
HAL Id: hal-00016227
https://hal.science/hal-00016227v1

Preprint submitted on 21 Dec 2005 (v1), last revised 9 Jan 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Squeezing and entangling nuclear spins in helium 3
Gael Reinaudi, Alice Sinatra, Aurelien Dantan, Michel Pinard

To cite this version:
Gael Reinaudi, Alice Sinatra, Aurelien Dantan, Michel Pinard. Squeezing and entangling nuclear spins
in helium 3. 2005. �hal-00016227v1�

https://hal.science/hal-00016227v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

16
22

7,
 v

er
si

on
 1

 -
 2

1 
D

ec
 2

00
5

Squeezing and entangling nuclear spins in helium 3
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Abstract

We present a realistic model for transferring the squeezing or the entanglement of optical field

modes to the collective ground state nuclear spin of 3He using metastability exchange collisions.

We discuss in detail the requirements for obtaining good quantum state transfer efficiency and

study the possibility to readout the nuclear spin state optically.

PACS numbers: 03.67.-a, 03.67.Hk, 42.50.Dv, 67.65.+z
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I. INTRODUCTION

Helium 3 atoms in their ground state possess a purely nuclear spin I = 1/2. Such

spins are well-isolated from the environment and show extremely long coherence times.

Longitudinal coherence times T1 of several days are measured in room temperature samples

[1]. The transverse coherence time T2, which would be as long as T1 in zero magnetic

field, is usually limited by magnetic field inhomogeneity if no special precaution is taken.

Transverse coherence times of several hours are observed in a very low field [2]. These

very long coherence times originate from the weakness of magnetic coupling on the one

hand, and from the absence of electrical coupling on the other hand, as there is no electric

quadrupole coupling within the ground state for spins 1/2. It is tempting to exploit such

long-lived coherence for quantum information purposes. In a previous letter [3] we studied

the possibility to transfer the squeezing of a cavity mode to 3He nuclear spins. We showed

that the squeezing could be stocked and retrieved from the atoms at a later time realizing

thus a quantum memory [4, 5, 6, 7, 8, 9]. For the sake of simplicity we presented in our

letter a simplified model involving only two metastable levels and gave numerical results for

the more complicated case of 3He. In this paper we concentrate on 3He and treat in detail

this more realistic case.

In section II we derive metastability exchange collisions equations for populations and

coherences of the metastable and ground states. In section III we describe the model for

squeezing transfer from a squeezed vacuum mode of the electromagnetic field to the atoms.

Numerical results are shown and discussed in section IV. In section V we obtain analytical

results in the adiabatic elimination limit for the optical coherences and the cavity field.

Section VI is devoted to the readout scheme of the quantum memory. In section VII, as

a straightforward application of our scheme, we consider the possibility of creating long-

lived quantum correlations between two macroscopic spins, in the move of the successful

experiment in Copenhagen [10], in which two macroscopic spins were entangled for 0.5ms,

but on a completely different timescale. Finally, in section VIII, we use a toy model to explore

the consequences of an imperfect polarization of the atoms on our squeezing transfer scheme.
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II. METASTABILITY EXCHANGE COLLISIONS IN HELIUM 3

Over forty years ago, Colegrove, Schearer and Walters [11] demonstrated a technique

to polarize helium 3He relying on (i) an optical interaction on an infrared transition from

the metastable 23S triplet state to the 23P triplet state, and (ii) metastability exchange

collisions between atoms in the ground state and in the metastable state. During such

a collision, two atoms exchange their electronic degrees of freedom so that the metastable

atom, oriented by optical pumping and with a nuclear polarization due to hyperfine coupling

in the metastable state, becomes a polarized ground state atom [12]. This technique called

metastability exchange optical pumping is currently used to prepare polarized samples for

nuclear physics experiments as well as in nuclear magnetic resonance imaging applications

[13].

In what follows we suggest that metastability exchange collisions can also be used to

transfer quantum correlations to the ground state nuclear spin of 3He.

A. Equations for the one-body density matrix elements

Partridge and Series [12] describe a metastability exchange (ME) collision in terms of the

one-body density matrices representing the internal states of two colliding atoms that we

name ρat
g and ρat

m for the ground and metastable state, respectively. The density matrices

after the collision, ρat
g

′
and ρat

m
′
, are given by











ρat
g

′
= Tre ρat

m

ρat
m

′
= ρat

g ⊗ Trn ρat
m

(1)

where Tre and Trn are trace operators over the electronic and nuclear variables. ME collisions

between these two atoms will occur at a rate γexc depending on the metastability exchange

cross section, the relative velocity of the atoms and the volume explored by the atoms.

Let us consider n metastable atoms with density matrix ρat
m and N ground state atoms

with density matrix ρat
g . The total number of atoms is N + n and we neglect coherences

between the ground and metastable states. The matrices ρat
g and ρat

m evolve according to











d
dt

ρat
g = −γfρ

at
g + γf Tre ρat

m

d
dt

ρat
m = −γmρat

m + γm ρat
g ⊗ Trn ρat

m

(2)
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where γf and γm are the metastability exchange collision rates in the ground and metastable

states, which satisfy
γf

γm
=

n

N
(3)

The calculation of dρm/dt is performed by expressing ρ in the decoupled spin basis of the

nuclear spin I = 1
2

and the total electronic spin J = S = 1 in the metastable state, followed

by a projection onto the hyperfine states (eigenstates of the total momentum operator F

and Fz) labelled from 1 to 6 as in figure 1. The explicit evolution equations for the density

matrix elements are given in the Appendix. The fully polarized state in which all the atoms

are in the sublevel with highest angular momentum projection along z is stationary for

equations (2).

21 3 4

5 6

9 0

2 3S1

1 1S0

2
1mF −=

2
1mF=

2
3mF −=

2
3mF=

FIG. 1: Sublevels 1 to 6 are metastable; 9 and 0 are the ground state sublevels. The fully polarized

stationary state is shown.

Starting from the one-atom classical equations (2) we proceed in two steps which will be

detailed in the following:

1. We consider the equations for the collective density matrix elements (n metastable

and N ground state atoms) and linearize these equations around the fully polarized

steady state in which the only non-zero elements of ρ are ρ44 = n and ρ00 = N .

2. From the linearized classical equations, interpreted as semiclassical equations for the

mean values of the collective operators, we derive the corresponding Heisenberg-

Langevin equations.
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B. Linearized Heisenberg-Langevin equations

By linearization around the fully polarized solution we obtain equations for the “fluctu-

ations” or deviations of ρij from their steady-state values. Such linear equations coincide

with the linearized semiclassical equations for the collective atomic operators operators mean

values:

ρkl = 〈Slk〉 k, l = 1, 2, 3 (4)

ρkl = 〈Ilk〉 k, l = 9, 0 (5)

where Skl =
∑n

i=1 |k〉i〈l|i for k, l = 1, 2, 3 and Ikl =
∑N

i=1 |k〉i〈l|i for k, l = 9, 0 are the collec-

tive atomic operators in the metastable and ground state, respectively. The corresponding

linearized Heisenberg-Langevin equation for the operators are obtained by adding zero-mean

valued fluctuating terms which are the Langevin forces. Denoting by fα the Langevin force

for the operator α we get:

Ṡ21 = −γmS21 + f21 (6)

Ṡ32 =
2

9
γm

(

−7

2
S32 +

√
3S21 + S65

)

+ f32 (7)

Ṡ65 = −7

9
γm

(

S65 −
2

7

√
3S21 −

2

7
S32

)

+ f65 (8)

Ṡ43 = γm

(

−1

3
S43 +

2
√

3

9
(S32 + S65)

)

+

√
3

3
γfI09 + f43 (9)

İ09 =
1

3

[

−3γfI09 + 2γm

(

S32 −
1

2
S65 +

√
3

2
S43 +

√
3

2
S21

)]

+ f09 (10)

where γm = γexcN and γf = γexcn represent the exchange collisions rate for a metastable and

a ground state atom, respectively. If α and β denote two system operators, 〈fα(t)fβ(t′)〉 =

Dαβδ(t− t′) where Dα,β is the corresponding coefficient of the diffusion matrix which can be

calculated using the generalized Einstein relations [2] for an ensemble of uncorrelated atoms.

The non-zero coefficients are

D43,34 = 2
3
γmn, D09,34 = D43,90 = −2

√
3

3
γmn, D09,90 = 2γmn. (11)

Langevin forces are necessary to the consistency of the model. Otherwise, the non-

Hamiltonian character of the exchange terms leads to a violation of the Heisenberg un-

certainty relations. Physically, these forces originate from the fluctuating character of the

ME collisions and their correlation time is the collision time, much shorter (∼ 10−13 s) than

all the times scales we are interested in.
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C. Consequences of the Heisenberg-Langevin equations for ME collisions

We notice that Eqs. (6)-(8) for S21, S32, S65 form a closed subsystem of equations. This

means that in the frequency domain each of these variables can be expressed as a linear

combination of the Langevin forces f21, f32, f65. However, in the fully polarized limit we

consider here, these Langevin forces do not contribute to the diffusion matrix. It follows

that these variables do not contribute to the spin noise and can be neglected. One is then

left with only two equations

Ṡ43 = −γm

3
S43 +

√
3

3
γfI09 + f43 (12)

İ09 = −γfI09 + +γm

√
3

3
S43 + f09 (13)

Let us introduce the transverse spin quadratures

Sx = (S34 + S43)/2, Sy = i(S34 − S43)/2 (14)

and similarly for the ground state, and let us assume that the ground state is initially

squeezed, while the metastable atoms are in a coherent spin state. Integrating (12)-(13)

with the initial conditions ∆Ī2
y (0) = ∆I2

y (0)/(N/4) = e−2r and ∆S̄2
y(0) = ∆S2

y(0)/(n/4) = 1

one finds the normalized steady state variances to be

∆S̄2
y = 1 − [1 − e−2r]

3nN

(3n + N)2
(15)

∆Ī2
y = 1 − [1 − e−2r]

N2

(3n + N)2
(16)

Since n ≪ N (typically n/N ∼ 10−6), the ground state spin is still squeezed by approxi-

mately the same factor e−2r, whereas the metastable atoms squeezing is negligible (in n/N).

By introducing the two-spin correlation functions CS and CI for the metastable and ground

state respectively:

CS =
∆Ī2

y − 1

4n
and CS =

∆Ī2
y − 1

4N
(17)

this simple calculation shows that ME collisions tend to equalize the correlation function

(up to some numerical constant): CS = 3CI . If the ground state spin is squeezed, CI has

a negative value of order 1/N , corresponding to maximal collective correlations for the N -

particle ensemble. However, as n ≪ N , this negative value of the correlation function in

the metastable state is by far too small to induce squeezing into the n-particle metastable
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state, which would require CS ∼ −1/n. We notice that for e−2r = 1 we recover the coherent

spin state with no correlation between the ground state and the metastable spins.

Noise spectra can also be derived in a similar fashion. By defining the noise spectrum as

Sxixj
(ω) =

∫

dτ e−iωτ 〈xi(0)xj(τ)〉 (18)

where xi, xj are fluctuations of system operators and for the same initial conditions ∆Ī2
y (0) =

∆I2
y (0)/(N/4) = e−2r and ∆S̄2

y(0) = ∆S2
y(0)/(n/4) = 1 we get:

SIy ,Iy
(ω) =

π(Ne−2r + 3n)N2δ(ω)

2(N + 3n)2
+

9γexcnN

18ω2 + 2(N + 3n)2γ2
exc

(19)

SSy ,Sy
(ω) =

3π(Ne−2r + 3n)n2δ(ω)

2(N + 3n)2
+

3γexcnN

18ω2 + 2(N + 3n)2γ2
exc

(20)

The equal time correlations (15) and (16) can be recovered from these formulas by integra-

tion:

〈xixj〉 =
1

2π

∫

dω Sxixj
(ω) . (21)

For an initial coherent spin state (e−2r = 1), the ME collisions process does not change the

collective spin variances, but it affects their spectra. The δ-shaped atomic spectra of the

two spins in absence of ME collisions acquire a width of order γexc(N +3n), that is, of order

γm. The contribution to the total variance of the “broad” part of the spectrum which is not

sensitive to initial squeezing in the system, is large for the metastable state and small for

the ground state.

III. THE MODEL FOR SQUEEZING TRANSFER

In figure 2 are represented the 3He energy levels which are relevant for our squeezing

transfer scheme. The atoms interact with a coherent control field of Rabi frequency Ω and

frequency ω1 that we treat classically, and and a cavity field described by operators A and

A†. The field injected into the cavity, Ain with frequency ω2, is in an amplitude-squeezed

vacuum state: 〈Ain〉 = 0 and ∆X2
in = e−2r, ∆Y 2

in = e2r, where we have introduced the field

quadratures

X = A + A† Y = i(A† − A) . (22)

The coherent field (π-polarized) and the squeezed vacuum (σ-polarized) are tuned to the

blue side of the so-called C9 transition (λ = 1.08 µm) from the F = 3/2 level of the 23S
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metastable state to the 23P0 state, the highest in energy of the 23P multiplicity. The atom-

field Hamiltonian of the system is:

H = H0 + h̄
{

ΩS73e
−iω1t + ΩS82e

−iω1t + gAAS74 + gBAS83 + h.c.
}

(23)

where H0 describes the atom-field free evolution, gA,(B) = dA,(B)

√

2πω2/h̄V are the coupling

constants between the atoms and the cavity field, V being the volume of the cavity mode and

dA,(B) the atomic dipoles of the transitions 7 ↔ 4, (8 ↔ 3). The system is initially prepared

in the fully polarized state 〈I00〉 = N and 〈S44〉 = n by preliminary optical pumping.

Non-Hamiltonian contributions to the evolution of the system operators describe damping

of the cavity mode, spontaneous emission from the excited state and the ME collisions

described in detail in the previous section. Linearizing the equations in the rotating frame

21 3

8

4

5 6

7

gA gAgC gC

gB

a)

21 3

8

A

ME

collisions

4

5 6

7

9 0

Ω ΩA

b)

FIG. 2: a) Metastable and excited sublevels of 3He. Three coupling constants to the light are

introduced. b) Squeezing transfer scheme using a control field Ω, a squeezed vacuum field A and

metastability exchange collisions. 9 and 0 are the ground state sublevels.

around the fully polarized state solution we obtain the following closed set of equations:

Ṡ21 = −(γm − iδ12)S21 + iΩS81 + f21 (24)

Ṡ81 = −(γ − i(∆18 − 2δlas))S81 + iΩS21 + f81 (25)

Ṡ32 =
2

9
γm

(

−7

2
S32 +

√
3S21 + S65

)

+ iδ23S32 − iΩ(S38 − S72) + f32 (26)

Ṡ72 = −(γ − i(∆27 − 2δlas))S72 − iΩ(S78 − S32) + f72 (27)

Ṡ43 = γm

(

−1

3
S43 +

2
√

3

9
(S32 + S65)

)

+

√
3

3
γfI09 + iδ34S43 − iΩS47 + f43 (28)

Ṡ65 = −7

9
γm

(

S65 −
2

7

√
3S21 −

2

7
S32

)

+ iδ56S65 + f65 (29)

Ṡ47 = −(γ + i∆47)S47 − igAnA − iΩS43 + f47 (30)

Ṡ38 = −(γ + i∆38)S38 − iΩ(S32 − S78) + f38 (31)
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Ṡ78 = −(2γ − iδ87)S78 − iΩ(S72 − S38) + f78 (32)

İ09 =
1

3

[

−3γfI09 + 2γm

(

S32 −
1

2
S65 +

√
3

2
S43 +

√
3

2
S21

)]

+ iδ90I09 + f09 (33)

Ȧ = −(κ + i∆C)A − igBS38 − igAS47 +
√

2κAin (34)

where

∆ij = (Ej − Ei) − ω2 (35)

δij = (Ej − Ei) − δlas (36)

δlas = ω1 − ω2 (37)

and γ is the coherence decay rate due to spontaneous emission from the excited state and

collisions. The non-zero diffusion coefficients are

D43,34 =
2

3
γmn, D43,90 = −2

√
3

3
γmn, D47,74 = 2γn, D09,34 = −2

√
3

3
γmn, D09,09 = 2γmn

(38)

We notice that metastable variables S72, S32, S78, S21, S81, S65 and S38 form a closed

subsystem of equations. This means that in the frequency domain each of these variables

can be expressed as a linear combination of the Langevin forces f72, f32, f78, f21, f81, f65

and f38. However, in the fully polarized limit we consider here, these Langevin forces do not

give rise to non-zero diffusion coefficients. It follows that these variables do not contribute

to the spin noise and can be neglected. One is then left with only four relevant equations

Ṡ43 = −γm

3
S43 +

√
3

3
γfI09 + iδ34S43 − iΩS47 + f43 (39)

Ṡ47 = −(γ + i∆)S47 − igAnA − iΩS43 + f47 (40)

İ09 =
1

3

(

−3γfI09 + γm

√
3S43

)

+ iδ90I09 + f09 (41)

Ȧ = −(κ + i∆C)A − igAS47 +
√

2κAin (42)

with ∆ = ∆47.

IV. NUMERICAL RESULTS

Equations (39)-(42) can be used to find the variances of the metastable and ground

state spin numerically. A typical result is displayed in figure 3, for which we assume that

a squeezed vacuum field with ∆X2
in = 0.5 is injected into the cavity with the coherent

9
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FIG. 3: Symbols: numerical calculations for spin variances in ground state (squares) and metastable

state (circles), as a function of the ratio Γ/γm (lower x-axis). The corresponding magnetic field

needed to satisfy the resonance conditions (45) and (46) is shown in the upper x-axis. Numerical

values of parameters are e−2r = 0.5, C = 500, κ = 100γ, ∆ = −2000γ, γ = 2×107 s−1, γm = 5×106

s−1. The crossed squares correspond to calculations including an extra relaxation rate γ0 = 103

s−1 for the metastable variables. The lines correspond to the analytical predictions (49) and (50).

control field in the squeezing-transfer configuration. In this figure ∆S̄2
y and ∆Ī2

y represent

the variances of Sy and Iy, both normalized to their coherent spin state values. They are

plotted as a function of the ratio Γ/γm, where Γ is the pumping parameter

Γ = γ3Ω2(1 + C)/∆2
47 , (43)

and C = g2n/(κγ) the cooperativity. It is precisely this ratio Γ/γm which acts as a control

parameter to decide how much of the available squeezing of the field is shared between the

metastable and the ground state spin. If Γ ≫ γm, correlations are established among the

metastable-state spins, the leakage of correlation towards the ground state being negligible.

The metastable collective spin is squeezed while the ground state spin remains unsqueezed.

In the opposite limit Γ ≪ γm, spin exchange is the dominant process for metastable atoms;
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they transfer their correlations to the ground state which then becomes squeezed, while the

metastable state remains unsqueezed.

In this plot we have chosen the best conditions for squeezing transfer:

1. The metastable coherence S43 is resonantly excited by the two fields in a Raman

configuration. By introducing the effective two-photon detuning for this coherence

δ̃ = δ34 + Ω2/∆ (44)

accounting for the light-shift of level 3, this condition is δ̃ = 0, or

(E4 − E3)/h̄ + Ω2/∆ = ω1 − ω2 . (45)

2. The ground state coherence I09 should be resonantly excited by the metastable coher-

ence, i.e.

(E0 − E9)/h̄ = ω1 − ω2 . (46)

In practice a magnetic field (shown as the upper x-axis) can be used to simultaneously

fulfill (45) and (46). When the resonance conditions are fulfilled the difference in the Larmor

frequencies in the metastable and in the ground state is exactly compensated by the light-

shift induced by the coherent control field. Choosing Γ = 0.1γm as a working point, the

required field is about B = 57 mG, corresponding to ωI = 184 Hz.

The vapor parameters in the figure correspond to a 1 torr sample at 300 K, with γm =

5×106 s−1, and γ = 2×107 s−1, and a metastable atom density of 3.2×1010 atoms/cm3 which

gives n/N = 10−6. The symbols with a cross are a second calculation in which we added

a finite relaxation rate in the metastable state γ0, to account for the fact that metastable

atoms are destroyed as they reach the cell walls. We notice that only the ground state spin

squeezing in the region Γ ≪ γm is affected.

V. ANALYTICAL RESULTS

In order to have a better physical insight it is possible to find simple analytical results

within some reasonable approximation. By adiabatic elimination of the polarization S47 and

the cavity field assuming γ, κ ≫ γm, γf , one obtains

Ṡ43 + (
γm

3
+

Γ

3
− iδ̃)S43 =

γf√
3
I09 + f43 −

Ω

∆
f47 + i

Ωgn

∆

√

2

κ
Ain (47)
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İ09 + (γf − iδ09)I09 =
γm√

3
S43 + f09 (48)

In deriving (47) we assumed a Raman configuration ∆ ≫ γ, Cγ
∆

≪ 1 and that the cavity

detuning exactly compensates the cavity field dephasing due to the atoms: ∆C = Cκγ/∆.

From equation (47) we see that (γm + Γ)/3 is the inverse of the characteristic time constant

for the metastable coherence evolution.

A. Resonant case

If the resonance conditions (45) and (46) are satisfied (δ̃ = δ09 = 0) and in the limit

γf ≪ Γ, γm, we can calculate the variances of the metastable and ground state spins

∆I2
y =

N

4

{

1 − γm

Γ + γm

C

C + 1
(1 − e−2r)

}

(49)

∆S2
y =

n

4

{

1 − Γ

Γ + γm

C

C + 1
(1 − e−2r)

}

(50)

which are plotted as full lines in figure 3.

B. Non-perfectly resonant case

In order to test the robustness of our scheme, let us now concentrate on what happens if

the resonance conditions (45) and (46) are only approximatively satisfied. We will focus on

the variance of the ground state spin coherence I09.

By adiabatically eliminating the metastable coherence S43 one obtains

İ09 + [ΓF + ib] I09 = f09 +
γm

√
3

γm + Γ − i3δ̃



f43 −
Ω

∆
f47 + i

Ωgn

∆

√

2

κ
Ain



 (51)

The real part in the brackets

ΓF = γf
Γ(γm + Γ) + (3δ̃)2

(γm + Γ)2 + (3δ̃)2
(52)

is the inverse of the effective time constant for the ground state coherence evolution which

would also be the “writing” (or “reading”) time of the quantum memory. Γ−1
F = 2s in the

example of figure 3 for Γ = 0.1γm. It would be proportionally shortened by increasing the
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metastable atoms density although Penning collisions prevent in practice metastable atoms

densities exceeding 1010-1011 at/cm2. The imaginary part in the brackets

b = −
(

γf
3δ̃γm

(γm + Γ)2 + (3δ̃)2
+ δ09

)

(53)

is a light-shift “brought back” to the ground state, which is zero in the resonant case.

Equation (51) can be used to calculate the best squeezing (optimized with respect to the

transverse spin quadrature) of the ground state coherence: ∆I2
best = minθ ∆I2

θ with Iθ =

Ix cos θ + Iy sin θ. We obtain

∆I2
best =

N

4

{

1 − γm

Γ + γm + (3δ̃)2/Γ

C

C + 1

[

1 − (e−2r + m sinh(2r))
]

}

(54)

where

m = 1 −
√

1

1 + (b/ΓF )2
(55)

We show in figure 4 the effect of a frequency mismatch on the normalized spin variances

∆S̄2
y , ∆Ī2

y and the corresponding squeezing transfer efficiencies ηS and ηI

ηS =
1 − ∆S̄2

y

1 − e−2r
and ηI =

1 − ∆Ī2
y

1 − e−2r
(56)

In this example, a frequency mismatch of the order of Γ/3 in the metastable state or of

the order of ΓF in the ground state affects the efficiency of the squeezing transfer. The

condition for the ground state frequency matching (46) imposes stringent requirements on

the homogeneity of the magnetic field. Because of the sinh(2r) in equation (54), the larger

the squeezing the worse are the consequences of a mismatch in the condition on δI = 0 on

the ground state atoms. Physically, if a significant dephasing between the squeezed field and

the ground state coherence builds up during the squeezing transfer time, the atoms will see

an average between the squeezed and the anti-squeezed quadrature of the field noise. We

can easily estimate the required magnetic field homogeneity as follows. Let us introduce the

Larmor evolution frequencies in the metastable and ground states: in low field, h̄ωα = µαB

(α=I,S) with µI/h = 3.24kHz/G and µS/h = 1.87MHz/G, and let ∆B be the maximum field

difference with respect to the optimal value in the cell volume. For low field, the condition on

∆B to preserve the transfer efficiency reads µI∆B ≪ hΓF . Since Ω2/∆ ≃ Γ ∆
3γC

≃ µS

h
B we

get Γ
ΓF

µI

µS

∆
3γC

∆B
B

< 1 or, in the regime Γ ≪ γm, 600 ∆
γC

∆B
B

≪ 1. With the parameters of figure

3 this gives a condition on the magnetic field inhomogeneity: ∆B/B ≪ 4 × 10−4. In figure

13
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FIG. 4: (a) Normalized ground state spin variance and (b) corresponding quantum transfer effi-

ciency ηI as a function of δI/ΓF (while δ̃ = 0). (c) Normalized metastable state spin variance and

d) corresponding quantum transfer efficiency ηS as a function of δ̃/(Γ/3) (while δI = 0). Symbols:

numerical integration of equations (24)-(34). Lines: analytical expression (54). Parameters are the

same as in figure 3 and Γ = 0.1γm.

5 we calculated the variance of the ground state spin as a function of Γ/γm for an increasing

inhomogeneity ∆B/B from zero (dashed line) to 6 × 10−4. In practice a homogeneity of

100 ppm should be sufficient for the chosen parameters to guarantee that all atoms will be

squeezed.

VI. OPTICAL READOUT

A. Outgoing field squeezing

As briefly stressed in [3] the squeezed fluctuations which are stored into the nuclear spins

can be retrieved optically in the field exiting the cavity by using the reverse transfer process.

Indeed, once the write sequence of the quantum memory has been completed, both the fields
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FIG. 5: Normalized “best” variance of the ground state spin as a function of Γ/γm (lower x-axis)

for an increasing inhomogeneity ∆B/B from zero to 6×10−4 by steps of 1×10−4. On the upper x-

axis we show the corresponding homogeneous magnetic field needed to satisfy resonance conditions

(45) and (46). Numerical values of parameters are e−2r = 0.5, C = 500, κ = 100γ, ∆ = −2000γ,

γ = 2 × 107 s−1, γm = 5 × 106 s−1, γ0 = 0.

and the discharge can be switched off, leaving the atoms in the fundamental state in a spin-

squeezed state. After a variable storage time, switching back on only the control field (as

well as the discharge) will rapidly put a small fraction of atoms in the metastable state and

start the reverse transfer process from the fundamental atoms to the field. The correlations

in the ground state will slowly transfer via the metastable state to the intracavity field.

This will then result in squeezed fluctuations for the field exiting the cavity, which can be

measured by homodyne detection.

More quantitatively, if we still assume that the metastable spin observables and the

intra-cavity field adiabatically follow the the ground state spin observables, the evolution

equations for the fluctuations of the squeezed component are in the resonant situation and
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for Γ ≪ γm

İy(t) = −ΓF Iy(t) + βXin(t) + f̃y(t) (57)

Xout(t) =
√

2κX(t) − Xin(t) (58)

with

β =
γm

γm + Γ

gAnΩ
√

3

2∆

√

2

κ
(59)

f̃y =
γm

√
3

γm + Γ

[

f43 − f34

2i
− Ω

∆

f74 − f47

2i

]

(60)

Denoting by t = 0 the start of the readout sequence and by e−2r = ∆I2
y (0)/(N/4) the initial

squeezing of the ground state nuclear spin, the two-time correlation function of the outgoing

field amplitude quadrature can be obtained via (58) after integration of (57)

C(t, t′) ≡ 〈Xout(t)Xout(t′)〉 = δ(t − t′) − 2ΓF ηI [1 − e−2r]e−ΓF (t+t′) (61)

The δ-correlated term corresponds to the vacuum fluctuations contribution, whereas the

second term corresponds to a transient squeezing for the outgoing field which is proportional

to the initial atomic squeezing. In (61), ηI designates the optimal quantum transfer efficiency

in the ground state

ηI =
γm

γm + Γ

C

C + 1
(62)

The ground state squeezing can be adequately measured by homodyne detection using a

temporally matched local oscillator as shown in Refs. [6, 14]. Using a local oscillator with

envelope E(t) the normalized power measured by a Fourier-limited spectrum analyzer inte-

grating over a time T is given by

P (t) =
1

E(t)2

∫ π/T

−π/T

dω

2π

∫ t+T

t
dτ
∫ t+T

t
dτ ′e−iω(τ−τ ′)E(τ)E(τ ′)C(τ, τ ′) (63)

In order to measure the atomic squeezing one has to maximize the temporal overlap between

the local oscillator and the field radiated by the atoms: E(t) ∝ e−ΓF t. For such a local

oscillator and for an integration time longer than the readout time Γ−1
F the measured power

can be written as the sum of a shot-noise term N and a time-dependent signal term S
proportional to the initial squeezing:

P (t) = N + S[1 − e−2r]e−2ΓF t (64)
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with S ≃ ηIN . The ground state nuclear spin fluctuations can therefore be measured

optically with the same efficiency ηI as in the write sequence. However, because of the slow

character of the correlation transfer process in the ground state the readout time is as long

as the write time.

As expected it is not possible to access the quantum memory faster during the readout

than during the write phase. One could think of a faster readout method by transferring the

fundamental atoms fluctuations to the metastable atoms and perform the optical readout

in the regime Γ ≫ γm. However, as we showed in section II, starting with a squeezed

fundamental spin and first switching on the discharge (without the fields) will transfer very

few correlations from the fundamental to the metastable atoms (ηI ≪ 1), and almost no

squeezing will be retrieved in the field.

VII. ENTANGLING TWO SEPARATE SAMPLES

A direct and important extension of the previous results is that it is possible to transfer

quantum correlations between different light beams to two spatially separated nuclear spins.

If one disposes of EPR fields this allows to entangle two separate ensembles [16]. Such EPR

atomic states are very useful for quantum information protocols involving the manipulation

of continuous variable entanglement, such as atomic teleportation for instance [17].

Let us consider two identical ensembles 1 and 2 illuminated by EPR-correlated vacuum

fields A
(i)
in and coherent control fields Ωi (i = 1, 2). Without loss of generality we assume

symmetrical field correlations of the form

∆2X
(i)
in = ∆2Y

(i)
in = cosh(2r) (i = 1, 2) (65)

〈X(i)
in X

(j)
in 〉 = −〈Y (i)

in Y
(j)
in 〉 = sinh(2r) (i 6= j), (66)

i.e. that the amplitude quadratures are correlated and the phase quadratures anti-correlated:

∆2(X
(1)
in − X

(2)
in ) = ∆2(Y

(1)
in + Y

(2)
in ) = e−2r. For perfect entanglement (r = ∞) these EPR

variances vanish. Both spins are initially prepared in a coherent spin state and we assume an

equal incident power on both cavities (Ω1 = Ω2). Under the same adiabatic approximations

as before, the fluctuations of the transverse spin components satisfy equation of the form

(57)

İxi = −ΓF Ixi − βY
(i)
in + f̃xi, (67)
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İyi = −ΓF Iyi + βX
(i)
in + f̃yi, (68)

(i = 1, 2). Because of the linearity of the coupling in this regime, the EPR atomic nuclear

spin operators, Ix1 + Ix2 and Iy1 − Iy2, are clearly coupled to the EPR field operators

d

dt
(Ix1 + Ix2) = −ΓF (Ix1 + Ix2) − β(Y

(1)
in + Y

(2)
in ) + f̃x1 + f̃x2 (69)

d

dt
(Iy1 − Iy2) = −ΓF (Iy1 − Iy2) + β(X

(1)
in − X

(2)
in ) + f̃y1 − f̃y2 (70)

The amount of EPR-type correlations between the incident fields is given by the half-sum

of the EPR variances

Ef =
1

2

[

∆2(X
(1)
in − X

(2)
in ) + ∆2(Y

(1)
in + Y

(2)
in )

]

= 2e−2r (71)

In the Gaussian approximation the entanglement between the nuclear spins can be evaluated

using the same quantity (also normalized to 2)

EI =
2

N

[

∆2(Ix1 + Ix2) + ∆2(Iy1 − Iy2)
]

(72)

It follows from (69-70) that the last two quantities are simply related by

EI = ηIEf + 2(1 − ηI). (73)

Like squeezing entanglement can also be in principle perfectly mapped onto the nuclear spins

with an efficiency ηI (62), close to unity in the regime Γ ≫ γm and C ≫ 1. It is interesting

to note that in this case the two-spin correlation function of individual spins inside one

ensemble

C(1) ≡ 〈I(i)
x1 I

(j)
x1 〉 ≃

cosh(2r) − 1

4N
(74)

and the correlation function between two spins belonging to different ensembles

C(2) = 〈I(i)
x1 I

(j)
x2 〉 ≃

sinh(2r)

4N
(75)

become approximately equal for a large entanglement - C(1) ∼ C(2) - which means that one

individual spin is about as much correlated with the other spins in its own ensemble as with

the spins of the other ensemble.
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VIII. THE IMPERFECT POLARIZATION CASE

The nuclear polarization of the sample is defined as

P =
〈I00〉 − 〈I99〉
〈I00〉 + 〈I99〉

(76)

In practice polarization between 80% and 85% are currently achieved by optical pumping

in dilute 3He samples [18]. If the atoms are prepared in a state which is not fully polarized

- P 6= 1 - the situation is clearly more complicated than we described in [3] and in the

present paper. In particular, equations (24)-(34) and (38) obtained by linearization around

the fully polarized state are no longer valid. We did not perform a complete analysis in the

P 6= 1 case. However, one can have a good idea of the result by using the simplified model

of [3] which involves only two metastable sublevels (see figure 6). As in section III, a Raman

transition is driven by a coherent control field of Rabi frequency Ω and a squeezed vacuum

cavity field:

H = H0 + h̄
{

Ω S31e
−iω1t + g A S32 + h.c.

}

. (77)

In this toy-model the control field Ω also acts as an optical pumping beam (able to transfer

the atoms from sublevel 9 to sublevel 0) and we introduce explicitly a relaxation in the

ground state, so that P 6= 1 in steady state. Let us introduce for this model the rescaled

A

ME

collisions

9 0

1 2

3

Ω

Γ1

FIG. 6: Sublevels 1 and 2 are metastable, level 3 is the excited state, 9 and 0 are the ground state

sublevels. We include a relaxation process in the ground state so that P 6= 1 in steady state.

coupling constant g̃, the atomic one-photon detunings ∆1 and ∆, the two-photon detunings

d̃ and δI , and two pumping parameters Γp and Γ:

∆1 = (E3 − E1)/h̄ − ω1, ∆ = (E3 − E2)/h̄ − ω2, (78)
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δ̃ = ∆1 − ∆ +
Ω2

∆
, δI = (E0 − E9)/h̄ − (ω1 − ω2), (79)

ΓP = γ
Ω2

∆2
, Γ = Γp(1 + C), (80)

where γ is the optical coherence decay rate and C is the cooperativity parameter defined by

equation (43). For the atomic operators we introduce S+ = S21, S− = S12

Sx = (S− + S+)/2, Sy = i(S− + S+)/2, Sz = (S22 + S11)/2, (81)

and similarly for the ground state operators. In the limit of large one photon detunings

the excited state and the optical coherences can be adiabatically eliminated, yielding a set

of equations similar to those of Ref. [15] with the addition of metastability exchange. By

adiabatically eliminating the field (assumed to be resonant in the cavity) and for δ̃ = 0,

δI = 0, we obtain:

Ṡ+ = −(Γp + γm)S+ + γfI+ + 2ig̃AS+ + fS+
(82)

Ṡz = −(Γp + γm)Sz + γfIz +
nΓp

2
+ ig̃[A†S+ − AS−] + fSz

(83)

Ȧ = −(κ + i∆C)A + ig̃S+ +
√

2κAin (84)

İ+ = −(γf + Γ1)I+ + γmS+ + fI+ (85)

İz = −(γf + Γ1)Iz + γmSz + fIz
(86)

The semiclassical version of equations (82)-(86) has a stationary solution 〈S+〉 = 〈I+〉 =

〈Ain〉 = 0 and with

〈Sz〉 =
γf + Γ1

γm

〈Iz〉P =
1

1 + Γ1(Γp + γm)/(Γpγf)
(87)

We will have in practice Γ1 ≪ γf , meaning that the nuclear polarization in the metastable

state P ∗ = 〈Sz〉/(n/2) and the nuclear polarization in the ground state P = 〈Iz〉/(N/2)

are almost equal. In this toy-model the stationary P is determined by the balance between

the decay Γ1 and the pumping Γp. In reality, the atoms will be previously pumped more

efficiently with resonant light. When we linearize the equations around the steady state we

obtain

Ṡ+ = −(Γ̃ + γm)S+ +
igΩn

κ∆
P ∗√2κAin + γfI+ + fS+

(88)

İ+ = −(γf + Γ1)I+ + γmS+ + fI+ (89)
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with

Γ̃ = Γp(1 + CP ∗) (90)

Starting from equations (88)-(89) one can proceed as in section V to obtain

∆Ī2
y =

∆I2
y

NP/4
=

1

P
+ (P ∗e−2r − 1)η′

I +
η′

I

2C̃

P ∗ − 1

P
(91)

where

C̃ = CP ∗ and Γ̃f =
γf Γ̃

Γ̃ + γm

(92)

η′
I =

C̃

C̃ + 1

γm

Γ̃ + γm

Γ̃f

Γ̃f + Γ1

(93)

For P ∗ ≃ P and C̃ ≫ 1, we have finally

∆Ī2
y = η′

Ie
−2r + (1 − η′

I)/P (94)

Equation (94) shows that the main consequence of having P 6= 1 is a rescaling of the

cooperativity and the pumping parameter Γ̃ and the quantum transfer efficiency η′
I , which

are reduced by a factor P . Let us note that, for P 6= 1, when no squeezing enters the cavity,

the atoms are no longer in a coherent spin state. This shows, however, that strong squeezing

transfer is still possible with a non-ideal polarization.
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IX. APPENDIX

Evolution equations of the density matrix elements under ME collisions are:

d

dt
ρ11 = γexc

(

−Nρ11 +
1

3
ρ99 (ρ22 + 3ρ11 + 2ρ55)

)

d

dt
ρ12 = γexc

(

−Nρ12 +
2

9
ρ99

(

(ρ23 + ρ56)
√

3 + 3ρ12

)

+

√
3

9
ρ90 (ρ22 + 3ρ11 + 2ρ55)

)
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d

dt
ρ13 = γexc

(

−Nρ13 +
1

3
ρ99 (ρ13 + ρ24) +

2

9
ρ90

(

(ρ23 + ρ56)
√

3 + 3ρ12

)

)

d

dt
ρ14 = γexc

(

−Nρ14 +

√
3

3
ρ90 (ρ13 + ρ24)

)

d

dt
ρ22 = γexc

(

−Nρ22 +
2

9
ρ99 (2ρ22 + ρ55 + ρ66 + 2ρ33) +

2

9
ρ90

(√
3ρ21 + ρ65 + ρ32

)

+
2

9
ρ09

(√
3ρ12 + ρ23 + ρ56

)

+
1

9
ρ00 (ρ22 + 3ρ11 + 2ρ55)

)

d

dt
ρ23 = γexc

(

−Nρ23 +
2

9
ρ99

(√
3ρ34 + ρ56 + ρ23

)

+
2

9
ρ90 (2ρ22 + ρ55 + ρ66 + 2ρ33)

+

√
3

9
ρ09 (ρ13 + ρ24) +

2

9
ρ00

(√
3ρ12 + ρ23 + ρ56

)

)

d

dt
ρ24 = γexc

(

−Nρ24 +
2

9
ρ90

(√
3 (ρ23 + ρ56) + 3ρ34

)

+
1

3
ρ00 (ρ13 + ρ24)

)

d

dt
ρ33 = γexc

(

−Nρ33 +
1

9
ρ99 (2ρ66 + ρ33 + 3ρ44) +

2

9
ρ90

(√
3ρ43 + ρ65 + ρ32

)

+
2

9
ρ09

(√
3ρ34 + ρ56 + ρ23

)

+
2

9
ρ00 (2ρ22 + ρ55 + ρ66 + 2ρ33)

)

d

dt
ρ34 = γexc

(

−Nρ34 +

√
3

9
ρ90 (2ρ66 + ρ33 + 3ρ44) +

2

9
ρ00

(√
3 (ρ23 + ρ56) + 3ρ34

)

)

d

dt
ρ44 = γexc

(

−Nρ44 +
1

3
ρ00 (2ρ66 + ρ33 + 3ρ44)

)

d

dt
ρ55 = γexc

(

−Nρ55 +
1

9
ρ99 (2ρ22 + ρ55 + ρ66 + 2ρ33) −

2

9
ρ90

(√
3ρ21 + ρ65 + ρ32

)

−2

9
ρ09

(√
3ρ12 + ρ23 + ρ56

)

+
2

9
ρ00 (ρ22 + 3ρ11 + 2ρ55)

)

d

dt
ρ56 = γexc

(

−Nρ56 +
2

9
ρ99

(√
3ρ34 + ρ56 + ρ23

)

− 1

9
ρ90 (2ρ22 + ρ55 + ρ66 + 2ρ33)

−2
√

3

9
ρ09 (ρ13 + ρ24) +

2

9
ρ00

(√
3ρ12 + ρ23 + ρ56

)

)

d

dt
ρ66 = γexc

(

−Nρ66 +
2

9
ρ99 (2ρ66 + ρ33 + 3ρ44) −

2

9
ρ90

(√
3ρ43 + ρ65 + ρ32

)

−2

9
ρ09

(√
3ρ34 + ρ56 + ρ23

)

+
1

9
ρ00 (2ρ22 + ρ55 + ρ66 + 2ρ33)

)

d

dt
ρ00 = γexc

(

−nρ00 +
1

3
(3ρ44 + ρ66 + ρ22 + 2ρ55 + 2ρ33) N

)

d

dt
ρ09 = γexc

(

−nρ09 +
1

3
N
(

(ρ43 + ρ21)
√

3 + 2ρ32 − ρ65

)

)

d

dt
ρ99 = γexc

(

−nρ99 +
1

3
(ρ33 + 2ρ22 + 3ρ11 + ρ55 + 2ρ66) N

)
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