum space by Filk and Chepelev-
Roiban [5, 6], and we need only a slight adaptation of their work to position space.
In fact in this subsection short variables are quite inessential but it is convenient
to treat on the same footing the long 1/2 v and the external x variables, so we
introduce a new global notation y for all these variables. The vertices rewrite as

∏

v

δ(y1 − y2 + y3 − y4 +
1

2
εiui)e

ı

(P
i<j(−1)i+j+1yiθ

−1yj+yQu+uRu

)
. (2.23)

for some inessential signs εi and some symplectic matrices Q and R.
Since we are not interested in the precise oscillations in the short u variables

we will note in the sequel quite sloppily Eu any linear combination of the u vari-
ables. Let’s consider the first Filk reduction [5], which contracts tree lines of the
graph. It creates progressively generalized vertices with even number of fields. At
a given induction step and for a tree line joining two such generalized vertices with
respectively p and q− p+1 fields (p is even and q is odd), we assume by induction
that the two vertices are

δ(y1 − y2 + y3... − yp + Eu)δ(yp − yp+1 + ... − yq + Eu) (2.24)

eı

(P
16i<j6p(−1)i+j+1yiθ

−1yj+
P

p6i<j6q(−1)i+j+1yiθ
−1yj+yQu+uRu

)
.

Using the second δ function we see that:

yp = yp+1 − yp+2 + .... + yq − Eu . (2.25)
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Substituting this expression in the first δ function we get:

δ(y1 − y2 + ... − yp+1 + .. − yq + Eu)δ(yp − yp+1 + ... − yq + Eu) (2.26)

eı

(P
16i<j6p(−1)i+j+1yiθ

−1yj+
P

p6i<j6q(−1)i+j+1yiθ
−1yj+yQu+uRu

)
.

The quadratic terms which include yp in the exponential are (taking into ac-
count that p is an even number):

p−1∑

i=1

(−1)i+1yiθ
−1yp +

q∑

j=p+1

(−1)j+1ypθ
−1yj . (2.27)

Using the expression (2.25) for yp we see that the second term gives only terms in
yLu. The first term yields:

p−1∑

i=1

q∑

j=p+1

(−1)i+1+j+1yiθ
−1yj =

p−1∑

i=1

q−1∑

k=p

(−1)i+k+1yiθ
−1yk , (2.28)

which reconstitutes the crossed terms, and we have recovered the inductive form
of the larger generalized vertex.

One should be aware that yp has disappeared from the final result, but that all
the subsequent ys>p have changed sign. This complication arises because of the
cyclicity of the vertex. As p was chosen to be even (which implies q odd) we see
that q − 1 is even as it should. Consequently by this procedure we will always
treat only even vertices. We finally rewrite the product of the two vertices as:

δ(y1 − y2 + ... + yp−1 − yp+1 + .. − yq + Eu)δ(yp − yp−1 + ... − yq + Eu)

eı

(P
16i<j6q (−1)i+j+1yiθ

−1yj+yQu+uRu

)
(2.29)

where the exponential is written in terms of the reindexed vertex variables. In this
way we can contract all lines of a spanning tree T and reduce G to a single vertex
with “tadpole loops” called a “rosette graph” [6]. In this rosette to keep track
of cyclicity is essential so rather than the “point-like” vertex of [6] we prefer to
draw the rosette as a cycle (which is the border of the former tree) bearing loops
lines on it (see Figure 4). Remark that the rosette can also be considered as a
big vertex, with r = 2n + 2 fields, on which N are external fields with external
variables x and 2n+2−N are loop fields for the corresponding n+1−N/2 loops.
When the graph is orientable (which is the case to consider in Lemma 2.5, the
fields alternatively enter and exit, and correspond to the fields on the border of
the tree T , which we meet turning around counterclockwise in Figure 1. In the
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Figure 4: A typical rosette

rosette the long variables yl for l in T have disappeared. Let us call z the set of
remaining long loop and external variables. Then the rosette vertex factor is

δ(z1 − z2 + ... − zr + Eu)e
ı

(P
16i<j6r(−1)i+j+1ziθ

−1zj+zQu+uRu

)
. (2.30)

The initial product of δ functions has not disappeared so we can still write it
as a product over branches like in the previous section and use it to solve the yl

variables in terms of the z variables and the short u variables. The net effect of
the Filk first reduction was simply to rewrite the root branch δ function and the
combination of all vertices oscillations (using the other δ functions) as the new big
vertex or rosette factor (2.30).

The second Filk reduction [5] further simplifies the rosette factor by erasing
the loops of the rosette which do not cross any other loops or arch over external
fields. Here again the same operation is possible. Consider indeed such a rosette
loop l (for instance loop 2 in Figure 4). This means that on the rosette cycle there
is an even number of vertices in betwen the two ends of that loop and moreover
that the sum of z’s in betwen these two ends must be zero, since they are loop
variables which both enter and exit between these ends. Putting together all the
terms in the exponential which contain zl we conclude exactly as in [5] that these
long z variables completely disappears from the rosette oscillation factor, which
simplifies as in [6] to

δ(z1 − z2 + ... − zr + Eu)e
ı(zIz+zQu+uRu) , (2.31)

where Iij is the antisymmetric “intersection matrix” of [6] (up to a different sign
convention). Here Iij = +1 if oriented loop line i crosses oriented loop line j
coming from its right, Iij = −1 if i crosses j coming from its left, and Iij = 0 if
i and j do not cross. These formulas are also true for i external line and j loop
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line or the converse, provided one extends the external lines from the rosette circle
radially to infinity to see their crossing with the loops. Finally when i and j are
external lines one should define Iij = (−1)p+q+1 if p and q are the numbering of
the lines on the rosette cycle (starting from an arbitrary origin).

If a node Gi
k of the Gallavotti-Nicolò tree is orientable but non-planar (g > 1),

there must therefore exist two intersecting loop lines in the rosette corresponding
to this Gi

k, with long variables w1 and w2. Moreover since Gi
k is orientable, none

of the long loop variables associated with these two lines belongs to the set S of
long variables eliminated by the δ constraints. Therefore, after integrating the
variables in S the basic mechanism to improve the power counting of a single non
planar subgraph is the following:

∫
dw1dw2e

−cM−2i1w2
1−cM−2i2w2

2−iw1θ−1w2+w1.E1(x,u)+w2E2(x,u)

=

∫
dw′

1dw′
2e

−cM−2i1 (w′
1)2−cM−2i2 (w′

2)
2+iw′

1θ−1w′
2+(u,x)Q(u,x)

= KM4i1

∫
dw′

2e
−(M2i1+M−2i2 )(w′

2)2 = K. (2.32)

In these equations we used for simplicity M−2i instead of the correct but more
complicated factor (Ω̃/4) tanh(α/2) (see 2.6) (of course this does not change the
argument) and we performed a unitary linear change of variables w′

1 = w1+`1(x, u),
w′

2 = w2 + `2(x, u) to compute the oscillating w′
1 integral. The gain in (2.32) is

M−4(i1+i2), which is the difference between K and the normal factor M 4(i1+i2) that
the w1 an w2 integrals would have cost if we had done them with the regular
e−cM−2i1w2

1−cM−2i2w2
2 factor for long variables. Beware that in (2.32) our constant c

depends on θ and that our bounds are singular in the limit θ → 0.
This basic argument must then be generalized to each non-planar leaf in the

Gallavotti-Nicolò tree. This is done exactly in the same way as the inductive
definition of the set A of clashing lines in the non-orientable case. In any orientable
non-planar ‘primitive” Gi

k node (i.e. not containing sub non-planar nodes) we can
choose an arbitrary pair of crossing loop lines which will be integrated as in (2.32)
using this oscillation. The corresponding improvements are independent.

This leads to an improved amplitude bound:

|AG,µ| 6 Kn
∏

i,k

M−ω(Gi
k
) , (2.33)

where now ω(Gi
k) = N(Gi

k) + 4 if Gi
k is orientable and non planar (i.e. g > 1).

This bound proves (2.21).
Finally it remains to consider the case of nodes Gi

k which are planar orientable
but with B > 2. In that case there are no crossing loops in the rosette but there
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must be at least one loop line arching over a non trivial subset of external legs
in the Gi

k rosette (see line 6 in Figure 4). We have then a non trivial integration
over at least one external variable, called x, of at least one long loop variable
called w. This “external” x variable without the oscillation improvement would
be integrated with a test function of scale 1 (if it is a true external line of scale 1)
or better (if it is a higher long loop variable)d. But we get now

∫
dxdwe−M−2iw2−iwθ−1x+w.E1(x′,u)

= KM4i

∫
dxe−M+2ix2

= K ′ , (2.34)

so that a factor M 4i in the former bound becomes O(1) hence is improved by M−4i.
This proves (2.22) hence completes the proof of Lemma 2.5. �

This method could be generalized to get the true power counting (2.19). One
simply needs a better description of the rosette oscillating factors when g or B
increase. We conjecture that it is in fact possible to “disentangle” the rosette by
some kind of “third Filk move”. Indeed the rank of the long variables quadratic
oscillations is exactly the genus [7], and the rank of the linear term coupling these
long variables to the external ones is exactly B − 1. So one can through a unitary
change of variables on the long variables inductively disentangle adjacent crossing
pairs of loops in the rosette. This means that it is possible to diagonalize the
rosette symplectic form through explicit moves of the loops along the rosette.
Once oscillations are factorized in this way, the single improvements shown in this
section generalize to one improvement of M−8i per genus and one improvement
of M−4i per broken face. In this way the exact power counting (2.19) should be
recovered by pure x-space techniques which never require the use of the matrix
basis. This study is more technical and not really necessary for the BPHZ theorem
proved in this paper.

3 Renormalization

In this section we need to consider only divergent subgraphs, namely the planar
two and four point subgraphs with a single external face (g = 0, B = 1, N = 2 or
4). We shall prove that they can be renormalized by appropriate counterterms of
the form of the initial Lagrangian. We compute first the oscillating factors Q and
R of the short variables in (2.31) for these graphs. This is not truly necessary for
what follows, but is a good exercise.

dSince the loop line arches over a non trivial (i.e. neither full nor empty) subset of external
legs of the rosette, the variable x cannot be the full combination of external variables in the
“root” δ function.
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3.1 The Oscillating Rosette Factor

In this subsection we define another more precise representation for the rosette
factor obtained after applying the first Filk moves to a graph of order n. We rewrite
in terms of ul and vl the coordinates of the ends of the tree lines l, l = 1, . . . , n− 1
(those contracted in the first Filk moves), but keep as variables called s1, . . . , s2n+2

the positions of all external fields and all ends of loop lines (those not contracted
in the first Filk moves).

We start from the root and turn around the tree in the trigonometrical sense.
We number separately all the fields as 1, . . . , 2n + 2 and all the tree lines as
1, . . . , n − 1 in the order they are met, but we also define a global ordering ≺
on the set of all the fields and tree lines according to the order in which they are
met (see Figure 5). In this way we know whether field number p is met before
or after tree line number q. For example, in Figure 5, field number 8 ≺ tree line
number 6.

Lemma 3.1 The rosette contribution after a complete first Filk reduction is ex-
actly:

δ(s1 − s2 + · · · − s2n+2 +
∑

l∈T

ul)e
ı

P
06i<j62n+2(−1)i+j+1siθ

−1sj

e−ı
P

l≺l′ ulθ
−1ul′e−ı

P
l ε(l)

ulθ
−1vl
2 eı

P
l,i≺l(−1)isiθ

−1ul+ı
P

l,i�l ulθ
−1(−1)isi , (3.1)

where ε(l) is −1 if the tree line l is oriented towards the root and +1 if it is not.

Proof: We proceed by induction. We contract the tree lines according to their
ordering. In this way, at any step k we contract a generalized vertex with 2k + 2
external fields corresponding to the contraction of the k−1 first lines with a usual
four-vertex with r = 4, and obtain a new generalized vertex with 2k + 4 fields.

We suppose inductively that the generalized vertex has the above form and
prove that it keeps this form after the contraction. We denote the external co-
ordinates of this vertex as s1, . . . , s2k+2 and the coordinates of the four-vertex as
t1, . . . , t4. We contract the propagator (sp, tq) with associated variables v = sp + tq
and u = (−1)p+1sp + (−1)q+1tq. We also note that, since the tree is orientable,
p + q is odd.

Adding the arguments of the two δ functions gives the global δ function. We
have the two equations:

s1 − s2 + · · · − s2k+2 +
∑

us = 0 , t1 − t2 + t3 − t4 = 0 . (3.2)
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Figure 5: Total ordering of the tree lines and fields

19



Using the invariance of the t vertex we can always eliminate the contribution of tq

in the phase factor. We therefore have:

ϕ = [s1 − s2 + · · ·+ (−1)psp−1]θ
−1(−1)psp

+(−1)pspθ
−1[(−1)p+2sp+1 + · · · − s2k+2]

= [s1 − s2 + · · ·+ (−1)psp−1]θ
−1[−u + (−1)q+1tq]

+[−u + (−1)q+1tq]θ
−1[(−1)p+2sp+1 + . . . . − s2k+2]. (3.3)

As (−1)q+1tq =
∑4

i=1,i6=q(−1)iti we see that the sθ−1tq terms in the above expres-
sion reproduce exactly the crossed terms needed to complete the first exponential.
We rewrite the other terms as:

[s1 − s2 + · · · + (−1)psp−1]θ
−1(−u) + (−u)θ−1[(−1)p+2sp+1 + · · · − s2k+2]

= [s1 − s2 + · · · + (−1)psp−1]θ
−1(−u)

+(−u)θ−1[−s1 + s2 · · ·+ (−1)psp −
∑

s

us]

= 2[s1 − s2 + · · · + (−1)psp−1]θ
−1(−u) + (−u)θ−1(−1)psp + uθ−1

∑

s

us

= 2
∑

i≺l

(−1)isiθ
−1u + (−1)p+1uθ−1v

2
+
∑

s

uθ−1us . (3.4)

where we have used (−1)psp = (−1)p(v − u)/2.
Note that further contractions will not involve s1 . . . sp−1. After collecting all

the contractions and using the global delta function we write:

2
∑

l,i≺l

(−1)isiθ
−1ul =

∑

l,i≺l

(−1)isiθ
−1ul +

∑

l,i�l

ulθ
−1(−1)isi +

∑

l,l′

ulθ
−1ul′, (3.5)

and the last term is zero by the antisymmetry of θ−1. �

We note L the set of loop lines, and analyze now further the rosette contribution for
planar graphs. We call now xi, i = 1, . . . , N the N external positions. We choose
as first external field 1 an arbitrary entering external line. We define an ordering
among the set of all lines, writing l′ ≺ l if both ends of l′ are before the first end
of l when turning around the tree as in Figure 5 where l1 ≺ l2. Analogously we
define l ≺ j when j is an external vertex (l1 ≺ x4 in Figure 5). We define l′ ⊂ l
if both ends of l′ lie in between the ends of l on the rosette (l2 ⊂ l4 in Figure
5). We count a loop line as positive if it turns in the trigonometric sense like the
rosette and negative if it turns clockwise. Each loop line l ∈ L has now a sign ε(l)
associated with this convention, and we now explicit its end variables in terms of
ul and wl.

With these conventions we prove the following lemma:
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Lemma 3.2 The vertex contribution for a planar regular graph is exactly:

δ(
∑

i

(−1)i+1xi +
∑

l∈T∪L

ul)e
ı

P
i,j (−1)i+j+1xiθ

−1xj

eı
P

l∈T∪L, l≺j ulθ
−1(−1)jxj+ı

P
l∈T∪L, l�j (−1)jxjθ−1ul

e−ı
P

l,l′∈T∪L, l≺l′ ulθ
−1ul′−ı

P
l∈T

ulθ
−1vl
2

ε(l)−ı
P

l∈L

ulθ
−1wl
2

ε(l)

e−ı
P

l∈L, l′∈L∪T ; l′⊂l ul′θ
−1wlε(l) . (3.6)

Proof We see that the global root δ function has the argument:

∑

i

(−1)i+1xi +
∑

l∈L∪T

ul. (3.7)

Since the graph has one broken face we always have an even number of vertices
on the external face between two external fields. We express all the internal loop
variables as functions of u’s and w’s. Using lemma 3.1, we regroup the terms which
still contain the external points which we relabel x in one quadratic and one linear
form in the external positions. The quadratic term can be written as:

∑

i<j

(−1)i+j+1xiθ
−1xj . (3.8)

The linear term in the external vertices is:

∑

i<j

(−1)i+1siθ
−1(−1)jxj +

∑

i>j

(−1)jxjθ
−1(−1)i+1si

+
∑

l∈T,l�j

(−1)jxjθ
−1ul +

∑

l∈T,l≺j

ulθ
−1(−1)jxj

=
∑

l′∈L,l′�j

ul′θ
−1(−1)jxj +

∑

l′∈L,l′�j

(−1)jxjθ
−1ul′

+
∑

l∈T,l�j

(−1)jxjθ
−1ul +

∑

l∈T,l≺j

ulθ
−1(−1)jxj . (3.9)

Consider a loop line from sp to sq with p < q. Its contribution to the vertex
amplitude decomposes in a ”loop-loop” term and a ”loop-tree” term. The first

21



one is:
∑

i<p

(−1)i+1siθ
−1(−1)psp +

∑

p<i
i6=q

(−1)pspθ
−1(−1)i+1si + spθ

−1sq

+
∑

i<q
i6=p

(−1)i+1siθ
−1(−1)qsq +

∑

q<i

(−1)psqθ
−1(−1)i+1si

=
∑

i<p

(−1)i+1siθ
−1[(−1)psp + (−1)qsq]

+
∑

q<i

[(−1)psp + (−1)qsq]θ
−1(−1)i+1si

+
∑

p<i<q

(−1)i+1siθ−1[(−1)p+1sp + (−1)qsq] + spθ
−1sq . (3.10)

Taking into account that (−1)i+1si + (−1)j+1sj = ul′ if si and sj are the two
ends of the loop line l′, we can rewrite the above expression as:

∑

l′≺l

ul′θ
−1(−ul) +

∑

l′�l

(−ul)θ
−1ul′ +

∑

l′⊂l

ul′θ
−1(−1)p+1wl

+(−1)p+1ulθ
−1wl

2
+
∑

l′,l⊂l′

ulθ
−1(−1)i+1wl′ , (3.11)

where l is fixed in all the above expressions. Summing the contributions of all the
lines (being careful not to count the same term twice) we get the final result:

−
∑

l′≺l

ul′θ
−1ul −

∑

l,l′⊂l

ul′θ
−1wl ε(l) −

∑

l

ulθ
−1wl ε(l)

2
. (3.12)

We still have to add the ”loop-tree” contribution. It reads:
∑

l′∈T,l′≺p

ul′θ
−1(−1)psp +

∑

l′∈T,l′�p

(−1)pspθ
−1ul′

+
∑

l′∈T,l′≺q

ul′θ
−1(−1)qsq +

∑

l′∈T,l′�q

(−1)qsqθ
−1ul′

=
∑

l′∈T ;l′≺p,q

ul′θ
−1[(−1)psp + (−1)qsq] +

∑

l′∈T ;l′�p,q

[(−1)psp + (−1)qsq]θ
−1ul′

+
∑

l′∈T ;p≺l′≺q

ul′θ
−1[(−1)p+1sp + (−1)qsq]

=
∑

l′∈T ;l′≺l

ul′θ
−1(−ul) +

∑

l′∈T ;l′�l

(−ul)θ
−1ul′ +

∑

l′∈T ;l′⊂l

ul′θ
−1(−1)p+1wl . (3.13)

Collecting all the factors proves the lemma. �
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3.2 Renormalization of the Four-point Function

Consider a 4 point subgraph which needs to be renormalized, hence is a node of
the Gallavotti-Nicolò tree. This means that there is (i, k) such that N(Gi

k) = 4.
The four external positions of the amputated graph are labeled x1, x2, x3 and x4.
We also define Q, R and S as three skew-symmetric matrices of respective sizes
4× l(Gi

k), l(Gi
k)× l(Gi

k) and [n(Gi
k)− 1]× l(Gi

k), where we recall that n(G)− 1 is
the number of loops of a 4 point graph with n vertices. The amplitude associated
to the connected component Gi

k is then

A(Gi
k)(x1, x2, x3, x4) =

∫ ∏

`∈T i
k

du`C`(x, u, w)
∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

δ
(
x1 − x2 + x3 − x4 +

∑

l∈Gi
k

ul

)
eı(

P
p<q(−1)p+q+1xpθ−1xq+XQU+URU+USW).(3.14)

The exact form of the factor
∑

p<q(−1)p+q+1xpθ
−1xq follows from Lemma 3.2.

From this Lemma and (3.15) below would also follow exact expressions for Q, R
and S, but we wont need them. The important fact is that there are no quadratic
oscillations in X times W (because B = 1) nor in W times W (because g = 0).
Cl is the propagator of the line l. For loop lines Cl is expressed in terms of ul and
wl by formula (2.6), (with v replaced by our notation w for long variables of loop
lines). But for tree lines ` ∈ T i

k recall that the solution of the system of branch
δ functions for T has reexpressed the corresponding long variables v` in terms of
the short variables u, and the external and long loop variables of the branch graph
G` which lies “over” ` in the rooted tree T . This is the essential content of the
subsection 2.2. More precisely consider a line ` ∈ T i

k with scale i(`) > i; we can
write

v` = X` + W` + U` (3.15)

where
X` =

∑

e∈E(`)

ε`,exe (3.16)

is a linear combination on the set of external variables of the branch graph G` with
the correct alternating signs ε`,e,

W` =
∑

l∈L(`)

ε`,lwl (3.17)

is a linear combination over the set L(`) of long loop variables for the external
lines of G` (and ε`,l are other signs), and

U` =
∑

l′∈S(`)

ε`,l′ul′ (3.18)
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is a linear combination over a set S` of short variables that we do not need to know
explicitly. The tree propagator for line ` then is

C`(u`, X`, U`, W`) =

∫ M−2(i(`)−1)

M−2i(`)

Ω̃dα`e
−

eΩ
4
{coth(

α`
2

)u2
l
+tanh(

α`
2

)[X`+W`+U`]
2}

[2π sinh(α`)]2
. (3.19)

To renormalize, let us call e = max ep, p = 1, ..., 4 the highest external index of
the subgraph Gi

k. We have e < i since Gi
k is a node of the Gallavotti-Nicolò tree.

We evaluate A(Gi
k) on external fieldse ϕ6e(xp) as:

A(Gi
k) =

∫ 4∏

p=1

dxpϕ
6e(xp) A(Gi

k)(x1, x2, x3, x4)

=

∫ 4∏

p=1

dxpϕ
6e(xp) eıExt

∏

`∈T i
k

du`C`(u`, tX`, U`, W`) (3.20)

∏

l∈Gi
k

l 6∈T

duldwlCl(ul, wl) δ
(
∆ + t

∑

l∈Gi
k

ul

)
eıtXQU+ıURU+ıUSW

∣∣∣∣∣
t=1

.

with ∆ = x1 − x2 + x3 − x4 and Ext =
∑4

p<q=1(−1)p+q+1xpθ
−1xq.

This formula is designed so that at t = 0 all dependence on the external
variables x factorizes out of the u, w integral in the desired vertex form for renor-
malization of the ϕ ? ϕ ? ϕ ? ϕ interaction in the action (2.2). We now perform a
Taylor expansion to first order with respect to the t variable and prove that the
remainder term is irrelevant. Let U =

∑
l∈Gi

k
ul, and

R(t) = −
∑

`∈T i
k

Ω̃

4
tanh(

α`

2
)

{
t2X2

` + 2tX`

[
W` + U`

]
}

≡ −t2AX.X − 2tAX.(W + U) . (3.21)

where A` =
eΩ
4

tanh(α`

2
), and X.Y means

∑
`∈T i

k
X`Y`. We have

A(Gi
k) =

∫ 4∏

p=1

dxpϕ
6e(xp) eıExt

∏

`∈T i
k

du` C`(u`, U`, W`)

[ ∏

l∈Gi
k

l 6∈T

duldwlCl(ul, wl)

]
eıURU+ıUSW (3.22)

{
δ(∆) +

∫ 1

0

dt

[
U.∇δ(∆ + tU) + δ(∆ + tU)[ıXQU + R

′(t)]

]
eıtXQU+R(t)

}
.

eFor the external index to be exactly e the external smearing factor should be in fact∏
p ϕ6e(xp) −

∏
p ϕ6e−1(xp) but this subtlety is inessential.
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where C`(u`, U`, W`) is given by (3.19) but taken at X` = 0.
The first term, denoted by τA, is of the desired form (2.4) times a number

independent of the external variables x. It is asymptotically constant in the slice
index i, hence the sum over i at fixed e is logarithmically divergent: this is the
divergence expected for the four-point function. It remains only to check that
(1−τ)A converges as i−e → ∞. But we have three types of terms in (1−τ)A, each
providing a specific improvement over the regular, log-divergent power counting of
A:

• The term U.∇δ(∆ + tU). For this term, integrating by parts over external
variables, the ∇ acts on external fields ϕ6e, hence brings at most M e to the
bound, whether the U term brings at least M−i.

• The term XQU . Here X brings at most M e and U brings at least M−i.

• The term R
′(t). It decomposes into terms in AX.X, AX.U and AX.W .

Here the A` brings at least M−2i(`), X brings at worst M e, U brings at least
M−i and X`W` brings at worst M e+i(`). This last point is the only subtle one:
if ` ∈ T i

k, remark that because T i
k is a sub-tree within each Gallavotti-Nicolò

subnode of Gi
k, in particular all parameters wl′ for l′ ∈ L(`) which appear in

W` must have indices lower or equal to i(`) (otherwise they would have been
chosen instead of ` in T i

k).

In conclusion, since i(`) > i, the Taylor remainder term (1− τ)A improves the
power-counting of the connected component Gi

k by a factor at least M−(i−e). This
additional M−(i−e) factor makes (1−τ)A(Gi

k) convergent and irrelevant as desired.

3.3 Renormalization of the Two-point Function

We consider now the nodes such that N(Gi
k) = 2. We use the same notations than

in the previous subsection. The two external points are labeled x and y. Using

the global δ function, which is now δ
(
x − y + U

)
, we remark that the external

oscillation eıxθ−1y can be absorbed in a redefinition of the term eıtXQU , which we
do from now on. Also we want to use expressions symmetrized over x and y. The
full amplitude is

A(Gi
k) =

∫
dxdyϕ6e(x)ϕ6e(y)δ

(
x − y + U

)
(3.23)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, X`, U`, W`) eıXQU+ıURU+ıUSW .
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First we write the identity

ϕ6e(x)ϕ6e(y) =
1

2

[
[ϕ6e(x)]2 + [ϕ6e(y)]2 − [ϕ6e(y) − ϕ6e(x)]2

]
, (3.24)

we develop it as

ϕ6e(x)ϕ6e(y) =
1

2

{
[ϕ6e(x)]2 + [ϕ6e(y)]2 −

[
(y − x)µ.∇µϕ6e(x) (3.25)

+

∫ 1

0

ds(1 − s)(y − x)µ(y − x)ν∇µ∇νϕ
6e(x + s(y − x))

]2
}

,

and substitute into (3.23). The first term A0 is a symmetric combination with
external fields at the same argument. Consider the case with the two external
legs at x, namely the term in [ϕ6e(x)]2. For this term we integrate over y. This
uses the δ function. We perform then a Taylor expansion in t at order 3 of the
remaining function

f(t) = eıtXQU+R(t) , (3.26)

where we recall that R(t) = −[t2AX.X + 2tAX.(W + U)]. We get

A0 =
1

2

∫
dx[ϕ6e(x)]2 eı(URU+USW )

∏

l∈G
j
k
, l 6∈T

duldwlCl(ul, wl)
∏

`∈T i
k

du`C`(u`, U`, W`)

(
f(0) + f ′(0) +

1

2
f ′′(0) +

1

2

∫ 1

0

dt (1 − t)2f (3)(t)

)
. (3.27)

In order to evaluate that expression, let A0,0, A0,1, A0,2 be the zeroth, first and
second order terms in this Taylor expansion, and A0,R be the remainder term.
First,

A0,0 =

∫
dx [ϕ6e(x)]2 eı(URU+USW )

∏

l∈Gi
k

,l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`) (3.28)

is quadratically divergent and exactly of the expected form for the mass countert-
erm. Then

A0,1 =
1

2

∫
dx[ϕ6e(x)]2 eı(URU+USW )

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`)

(
ıXQU + R

′(0)

)
(3.29)
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vanishes identically. Indeed all the terms are odd integrals over the u, w-variables.
A0,2 is more complicated:

A0,2 =
1

2

∫
dx[ϕ6e(x)]2 eı(URU+USW )

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`)

(
− (XQU)2

−4ıXQUAX.(W + U) − 2AX.X + 4[AX.(W + U)]2

)
. (3.30)

The four terms in (XQU)2, XQUAX.W , AX.X and [AX.W ]2 are logarithmi-
cally divergent and contribute to the renormalization of the harmonic frequency
term Ω̃ in (2.2). The terms in xµxν with µ 6= ν do not survive by parity and the
terms in (xµ)2 have obviously the same coefficient. The other terms in XQUAX.U ,
(AX.U)(AX.W ) and [AX.U ]2 are irrelevant. Similarly the terms in A0,R are all
irrelevant.

For the term in A0(y) in which we have
∫

dx[ϕ6e(y)]2 we have to perform a
similar computation, but beware that it is now x which is integrated with the δ
function so that Q, S, R and R change, but not the conclusion.

Next we have to consider the term in

[
(y−x)µ.∇µϕ6e(x)

]2

in (3.25), for which

we need to develop the f function only to first order. Integrating over y replaces
each y − x by a U factor so that we get a term

A1 =
1

2

∫
dx

[
U

µ.∇µϕ6e(x)

]2

eı(URU+USW )
∏

l∈Gi
k

,l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`)

(
f(0) +

∫ 1

0

dtf ′(t)dt

)
(3.31)

The first term is

A1,0 =
1

2

∫
dx

[
U

µ.∇µϕ6e(x)

]2

eı(URU+USW )
∏

l∈Gi
k

,l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`) (3.32)

The terms with µ 6= ν do not survive by parity. The other ones reconstruct
a counterterm proportional to the Laplacian. The power-counting of this factor
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A1,0 is improved, with respect to A, by a factor M−2(i−e) which makes it only
logarithmically divergent, as should be for a wave-function counterterm.

The remainder term in Ax
1,R has an additional factor at worst M−(i−e) coming

from the
∫ 1

0
dtf ′(t)dt term, hence is irrelevant and convergent.

Finally the remainder terms AR with three or four gradients in (3.25) are also
irrelevant and convergent. Indeed we have terms of various types:

• There are terms in U 3 with ∇3. The ∇ act on the variables x, hence on
external fields, hence bring at most M 3e to the bound, whether the U3 brings
at least M−3i.

• Finally there are terms with 4 gradients which are still smaller.

Therefore for the renormalized amplitude AR the power-counting is improved,
with respect to A0, by a factor M−3(i−e), and becomes convergent.

Putting together the results of the two previous section, we have proved that
the usual effective series which expresses any connected function of the theory
in terms of an infinite set of effective couplings, related one to each other by a
discretized flow [16], have finite coefficients to all orders. Reexpressing these effec-
tive series in terms of the renormalized couplings would reintroduce in the usual
way the Zimmermann’s forests of ”useless” counterterms and build the standard
“old-fashioned” renormalized series. The most explicit way to check finiteness of
these renormalized series in order to complete the “BPHZ theorem” is to use the
standard “classification of forests” which distributes Zimmermann’s forests into
packets such that the sum over assignments in each packet is finite [16]f. This part
is completely standard and identical to the commutative case. Hence the proof of
Theorem 2.1 is completed.

A The LSZ Model

In this section we prove the perturbative renormalizability of a generalized
Langmann-Szabo-Zarembo model [18]. It consists in a bosonic complex scalar field
theory in a fixed magnetic background plus an harmonic oscillator. The quartic
interaction is of the Moyal type. The action functional is given by

S =

∫
1

2
ϕ̄
(
−DµDµ + Ω̃2x2 + µ2

0

)
ϕ + λ ϕ̄ ? ϕ ? ϕ̄ ? ϕ (A.1)

where Dµ = ∂µ − ıBµνx
ν is the covariant derivative. The 1/2 factor is somewhat

unusual in a complex theory but it allows us to recover exactly the results given

fOne could also use the popular inductive scheme of Polchinski, which however does not
extend yet to non-perturbative “constructive” renormalization
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in [15] with Ω̃2 → ω2 = Ω̃2 + B2. By expanding the quadratic part of the action,
we get a Φ4-like kinetic part plus an angular momentum term:

ϕ̄DµDµϕ + Ω̃2x2ϕ̄ϕ = ϕ̄
(
∆ − ω2x2 − 2BL5

)
ϕ (A.2)

with L5 = x1p2 − x2p1 + x3p4 − x4p3 = x∧∇. Here the skew-symmetric matrix B
has been put in its canonical form

B =




0 −1
1 0

(0)

(0)
0 −1
1 0


 . (A.3)

In x space, the interaction term is exactly the same as (2.4). The complex conju-
gation of the fields only selects the orientable graphs.
At Ω̃ = 0, the model is similar to the Gross-Neveu theory. Its renormalization
is therefore harder [12] and is not treated in this paper. If we additionally set
B = θ−1 we recover the integrable LSZ model [18].

A.1 Power Counting

The propagator corresponding to the action (A.1) has been calculated in [15] in
the two-dimensional case. The generalization to higher dimensions e.g. four, is
straightforward:

C(x, y) =

∫ ∞

0

dt
ω2

(2π sinh ωt)2
exp−

ω

2

(
cosh Bt

sinh ωt
(x − y)2 (A.4)

+
cosh ωt − cosh Bt

sinh ωt
(x2 + y2) + ı

sinh Bt

sinh ωt
xθ−1y

)
.

Note that the sliced version of (A.4) obeys the same bound (2.11) as the ϕ4 prop-
agator. Moreover the additional oscillating phases exp ıxθ−1y are of the form
exp ı ulθ

−1vl. Such terms played no role in the power counting of the Φ4 theory.
They were bounded by one. This allows to conclude that Lemmas 2.4 and 2.5 hold
for the generalized LSZ model. Note also that in this case, the theory contains
only orientable graphs due to the use of complex fields.

A.2 Renormalization

As for the noncommutative Φ4 theory, we only need to renormalize the planar
(g = 0) two and four-point functions with only one external face.
Recall that the oscillating factors of the propagators are

exp ı
sinh Bt

2 sinh ωt
ulθ

−1vl. (A.5)
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After resolving the v`, ` ∈ T variables in terms of X`, W` and U`, they can be
included in the vertices oscillations by a redefinition of the Q, S and R matrices
(see (3.14)). For the four-point function, we can then perform the same Taylor
subtraction as in the Φ4 case.
The two-point function case is more subtle. Let us consider the generic amplitude

A(Gi
k) =

∫
dxdyϕ̄6e(x)ϕ6e(y)δ

(
x − y + U

)
(A.6)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, X`, U`, W`) eıXQU+ıURU+ıUSW .

The symmetrization procedure (3.24) over the external fields is not possible any-
more, the theory being complex. Nevertheless we can decompose ϕ̄(x)ϕ(y) in a
symmetric and an anti-symmetric part:

ϕ̄(x)ϕ(y) =
1

2
(ϕ̄(x)ϕ(y) + ϕ̄(y)ϕ(x) + ϕ̄(x)ϕ(y) − ϕ̄(y)ϕ(x))

def
= (S + A) ϕ̄(x)ϕ(y). (A.7)

The symmetric part of A, called As, will lead to the same renormalization proce-
dure as the Φ4 case. Indeed,

Sϕ̄(x)ϕ(y) =
1

2
(ϕ̄(x)ϕ(y) + ϕ̄(y)ϕ(x))

=
1

2
{ϕ̄(x)ϕ(x) + ϕ̄(y)ϕ(y)− (ϕ̄(x) − ϕ̄(y)) (ϕ(x) − ϕ(y))} (A.8)

which is the complex equivalent of (3.24).
In the anti-symmetric part of A, called Aa, the linear terms ϕ̄∇ϕ do not compen-
sate:

Aϕ̄(x)ϕ(y) =
1

2
(ϕ̄(x)ϕ(y) − ϕ̄(y)ϕ(x))

=
1

2

(
ϕ̄(x)(y − x).∇ϕ(x) − (y − x).∇ϕ̄(x)ϕ(x)

+
1

2
ϕ̄(x)((y − x).∇)2ϕ(x) −

1

2
((y − x).∇)2ϕ̄(x)ϕ(x)

+
1

2

∫ 1

0

ds(1 − s)2ϕ̄(x)((y − x).∇)3ϕ(x + s(y − x))

− ((y − x).∇)3ϕ̄(x + s(y − x))ϕ(x)
)
. (A.9)
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We decompose Aa into five parts following the Taylor expansion (A.9):

A1+
a =

∫
dxdy ϕ̄(x)(y − x).∇ϕ(x)δ

(
x − y + U

)
(A.10)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, X`, U`, W`) eıXQU+ıURU+ıUSW

=

∫
dx ϕ̄(x) U.∇ϕ(x)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, X
′
`, U

′
`, W`) eıXQ′U+ıURU+ıUSW

where we performed the integration over y thanks to the delta function. The
changes have been absorbed in a redefinition of X`, U` and Q. From now on X`

(and X) contain only x (if x is hooked to the branch b(l)) and we forget the primes
for Q and U`. We expand the function f defined in (3.26) up to order 2:

A1+
a =

∫
ϕ̄(x) U.∇ϕ(x)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, U`, W`) eıURU+ıUSW

(
f(0) + f ′(0) +

∫ 1

0

dt (1 − t)f
′′

(t)

)
. (A.11)

The zeroth order term vanishes thanks to the parity of the integrals with respect
to the u and w variables. The first order term contains

ϕ̄(x) U
µ∇µϕ(x) (ıXQU + R

′(0)) . (A.12)

The first term leads to (U1∇1 + U2∇2)ϕ(x1U2 − x2U1) with the same kind of
expressions for the two other dimensions. Due to the odd integrals, only the terms
of the form (U1)2x2∇1 − (U2)2x1∇2 survive. We are left with integrals like

∫
(u1

`)
2
∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)
∏

`∈T i
k

du`C`(u`, U`, W`) eıURU+ıUSW . (A.13)

To prove that these terms give the same coefficient (in order to reconstruct a x∧∇
term), note that, apart from the (u1

`)
2, the involved integrals are actually invariant
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under an overall rotation of the u and w variables. Then by performing rotations
of π/2, we prove that the counterterm is of the form of the Lagrangian. The R′(0)
and the remainder term in A1+

a are irrelevant.

Let us now study the other terms in Aa.

A1−
a = −

∫
dx U.∇ϕ̄(x) ϕ(x)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl)

∏

`∈T i
k

du`C`(u`, X`, U`, W`) eıXQU+ıURU+ıUSW . (A.14)

Once more we decouple the external variables form the internal ones by Taylor
expanding the function f . Up to irrelevant terms, this only doubles the x ∧ ∇
term in A1+

a .

A2+
a =

1

2

∫
ϕ̄(x) (U.∇)2ϕ(x)

∏

l∈Gi
k
, l 6∈T

duldwlCl(ul, wl) (A.15)

∏

`∈T i
k

du`C`(u`, U`, W`) eıURU+ıUSW

(
f(0) +

∫ 1

0

dt f
′

(t)

)
.

The f(0) term renormalizes the wave-function. The remainder term in (A.15) is
irrelevant. A2−

a doubles the A2+
a contribution. Finally the last remainder terms

(the last two lines in (A.9)) are irrelevant too. This completes the proof of the
perturbative renormalizability of the LSZ models.

Remark that if we had considered a real theory with a covariant derivative which
corresponds to a neutral scalar field in a magnetic background, the angular mo-
mentum term wouldn’t renormalize. Only the harmonic potential term would. It
seems that the renormalization “distinguishes” the true theory in which a charged
field should couple to a magnetic field. It would be interesting to study the renor-
malization group flow of these kind of models along the lines of [13].

B Notations of positions

• The letter x is used for the four initial positions of a vertex

• the letter X is used solely for external positions of the considered graph or
subgraphs

• the letters v and u are used for the sum and difference of two positions joined
by an internal line
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• the letter w is used solely as an other name for a v variable which corresponds
to a loop line (not a tree line) once a tree has been chosen

• the letter y is used for the collective of long and external variables.

• z is to y what w is to v namely a name for the external variables or long
loop variables

• s and t are names for external variables and ends of loop lines variables in
rosette vertices.

Hence the same complete set of 4n variables for a graph with n vertices depending
on context can be noted x ; X, u and v ; y and u ; X, u, w and the v of the tree
lines ; z, u and the v of the tree lines. The s and t are only used in subsection 3.1.
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