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Abstract

We discuss the seminal article in which Le Bellac and Lévy-Leblond have
identified two Galilean limits of electromagnetism [1], and its modern implica-
tions. We use their results to point out some confusion in the literature and
in the teaching of special relativity and electromagnetism. For instance, it is
not widely recognized that there exist two well defined non-relativistic limits,
so that researchers and teachers are likely to utilize an incoherent mixture of
both. Recent works have shed a new light on the choice of gauge conditions
in classical electromagnetism. We retrieve Le Bellac-Lévy-Leblond’s results by
examining orders of magnitudes, and then with a Lorentz-like manifestly co-
variant approach to Galilean covariance based on a 5-dimensional Minkowski
manifold. We emphasize the Riemann-Lorenz approach based on the vector and
scalar potentials as opposed to the Heaviside-Hertz formulation in terms of elec-
tromagnetic fields. We discuss various applications and experiments, such as
in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, su-
perconductivity, continuous media, etc. Much of the current technology where
waves are not taken into account, is actually based on Galilean electromag-
netism.
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1 Introduction

The purpose of this article is to emphasize the relevance of Galilean covariance in
physics, even nowadays, about one hundred years after Lorentz, Poincaré and Ein-
stein, then facing the apparent incompatibility between Galilean mechanics and the
full set of Maxwell equations, have developed a theory that turned into special rel-
ativity [2]. Seventy years later, Le Bellac and Lévy-Leblond (LBLL) observed that
there exist not only one, but two well-defined Galilean (that is, non-relativistic) limits
of electromagnetism: the so-called ‘magnetic’ and ‘electric’ limits [1]. Although spe-
cial relativity has superseded Galilean relativity when it comes to the description of
high energy phenomena, there exists a wealth of low-energy systems, particularly in
condensed matter physics and low-energy nuclear physics, where Galilean covariance
should not be ignored.

We wish to point out hereafter some confusion which results from not recognizing
appropriately the two Galilean limits of electromagnetism. This follows from inacu-
rate definitions of non-relativistic covariance, which is why we emphasize at once that
the definition of Galilean covariance employed henceforth in this paper rests on its
compatibility with the Galilean transformations of space-time (Eq. (6), below). Ex-
amples of misleading, though well known, such text presentations are mentioned in
[1], and there were many more since then. The fact that one should be careful when
dealing with electrodynamics at low velocities has been illustrated, for instance, in
Ref. [3]. Let us illustrate this point with a simple example. Under a Lorentz transfor-
mation with relative velocity v, the electric and magnetic fields, in vacuum, become

E′ = γ(E + v × B) + (1 − γ)v(v·E)
v2 ,

B′ = γ(B − 1
c2

v × E) + (1 − γ)v(v·B)
v2 ,

(1)

respectively. The fact that Galilean covariance is a much more subtle concept than
simply taking the v << c, or γ ≃ 1, limit is illustrated by the fact that Eq. (1) then
becomes:

E′ = E + v ×B,
B′ = B − 1

c2
v ×E,

(2)

which not only is not compatible with Galilean relativity but, worse, does not even
satisfy the composition properties of transformation groups [1, 3]. That is to say, a
sequence of such transformations does not have the same form as above.

We have organized this article as follows. In Section 2, we recall the main results
of LBLL [1] for later reference. In Section 3, we obtain these results using two ar-
guments: one based on orders of magnitudes and a recent covariant approach with
which the Galilean space-time is embedded into a five-dimensional space. Throughout
the paper, we favour the Riemann-Lorenz formulation of electrodynamics, based on
the scalar and vector potentials, over the Heaviside-Hertz approach which involved
electromagnetic fields [4]. Discussion and applications are in Section 4. Therein
we present magnetohydrodynamics and electrohydrodynamics as two not-so-distant
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cousins which can be associated respectively with the ‘magnetic’ and ‘electric’ Galilean
limits of electrodynamics. We show that engineers are used to employ these Galilean
limits which they denote as the electro- and magnetoquasistatics. We revisited Feyn-
man’s proof of the magnetic limit and illustrate the latter within the realm of super-
conductivity. Finally, we reassess our current understanding of the electrodynamics
of moving bodies by examining the Trouton-Noble experiment in a Galilean context...

2 Galilean electromagnetism

The purpose of LBLL was to write down the laws of electromagnetism in a form
compatible with Galilean covariance rather than Lorentz covariance. As LBLL put
it, such laws could have been devised by a physicist in the mid-nineteenth century
[1]. Here, let us retrieve these laws from relativistic kinematics. The Lorentz trans-
formation of a four-vector (u0,u), where the four components have the same units, is
given by (see chapter 7 of Ref. [5]):

u′0 = γ
(

u0 − 1
c
v · u

)

,

u′ = u − γ v

c
u0 + (γ − 1) v

v2v · u,
(3)

where γ ≡ 1√
1−v2/c2

, with a relative velocity v. The speed of light in the vacuum

is denoted c. LBLL were the first to observe that this transformation admits two
well-defined Galilean limits [1]. One limit is for timelike vectors:

u′0 = u0,
u′ = u − 1

c
vu0,

(4)

which, as we shall see, may be related to the so-called electric limit. The second limit
is for spacelike vectors:

u′0 = u0 − 1
c
v · u,

u′ = u,
(5)

and will be associated to the magnetic limit. As it is well known, the space-time
coordinates can be described by timelike vectors only. Indeed, Eq. (4) has the form
of Galilean inertial space-time transformations:

x′ = x − vt,
t′ = t.

(6)

Nevertheless, other vectors, such as the four-potential and four-current, may trans-
form as one or the other of the two limits.

An example of the subtlety of non-relativistic kinematical covariance is that it is
quite common to neglect to enforce the condition that a non-relativistic limit involves
not only low-velocity phenomena, but also large timelike intervals then one obtains
different kinematics, referred to as Carroll kinematics [6]. In other terms, a Galilean
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world is one within which units of time are naturally much larger than units of space.
The existence of events physically connected by large spacelike intervals would imply
loss of causality, among other things. Other such kinematics, each one being some
limit of the de Sitter kinematics, have been classified in [7].

The situation is similar with electric and magnetic fields. One needs to compare
the module of the electric field E to c times the module of the magnetic field, i.e. cB.
When the magnetic field is dominant, Eq. (1) reduces to a transformation referred
to as the magnetic limit of electromagnetism:

E′

m = Em + v ×Bm, Em << cBm,
B′

m = Bm.
(7)

The other alternative, where the electric field is dominant, leads to the electric limit:

E′

e = Ee, Ee >> cBe,
B′

e = Be − 1
c2

v × Ee.
(8)

Indeed, the approximations Ee/c >> Be and v << c together imply that Ee/v >>
Ee/c >> Be so that we take Ee >> vBe in Eq. (1). Such an analysis of orders of
magnitude is described in the next section.

From the Galilean transformations of space-time, Eq. (6), we find

∇′ = ∇, ∂t′ = ∂t + v · ∇. (9)

The fields transformations in the magnetic limit of Eq. (7) are clearly compatible with
the use of Eq. (9) together with the transformations of the four-potential (V,A):

V ′

m = Vm − v · Am,
A′

m = Am,
(10)

(note the similarity with Eq. (5)) where

Em = −∇Vm − ∂tAm, Bm = ∇× Am. (11)

Similarly, the electric limit of Eq. (8) may be obtained from Eq. (9) and the trans-
formations of the four-potential:

V ′

e = Ve,
A′

e = Ae − v

c2
Ve.

(12)

This equation is similar to Eq. (4). Now, however, the fields are related to the
four-potential by

Ee = −∇Ve, Be = ∇× Ae. (13)

In parallel with the two possible sets of transformations of the four-potential, there
are two ways to transform the four-current (ρ, j). In the magnetic limit, it transforms
like Eq. (5):

ρ′

m = ρm − 1
c2

v · jm,
j′m = jm,

(14)
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and the continuity equation then reads

∇ · jm = 0. (15)

The appearance of an ‘effective’ charge density ρ′

m = ρm − 1
c2

v · jm is certainly one
of the salient feature of the magnetic limit. We will refer the interested reader to the
following works which discussed the effect of this effective charge without pointing
out its Galilean origin for most of them [8].

For the electric limit, it transforms like Eq. (4):

ρ′

e = ρe,
j′e = je − vρe,

(16)

and the continuity equation has its usual form:

∇ · je + ∂tρe = 0. (17)

Finally, Maxwell’s equations,

∇×E = −∂tB, Faraday,
∇ · B = 0, Thomson,
∇×B = µ0j + 1

c2
∂tE, Ampere,

∇ · E = 1
ǫ0

ρ, Gauss,

(18)

reduce, in the Galilean limits, to two respective forms. As the field transformation
laws themselves, this fact is not so obvious if one naively takes the limit c → ∞. In
the next section, we present an argument based on dimensional analysis and orders of
magnitude. In Ref. [1], it was found that, in the electric limit, the Maxwell equations
reduce to:

∇×Ee = 0,
∇ ·Be = 0,
∇×Be − 1

c2
∂tEe = µ0je,

∇ ·Ee = 1
ǫ0

ρe.

(19)

Clearly, the main difference with the relativistic Maxwell equations is that here the
electric field has zero curl in Faraday’s law. In the magnetic limit, the Maxwell
equations become

∇×Em = −∂tBm,
∇ · Bm = 0,
∇×Bm = µ0jm,
∇ · Em = 1

ǫ0
ρm.

(20)

The displacement current term is absent in Ampère’s law.
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3 Recent analyses

3.1 Orders of magnitude

Many errors occur within low-velocity limits of relativistic theories when one naively
replaces some quantities with zero, rather than carefully comparing various orders of
magnitudes involved in the equations. As we shall show herafter, we do not require
fanciful mathematical tools to retrieve the two Galilean limits of electromagnetism
of LBLL. As discussed by one of us in Ref. [9], a careful dimensional analysis of the
fields equations is sufficient for this purpose. Therein, it is argued that the electric and
magnetic limits may be retrieved by a careful consideration of the order of magnitude
of the dimensionless parameters:

ε ≡ L

cT
, and ξ ≡ j

cρ
, (21)

where L, T , j and ρ represent the orders of magnitude of length, time, current den-
sity, and charge density, respectively. The Galilean kinematics considered hereafter
corresponds to the quasistatic limit ε << 1. The other extreme, ε >> 1, leads to
the so-called Carroll kinematics [6]. The main undesirable feature of this kinematical
structure is the loss of causality.

The electric or magnetic character of the Galilean limits of electromagnetism is
determined by the behavior of the parameter ξ. From Gauss’s law and Ampère’s law,
Eq. (18), we find cB

E
≃ j

ρc
, so that

cB

E
= ξ.

Using this result and Eqs. (7), (8), we find:

ξ >> 1 : magnetic limit,
ξ << 1 : electric limit.

(22)

Returning to Eq. (21), we see that the magnetic limit correspond to the approxima-
tion j >> cρ, that is, the spacelike component is larger than the timelike component.
This echoes the transformation in Eq. (5). Conversely, the electric limit correspond
to the approximation cρ >> j, so that the spacelike component now is much larger
than the timelike component. This is analogue to Eq. (4).

From Maxwell displacement current term in the Ampère’s law, Eq. (18), we find

B ≃ vE

c2
, (23)

where v denotes the ratio of orders of magnitude L/T . Similarly, the magnetic in-
duction term of Faraday’s law gives

E ≃ vB. (24)
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If we substitute this result into Eq. (23), we find that the displacement current term
and the full Faraday’s law are compatible only if v ≃ c, that is, in the Lorentz covariant
regime. However, Eq. (23) cannot be obtained if we drop ∂tE from Ampère’s law,
so that it is compatible with the first and third lines of Eq. (19), i.e. in the electric
limit. On the other hand, Eq. (24) is compatible with lines one and three of Eq. (20),
i.e. the magnetic limit, because it does not appear if we drop the magnetic induction
term ∂tB of Faraday’s law in line three of Eq. (18).

Following the lines of Ref. [10]-[14], we use the Riemann-Lorenz formulation of
electromagnetism, which relies on the potentials as the basic quantities, in order
to retrieve the two Galilean limits. This is in opposition to the Heaviside-Hertz
formulation, which is based on the magnetic and electric fields [10]-[12]. In terms of
potentials, the equations of classical electromagnetism read

∇2V − 1
c2

∂2V
∂t2

= − ρ
ǫ0

, Riemann equations,

∇2A − 1
c2

∂2A

∂t2
= −µ0j,

(25)

∇ ·A +
1

c2

∂V

∂t
= 0, Lorenz equation, (26)

d

dt
(mv + qA) = −q∇(V − v · A), Lorentz force. (27)

They can be obtained from the Fermi Lagrangian [15]

LF =
1

2
ǫ0c

2∂µAν∂
µAν (28)

We consider the full Lagrangian consisting of a field and a matter part, that is
L = LF + LM . The Euler-Lagrange equation,

∂L
∂Aµ

− ∂ν

[

∂L
∂(∂νAµ)

]

= 0, (29)

leads to the following equations of motion (using Eq. (26) ∂µAµ = 0)

∂ν∂
νAµ = −µ0j

µ (30)

with
−µ0j

µ = ∂LM/∂Aµ. (31)

The quasistatic approximation, ε << 1, of Eq. (25) reads

∇2V ≃ − ρ

ǫ0

and ∇2A ≃ −µ0j, (32)

from which we can define a further dimensionless ratio, cA
V

≃ j
ρc

, so that

cA

V
≃ ξ. (33)
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Once again, this echoes our comment following Eq. (22): in the magnetic limit, the
spacelike quantity cA is dominant, whereas in the electric limit, it is the timelike
quantity V which dominates.

If we compare the two terms of the Lorenz (not Lorentz [13]) gauge condition, Eq.
(26), we find

|∇ · A|
∂tV/c2

≃ cT

L

cA

V
≃ ξ

ε
. (34)

In the quasistatic regime, ε << 1, we find therefore two possibilities. If ξ << 1, like
ε, then we are in the electric limit, and the gauge condition is similar to the Lorenz
condition:

∇ · Ae +
1

c2
∂tVe = 0. (35)

On the other hand, in the magnetic limit, ξ >> 1, then we drop ∂tV , so that we
obtain the Coulomb gauge condition:

∇ ·Am = 0. (36)

Let us use the orders of magnitude for the four-potential components and obtain
thereof their Galilean transformations in the magnetic limit, Eq. (10), and the electric
limit, Eq. (12). From Eq. (3) with u0 = V/c and u = A, we find that the scalar
potential V and the vector potential A transform, under a Lorentz transformation,
as

V ′ = γ(V − v · A),
A′ = A − γ v

c2
V + (γ − 1) v

v2v · A.
(37)

From the first line of this equation, we have V ≃ vA, so that we obtain, from Eq.
(33),

ξ =
cA

V
≃ cA

vA
=

1

ε
.

Therefore, in the quasistatic limit ε << 1, this equation gives ξ >> 1, so that the
first line is compatible with the magnetic limit. Accordingly, this is incompatible with
the electric limit, for which ξ << 1, so that the term v ·A must be dropped from the
first line of Eq. (37) in the electric limit.

A similar argument, applied to the second line of Eq. (37), implies A ≃ vV
c2

, so
that

ξ =
cA

V
≃ cvV

c2V
=

v

c
= ε.

Unlike the previous case, the quasistatic limit leads to ξ << 1, which is compatible
with the electric limit only, Eq. (12). This implies that, in the magnetic limit, the
term v

c2
V must be dropped from the second line of Eq. (37), as it is the case in Eq.

(10).
If we use an entirely similar analysis for the Lorentz transformation of charge and

current densities, obtained from Eq. (3) with u0 = ρ and u = j/c:

ρ′ = γ(ρ − 1
c2

v · j),
j′ = j − γvρ + (γ − 1) v

v2v · j, (38)
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we retrieve the Galilean transformations Eqs. (14) and (16) for the magnetic and
electric limits, respectively.

Let us conclude by briefly discussing the continuity equation:

∇ · j + ∂tρ = 0.

If we compare the two terms as we have done for the Lorentz gauge condition in Eq.
(34), we find

|∇ · j|
∂tρ

≃ cT

L

j

cρ
≃ ξ

ε
.

If ξ << 1, like ε in the quasistatic regime ε << 1, then we obtain the electric limit
and we retrieve Eq. (17). On the other hand, in the magnetic case, ξ >> 1, so that
we drop ∂tρ and obtain thereby Eq. (15).

3.2 Reduction from (4, 1) Minkowski space-time

Hereafter we review briefly a different approach to the Galilean gauge fields [16].
It involves a formulation of Galilean invariance based on a reduction from a five-
dimensional Minkowski manifold to the Newtonian space-time [17]-[19]. The extended
space is such that a Galilean boost with relative velocity v = (v1, v2, v3) acts on a
Galilei-vector (x, t, s) as

x′ = x − vt,
t′ = t,
s′ = s − v · x + 1

2
v2t.

(39)

Since ∂s tranforms like the mass m (see below for a justification), one can see the
additional coordinate s as being conjugate to the mass m since both are invariant
under Galilean transformations. s may be seen also as the action per unit mass. More
about classical and quantum physical interpretations of s is in Refs. [16]-[19].

The scalar product,

(A|B) = AµBµ ≡ A · B − A4B5 − A5B4,

of two Galilei-vectors A and B is invariant under the transformation, Eq. (39). This
suggests a method to base the tensor calculus on the metric

gµν = gµν =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0











. (40)

Hereafter we refer to this as the Galilean metric.
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The transformation in Eq. (39) can be written in matrix form for the components
of any five-vector as

x′µ = Λµ
νx

ν ,

where µ denotes the row and ν the column (so that Λµ
ν is the (µν)-entry) or











x
′1

x
′2

x
′3

x
′4

x
′5











=











1 0 0 −v1 0
0 1 0 −v2 0
0 0 1 −v3 0
0 0 0 1 0

−v1 −v2 −v3
1
2
v2 1





















x1

x2

x3

x4

x5











.

For a five-oneform, this transformation reads

x′

µ = Λ ν
µ xν ,

where µ now denotes the column and ν the row (that is Λ ν
µ is the (νµ)-entry) , or

(x′

1, x
′

2, x
′

3, x
′

4, x
′

5) = (x1, x2, x3, x4, x5)











1 0 0 v1 0
0 1 0 v2 0
0 0 1 v3 0
0 0 0 1 0
v1 v2 v3

1
2
v2 1











. (41)

We write the embedding as

(x, t) → xµ = (x, t, s),

as well as the following five-momentum:

pµ ≡ −i∂µ = (−i∇,−i∂t,−i∂s),

so that, with the usual identification E = i∂t, and with m = i∂s, we obtain

pµ = (p,−E,−m),
pµ = gµνpν = (p, m, E).

Thereupon the mass does not enter as an external parameter, but as a remnant of the
fifth component of the particle’s momentum. Hereafter, the five-momentum operator
will act on a massless field, so that

∂5A = ∂sA = 0.

Now let us set up the five-dimensional quantities that allow us to retrieve the two
Galilean limits of electromagnetism. They are given by defining two embeddings of
the five-potential:

Aµ = (A, A4, A5).
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Under the transformation in Eq. (39) its components transform, from Eq. (41), as

A′ = A + vA5,
A4′ = A4 + v · A + 1

2
v2A5,

A5′ = A5.
(42)

Next we write the five-dimensional electromagnetic antisymmetric Faraday tensor:

Fµν ≡ ∂µAν − ∂νAµ =











0 b3 −b2 c1 d1

−b3 0 b1 c2 d2

b2 −b1 0 c3 d3

−c1 −c2 −c3 0 a
−d1 −d2 −d3 −a 0











. (43)

Thus we have
b = ∇×A,
c = ∇A4 − ∂4A,
d = ∇A5 − ∂5A,
a = ∂4A5 − ∂5A4.

(44)

The five-current
jµ = (j, j4, j5),

transforms under the transformation, Eq. (39), as

j′ = j + vj5,
j4′ = j4 + v · j + 1

2
v2j5,

j5′ = j5.
(45)

The continuity equation takes the form

∂µjµ = ∇ · j − ∂4j5 − ∂5j4 = 0. (46)

The five-dimensional Lorenz-like condition takes a similar form:

∂µAµ = ∇ · A− ∂4A5 − ∂5A4 = 0. (47)

In the presence of sources, the Maxwell equations are

∂µFαβ + ∂αFβµ + ∂βFµα = 0, (48)

and
∂νF

µν = jµ, (49)

so that in terms of the components of F defined in Eq. (43), we find, from Eq. (48):

∇ · b = 0,
∇×c + ∂4b = 0,
∇×d + ∂5b = 0,
∇a − ∂4d + ∂5c = 0,

(50)
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whereas Eq. (49) reduces to

∇×b − ∂5c − ∂4d = j,
∇ · c − ∂4a = −j4,
∇ · d + ∂5a = −j5.

(51)

From Fµ′ν′ = Λα
µ′Λ

β
ν′Fαβ the entries of F in Eq. (41) transform as

a′ = a + v · d,
b′ = b − v×d,
c′ = c + v×b + 1

2
v2d− av − v(v · d),

d′ = d.

(52)

Let us now see how the electric and magnetic limits are contained within the
previous formulas.

3.2.1 Electric limit

As mentioned previously, the electric limit is characterized by four-potential and four-
current vectors which are timelike, that is, their time component is much larger than
the length of their spatial components. In the reduction approach, it corresponds to
defining the embedding of the potentials and currents as

(Ae, Ve) →֒ Ae = (Ae, 0,−µ0ǫ0Ve) , (53)

and
(je, ρe) →֒ je = (µ0je, 0,−µ0ρe) , (54)

respectively.
From Eqs. (42) and (53) we retrieve Eq. (12). Similarly we obtain Eq. (16) from

Eqs. (45) and (54). As for the continuity equation, Eq. (46), it becomes Eq. (17).
From the first line of Eq. (44), we come to the natural definition:

Be ≡ b = ∇×Ae.

The electric field is defined as the component d, so that from the third line of Eq.
(44) we have Ee ≡ 1

µ0ǫ0
d = −∇Ve, as in Eq. (13). From Eq. (44) we note that

c = −∂tAe and a = − 1
µ0ǫ0

∂tVe. Then Eq. (52) leads to Eq. (8). The corresponding

Maxwell equations, Eq. (19), are obtained from Eqs. (50) and (51).
Note that the second line of Eq. (51) provides a condition similar to Lorenz gauge

fixing:
∇ · Ae = −µ0ǫ0∂tVe.

This expression may be obtained also by substituting Eq. (53) into Eq. (47).
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3.2.2 Magnetic limit

This non-relativistic limit is characterized by spacelike four-potential and four-current
vectors; their time component is small compared to the length of their spatial com-
ponents. Hereafter we show that it corresponds to defining the embedding of the
potentials and currents as

(Am, Vm) →֒ Am = (Am,−Vm, 0) , (55)

and

(jm, ρm) →֒ jm =
(

µ0jm,− 1

ǫ0
ρm, 0

)

, (56)

respectively.
From Eqs. (42) and (55) we retrieve Eq. (10). Similarly Eqs. (45) and (56)

lead to Eq. (14), and the continuity equation (46) gives Eq. (15), which shows
that the current jm cannot be related to a convective transport of charge! As above,
we define the magnetic field as Bm ≡ b = ∇×Am, and the electric field is now
defined as the component c, so that from the second line of Eq. (44) we obtain
Em ≡ c = −∇Vm − ∂tAm, as in Eq. (11). Then Eq. (52) leads to Eq. (7). The
Maxwell equations (20) are obtained from Eqs. (50) and (51). Finally, note that by
replacing Eq. (55) into Eq. (47) we obtain Coulomb’s gauge condition:

∇ ·Am = 0.

4 Discussion and examples

4.1 Gauge conditions and Galilean electromagnetism

In this section, we describe the two Galilean limits using the Riemann-Lorentz ap-
proach, that is, in terms of the scalar and vector potentials. The definition E =
−∂tA − ∇V of Eq. (11) takes different forms in the Galilean limit, depending on
the order of magnitude of each term. This is because the Galilean transformations
for the potentials depend on whether we take the electric or magnetic limit. Let us
evaluate the order of magnitude of the ratio between its two terms:

∂tA

∇V
≃

A
T
V
L

≃ L

cT

cA

V
≃ εξ.

In the magnetic limit, for which ξ >> 1, this equation leads to Em = −∇Vm −
∂tAm as in Eq. (11). By computing the curl, we find ∂tBm = −∇ × Em, as in the
first line of Eq. (20). Likewise, in the electric limit, for which ξ << 1, we can neglect
∂tA so that we find Ee ≃ −∇Ve, as stated in Eq. (13). The curl of this expression
leads to ∇×Ee ≃ 0, as in the first line of Eq. (19).

12



Let us illustrate how the choice of the gauge condition allows one to retrieve the
two sets of “Galilean Maxwell equations” in terms of the fields, as stated by LBLL
[1]. In the magnetic limit, the condition ξ >> 1 leads to Eq. (36), as mentioned
earlier. From the definition of Bm and using the identity

∇× (∇× A) = ∇(∇ ·A) −∇2A,

we obtain

∇× Bm = ∇× (∇× Am) = ∇(

0
︷ ︸︸ ︷

∇ · Am) −∇2Am = µ0jm,

where the last term follows from Eq. (32). This is the third line of Eq. (20), where the
displacement current term is missing. With Em defined as in Eq. (11), its divergence
gives

∇ · Em = ∇ · (−∂tAm −∇Vm) = −∂t(

0
︷ ︸︸ ︷

∇ · Am) −∇2Vm =
ρm

ǫ0

,

where we have utilized again Eq. (36). This is the second inhomogeneous equation,
last line of Eq. (20).

In the electric limit, ξ << 1 and Eq. (34) lead to the Lorenz condition, Eq. (35).
Proceeding as in the magnetic limit, we first calculate the curl of Be, which gives us

∇× Be = ∇× (∇× Ae) = ∇(

−(∂tVe)/c2

︷ ︸︸ ︷

∇ ·Ae ) −∇2Ae =
1

c2
∂tEe + µ0je.

We have utilized Eq. (13) to define Ee. This is line three of Eq. (19). Finally, by
calculating the divergence of Ee, we find

∇ · Ee = ∇ · (−∇Ve) = −∇2Ve =
ρe

ǫ0
,

where we have used Eqs. (13) and (32).
Therefore, let us point out forcefully that the choice of a gauge condition is dictated

by the relativistic versus Galilean nature of the problem. The Lorenz gauge condition
must be chosen in the relativistic context as well as in the electric Galilean limit. The
Coulomb gauge condition can be chosen only in the magnetic limit. For example, this
implies that quantization in the Coulomb gauge of light waves is prohibited because
of Galilean covariance and must be re-examined. We refer to a discussion of the
physical meaning that one can ascribe to the various gauge conditions [14].

From the historical point of view, Galilean electromagnetism has shed a new light
on the pre-relativity era. Indeed, a careful reading of James Clerk Maxwell’s famous
Treatise on Electricity and Magnetism reveals that he has employed the electric limit
when dealing with dielectrics in his first volume [20]. On the other hand, in his sec-
ond volume, he used the magnetic limit when dealing with ohmic conductors, except
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toward the end, where he introduced into the magnetic limit equations the so-called
displacement current ‘by hand’ in order to demonstrate that light is a transverse
electromagnetic wave [20]. But, as we have seen in the particular case of the electric
limit (and it is also valid in relativity), the displacement current follows from choos-
ing the Lorenz gauge whereas Maxwell (wrongfully!) kept the Coulomb gauge within
the relativistic context for the fields. This difficulty enticed Hertz and Heaviside to
abandon potentials and to cast Maxwell’s equations in terms of fields rather than po-
tentials. Albert Einstein read Hertz’ papers on the topic and subsequently employed
Maxwell equations in terms of the fields (the Heaviside-Hertz formulation) whereas
Henri Poincaré employed Maxwell equations in terms of the potentials (the Riemann-
Lorenz formulation) by adopting the Lorenz condition in a relativistic context [2].

4.2 Magnetoquasistatics (MHD) and electroquasitatics (EHD)

Experts working on magnetohydrodynamics (MHD) and experts of electrohydrody-
namics (EHD) might be surprised to realize that they actually work with different
sets of approximations of the Maxwell equations where retardation (and, therefore,
waves) has been neglected. Indeed, the displacement current is negligible in MHD
(as in Eq. (20)), whereas in EHD the electric field has a vanishing curl (Eq. (19).
Hence, effects that are important in MHD becomes marginal in EHD, and vice versa.

Melcher has greatly clarified these facts by disjoining the electroquasistationary
approximation used in EHD and the magnetoquasistationary approximation used in
MHD [21] Section 3.2 of Melcher and Haus [21] shows that the underlying equations
are precisely the same as the Galilean limits, Eqs. (19) and (20). His main argument
relies on the comparison between three characteristics time scales (σ is the electric
conductivity): (1) the magnetic diffusion time τm = µ0σL2, (2) the charge relaxation
time τe = ǫ0/σ and (3) the wave transit time τem = L/c =

√
τe × τm, which is the

square root of the product of the two former time scales. By definition, the transit
time is always between the magnetic and electric times. For example, in the magnetic
limit, the charge relaxation time scale is very small and the magnetic field does have
enough time to diffuse inside the Ohmic carrier. It is straightforward to see that the
electroquasistatic of Melcher corresponds to the electric limit whereas the magnetic
limit is just the magnetoquasistatic. Hence, a large amount of our technology is based
on Galilean electromagnetism as soon as waves are neglected.

4.3 The Faraday tensor and its dual

It is well known that in special relativity, the Faraday tensor, defined in Eq. (43):

Fµν ≡ ∂µAν − ∂νAµ,

(in this section, µ, ν = 0, 1, 2, 3) and its dual:

∗Fµν =
1

2
ǫµνρσFρσ,
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do have the same physical meaning. This is not the case within Galilean electro-
magnetism. Indeed, as pointed out by Earman and subsequently discussed by Ry-
nasiewicz, the Galilean tranformations of the Faraday tensor and its dual lead to the
electric or the magnetic limit, respectively [22]. The effect of this duality operation
amounts to exchanging E and B as follows:

E → cB and B → −E/c.

One recovers very easily the magnetic and electric limits, Eqs. (7) and (8), by applying
the duality transformations directly to the electric transformations of the field in order
to get the magnetic transformations, and vice versa.

It is also noted in Ref. [22] that the field transformations of the magnetic limit are

obtained when E and B are expressed in terms of ‘covariant’, or

(

0
2

)

, tensor Fµν ,

whereas the electric limit is obtained when the fields transformations are calculated

by using the ‘contravariant’, or

(

2
0

)

, tensor F µν . Let us illustrate it briefly, with

Aµ =
(

V

c
,A
)

, Aµ =
(

V

c
,−A

)

,

as well as

∂µ =
(

1

c
∂t,−∇

)

, ∂µ =
(

1

c
∂t,∇

)

.

The magnetic limit rests on the relation

F ′

µν = Λ ρ
µ Λ σ

ν Fρσ,

where the Galilean transformation matrix Λ ν
µ is defined by the four-gradient trans-

formation, ∂′

µ = Λ ν
µ ∂ν , so that

Λ ν
µ =








1 vx

c
vy

c
vz

c

0 1 0 0
0 0 1 0
0 0 0 1








.

The index µ denotes the line of each entry. We find, for example,

E′

x

c
= F ′

01 = Λ µ
0 Λ ν

1 Fµν ,
= Λ 0

0 F01 + Λ 2
0 F21 + Λ 3

0 F31,
= 1

c
(Ex + vyBz − vzBy),

and
−B′

z = F ′

12 = Λ µ
1 Λ ν

2 Fµν = −Bz,

which is Eq. (7).
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The electric limit transformations follows from

F ′µν = Λµ
ρΛ

ν
σ F ρσ.

The transformation matrix Λµ
ν is now defined by the coordinate transformation,

xµ = Λµ
ν xν , with xµ = (ct, x, y, z), so that

Λµ
ν =








1 0 0 0
−vx

c
1 0 0

−vy

c
0 1 0

−vz

c
0 0 1








.

Again, the first index µ denotes the matrix line. For instance, we compute

−E ′

x

c
= F ′01 = Λ0

0Λ
1
νF

0ν = −Ex

c
,

and
B′

z = −F ′12 = −Λ1
µΛ2

ν F µν ,
= −Λ1

0F
02 − Λ2

0F
10 − F 12,

= Bz − 1
c2

(vxEy − vyEx),

which is Eq. (8).

4.4 Quantum mechanics

In 1990, Dyson published a demonstration of Maxwell equations due to Richard Feyn-
man [23]. This demonstration, which relied on Lagrangians and quantum mechanics,
dated back to the forties and had remained hitherto unpublished. However, the proof
was believed to be incomplete because Feynman had discussed only the homogeneous
Maxwell equations, given by the first two lines in Eq. (18):

∇×E = −∂tB, ∇ · B = 0.

In 1999, Brown and Holland revisited this demonstration and they have noted the
Schrödinger equation admitted external potentials only if they were compatible with
the magnetic limit of LBLL and, therefore, with the Coulomb gauge condition [24]. It
is clear from Eq. (20) that the homogeneous Maxwell equations given above are valid
only within the magnetic limit, because the electric field has zero curl in the electric
limit, Eq. (19). This is a consequence of the Galilean magnetic limit of the four-
potential which does enters into Schrödinger equation. Let us recall the statement
of Brown and Holland more precisely. The Schrödinger equation with external fields
V (x, t) and A(x, t):

ih̄∂tΨ(x, t) =
1

2m
(−ih̄∇− A(x, t))2Ψ(x, t) + V (x, t)Ψ(x, t),
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is covariant under Galilean transformation, Eq. (6), with Ψ(x, t) → Ψ′(x′, t′), V (x, t) →
V ′(x′, t′), and A(x, t) → A′(x′, t′), if

Ψ′(x′, t′) = const exp[(i/h̄)(−mv · x + 1
2
mv2t + φ(x, t))] Ψ(x, t),

V ′(x′, t′) = V (x, t) − ∂tφ(x, t) − v · (A(x, t) + ∇φ(x, t)),
A′(x′, t′) = A(x, t) + ∇φ(x, t),

where φ(x, t) is some scalar function. Note that the factor in front of Ψ(x, t) trans-
forms like the parameter s in Eq. (39). If we choose φ(x, t) = 0, then the equations
above reduce to Eq. (10), which represents the Galilean transformations of the po-
tentials in the magnetic limit.

This point agrees with later results by Vaidya and Farina [25]. In a subsequent
study, Holland and Brown have shown that Maxwell equations admit an electric
limit only if the source is a Dirac current [26]. In addition, they have proved that the
Dirac equation admits both Galilean limits, just like Maxwell equations, corroborating
thereby earlier results by Lévy-Leblond [27]. What Feynmann did not (actually, could
not) realize is that he had derived only the part of Maxwell equations compatible
with both Galilean relativity and quantum mechanics, that is, the magnetic limit
and, hence, the homogeneous equations.

4.5 Superconductivity

Superconductivity also enters into the realm of the magnetic limit, because it selects
the Coulomb gauge condition as a necessary consequence of Galilean covariance. In-
deed, the well-known London equation states that the current density is proportional
to the vector potential (the star denotes Cooper pairs): p = m∗v + q∗A = 0. As a
matter of fact, there is a perfect transfert of electromagnetic momentum to kinetic
momentum. Hence, contrary to what is usually stated, gauge invariance is not bro-
ken by superconductivity since the Coulomb gauge condition is implied. Moreover,
the Meissner effect can be explained by starting with Ampère’s equation written as
∇ × B = µ0j, that is, without displacement current term as in the magnetic case,
third line of Eq. (20). Hence, this expression (or more directly ∇2A ≃ −µ0j in the
Riemann-Lorenz formulation) together with ∇ · A = 0 and London equation, leads
to solutions (in one dimension x) of the type A ≃ exp−const x so that the vector
potential (hence the magnetic field) only penetrates the superconductor to a depth
1/const.

Superconductivity cannot be associated to a symmetry breaking of gauge invari-
ance but is magnetic Galilean covariant. This unusual statement has been recently
advocated by Martin Greiter by a different approach [28]. As a matter of fact, it is
the global U(1) phase rotation symmetry that is spontaneously violated. A striking
consequence is that the Higgs mechanism for providing mass to particles becomes
doubtful, since it was believed to be analogous to the assumed symmetry breaking of
gauge invariance in superconductivity.
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4.6 Electrodynamics of continuous media at low velocities

One often finds in textbooks that a dielectric in motion is characterized by the pres-
ence of a motional polarization given by the following formula [29]:

P′ = ǫ0χ(E + v×B). (57)

where χ is the dielectric susceptibility. For example, H.A. Lorentz utilized it in order
to derive the Fresnel-Fizeau formula at first order (see p. 174-176 of Ref. [29] and
Ref. [30]). We will see that this formula can be misleading.

Moreover, in 1904, Lorentz claimed that a moving magnet could become electri-
cally polarized [31]. In 1908, Einstein and Laub noted that Minkowski transforma-
tions for the fields and the excitations [32] predict that a moving magnetic dipole
develops an electric dipole moment [33]. It would be interesting to reexamine these
predictions in the light of Galilean electromagnetism within continuous media. In-
deed, if one starts from the Minkowski transformations relating the polarization and
the magnetization [32], one would expect two Galilean limits: one with M′ = M and
P′ = P− v×M/c2 and the other with M′ = M + v×P and P′ = P (see Chapter 9
of Ref. [29]).

We can derive from the Riemann-Lorenz formulation Maxwell’s equations within
continuous media following O’Rahilly [12]. More directly, one can infer the form
of Maxwell equations in continuous media by mimicking the vacuum case by either
supressing the displacement current or the Faraday term.

Maxwell equations in continuous media are covariant under the Poincaré-Lorentz
transformations [32]:

∇ · B = 0,
∂tB = −∇×E,
∇ · D = ρ,
∇×H = j + ∂tD.

In continuous media, the constitutive laws relate the excitation D, the field E and
the polarization M:

D = ǫ0E + P,
B = µ0H + M.

These relations are valid in both Galilean and Einsteinian relativity [32]. Let us now
turn to the electromagnetic laws when we take into account the motion of a medium
at low velocity [21].

First, we recall the Galilean transformations for the differentiation operators:

∇′ × (· · ·) = ∇× (· · ·)

∇′ · (· · ·) = ∇ · (· · ·)
∇′(· · ·) = ∇(· · ·)
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∂a′

∂t′
=

∂a′

∂t
+ (v · ∇)a′

∇× (a× b) = (b · ∇)a − (a · ∇)b + a(∇ · b) − b(∇ · a)

If a = v and b = A′, then:

∂A′

∂t′
=

∂A′

∂t
+ v(∇ · A′) −∇× (v × A′)

Let us apply these transformations to the two Galilean limits of Maxwell equations
expressed for a continuous medium. We write first Maxwell equations in a frame of
reference R’ moving at a relative velocity v with respect to another frame R:

Magnetic Limit Electric Limit
∇′ × H′ = j′ ∇′ × E′ = 0
∇′ · B′ = 0 ∇′ · D′ = ρ′

∇′ · j′ = 0 ∇′ · j′ + ∂ρ′

∂t′
= 0

∂t′B
′ = −∇′ × E′ ∇′ × H′ = j′ + ∂D

′

∂t′

We apply the spatial and temporal Galilean derivatives, so that in R’, we find:

Magnetic Limit Electric Limit
∇×H′ = j′ ∇× E′ = 0
∇ · B′ = 0 ∇ · D′ = ρ′

∇ · j′ = 0 ∇ · (j′ + ρ′v) + ∂ρ′

∂t
= 0

∂tB
′ = −∇× (E′ − v × B′) ∇× (H′ + v ×D′) = j′ + ρv + ∂D

′

∂t

Hence, we deduce the fields transformations:

Magnetic Limit Electric Limit
B = B′ E = E′

ρ = ρ′

j = j′ j = j′ + ρ′v
H = H′ H = H′ + v ×D′

E = E′ − v ×B′ D = D′

M = M′ P = P′

P = P′ + v × M′/c2 M = M′ − v ×P′
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As suspected, the effects predicted by Lorentz and Einstein & Laub in continuous
media are of galilean origin and not relativistic !

In addition, we can derive easily the boundary conditions for moving media with
n = n1→2 the unit vector between the two media denoted by 1 and 2

Magnetic Limit Electric Limit
n× (H2 − H1) = K n × (E2 − E1) = 0
n · (B2 − B1) = 0 n · (D2 − D1) = σ

n · (j2 − j1) + ∇Σ ·K = 0 n · (j2 − j1) + ∇Σ · K = vn(ρ2 − ρ1) − ∂tσ
n× (E2 − E1) = vn(B2 − B1) n × (H2 − H1) = K + vnn × [n × (D2 −D1)]

K is the surface current, σ the surface charge, Σ the surface separating both
media, and vn the projection of the relative velocity on the normal of Σ.

The formula, Eq. (57), used by Lorentz is not compatible with Galilean relativity.
However, the electric field and the magnetic field which create the polarization in
Fizeau experiment come from a light wave so that Lorentz was right to use this
formula after all, even though there is no contradiction with the electric limit formula
P′ = P = ǫ0χE′ = ǫ0χE.

4.7 Electrodynamics of moving bodies at low velocities

Galilean electromagnetism raises severe doubts concerning our current understanding
of the electrodynamics of moving media. Indeed, several experiments, like the ones
by Roentgen [34], Eichenwald [35], Wilson [36], Wilson and Wilson [37], Trouton and
Noble [38], etc., were believed to corroborate special relativity. As we will demonstrate
for the Trouton-Noble experiment, there is not always a need for special relativity
because the typical relative velocity in these experiments is well below the speed of
light. Then, the question is whether the above mentioned experiments be explained
by either the electric limit, the magnetic limit or a combination of both.

4.7.1 The Trouton-Noble experiment

The Trouton-Noble’s experiment is thought to be the electromagnetic analogue of
the optical Michelson and Morley experiment [38]. It was designed in order to show
whether one can observe a mechanical velocity of the ether if one considers that the
luminiferous medium should be a medium whose parts can be followed mechanically.
Like the null result of Michelson-Morley’s optical experiment, the Trouton-Noble
experiment was negative in the sense that one was not able to detect either an absolute
motion with respect to the ether, or a partial entrainment, as believed by other various
theories.
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In 1905, Albert Einstein suggested to consider the ether as superfluous since the ex-
periments were not able to detect a mechanical motion of it. Others, like H. Poincaré
and H.A. Lorentz, were reluctant to abandon the notion of ether as the bearer of the
electromagnetic field, despite the fact that they have adopted the relativity princi-
ple. However, in 1920, Einstein recoursed to the ether as the bearer of the metric
allowing the propagation of gravitational waves, at a conference in Leyden. Today,
even though the ether is a banished word in modern science, one can use it as did the
older Einstein in order to describe the vacuum with physical (though not mechanical)
properties.

Before the advent of special relativity, Hertz, Wien, Abraham, Lorentz, Cohn and
others have used the transformations given in Eq. (2), which is an incoherent mixture
of the electric and magnetic Galilean limits [39]. As mentioned previously, these
expressions do not even obey the group property of composition of transformations.

Trouton and Noble expected a positive effect when a charged capacitor is in motion
with an angle θ between the plates and the velocity [38]. Indeed, the electric field
in the frame of the capacitor generates a magnetic field in the ether frame (v is the
absolute velocity):

B′ = − 1

c2
v×E

that is,

B′ =
1

c2
vE sin θ.

Hence, there is a localization of magnetic energy density inside a volume dV:

dW =
1

2

B′

µ0
dV =

1

2

v2

c2
ǫ0E

2 sin2 θ dV.

With the volume of the capacitor given by Sl, the total energy between the plates is

W =
1

2

v2

c2
ǫ0E

2 sin2 θ Sl.

If one denotes as V = E/l the difference of potential between the plates, then the
capacitor is submitted to the electrical torque

Γ = −dW

dθ
= −ǫ0

2

V 2S

l

v2

c2
sin(2θ),

which is maximal for θ = 45◦ and zero for θ = 90◦. Hence, the plates must be
perpendicular to the velocity. One does not observe such an effect in practice.

In order to understand what is wrong with the above demonstration, we first re-
call that the electric limit transforms as in Eq. (8). A straightforward application of
these transformations is to note that the Biot-Savart law follows from the Coulomb
law associated to the electric transformation of the magnetic field. Contrary to the
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transformations used by Lorentz and Trouton-Noble, they do respect the group addi-
tivity. Besides, these transformations are only compatible with the approximate set
of Maxwell equations where the time derivative in the Faraday equation vanishes, as
in Eq. (19). Hence, we can derive easily the approximate Poynting’s theorem within
the electric limit from this set:

∂t

(
1

2
ǫ0E

2
)

+ ∇ ·
(

E×B

µ0

)

≃ −j · E. (58)

As we can see, the energy density is of electrical origin only. Hence, no electric
energy associated with the motional magnetic field can be taken into account within
the electric limit since it is of order v2/c2 with respect to the static, or quasistatic,
electric one. Thus, the Trouton-Noble experiment does not show any effect as soon
as we are in the realm of the electric limit. We recall that the electric limit is such
that the relative velocity is small compared to the velocity of light c, and the order of
magnitude of the electric field is large compared to the product of c by the magnetic
field. Of course, for larger velocities, special relativity is needed and we must take
into account additional mechanical torque due to lenght contraction as usual now in
order to have a negative result (no torque).

The conclusion of Trouton and Noble is rather illuminating concerning the fact
that they did consider the energy of the motional magnetic field to be the source of
the negative result [38]:

“There is no doubt that the result is a purely negative one. As the energy of the
magnetic field, if it exists (and from our present point of view we must suppose it
does), must come from somewhere, we are driven to the conclusion that the elec-
trostatic energy of a capacitor must dimininish by the amount 1/2ǫ0E

2v2/c2 , when
moving with a velocity v at right angles to its electrostatic lines of force where 1/2ǫ0E

2

is the electrostatic energy.”

Conversely, a solenoid/magnet in motion will not create a motionnal magnetic
torque because the magnetic energy associated with the motional electric field is
negligible compared to the magnetic energy of the static, or quasistatic, magnetic
field.

4.7.2 “Einstein asymmetry”

In his famous article on the electrodynamics of moving media, Albert Einstein pointed
out the importance of whether or not one should ascribe energy to the fields when
dealing with motion [40]. We reproduced here the introduction of his paper:

“It is known that Maxwell’s electrodynamics -as usually understood at the present
time- when applied to moving bodies, leads to asymmetries which do not appear to be
inherent in the phenomena. Take, for example, the reciprocal electrodynamic action
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of a magnet and a conductor. The observable phenomenon here depends only on the
relative motion of the conductor and the magnet, whereas the customary view draws
a sharp distinction between the two cases in which either one or the other of these
bodies is in motion. For if the magnet is in motion and the conductor at rest, there
arises in the neighbourhood of the magnet an electric field with a certain definite en-
ergy, producing a current at the places where parts of the conductor are situated. But
if the magnet is stationary and the conductor in motion, then no electric field arises
in the neighbourhood of the magnet. In the conductor, however, we find an electro-
motive force to which in itself there is no corresponding energy, but which gives rise
-assuming equality of relative motion in the two cases discussed- to electric currents
of the same path and intensity as those produced by the electric forces in the former
case.”

Like our discussion of the Trouton-Noble experiment, the magnetic Poynting’s
theorem can explain why one cannot ascribe an energy to the motional electric field
in Einstein’s thought experiment:

∂t

(

B2

2µ0

)

+ ∇ ·
(

E×B

µ0

)

≃ −j · E.

This is the magnetic analogue of Eq. (58).
By applying the Lorentz transformation that he had derived in the kinematical

analysis of his article to the ‘Maxwell’ equations (in fact, he used the Heaviside-Hertz
formulation, unlike Poincaré, who used the Riemann-Lorenz formulation in his rela-
tivity article), Einstein replaced Lorentz’s explanation:

“1. If a unit electric point charge is in motion in an electromagnetic field, there
acts upon it, in addition to the electric force, an electromotive force which, if we ne-
glect the terms multiplied by the second and higher powers of v/c, is equal to the vector
product of the velocity of the charge and the magnetic force, divided by the velocity of
light. (Old manner of expression.)”

by the now famous special relativity explanation (valid for all velocities):

“2. If a unit electric point charge is in motion in an electromagnetic field, the
force acting upon it is equal to the electric force which is present at the locality of
the charge, and which we ascertain by transformation of the field to a system of co-
ordinates at rest relatively to the electrical charge. (New manner of expression.)”

Then he concluded:

“The analogy holds with magnetomotive forces. We see that electromotive force
plays in the developed theory merely the part of an auxiliary concept, which owes its
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introduction to the circumstance that electric and magnetic forces do not exist in-
dependently of the state of motion of the system of co-ordinates. Furthermore it is
clear that the asymmetry mentioned in the introduction as arising when we consider
the currents produced by the relative motion of a magnet and a conductor, now dis-
appears. Moreover, questions as to the seat of electrodynamic electromotive forces
(unipolar machines) now have no point.”

However, we point out forcefully that the Galilean magnetic transformations of
the electromagnetic field are sufficient to explain the magnet and conductor thought
experiment of Albert Einstein as Lorentz covariance is not necessary [41]. It means
that the second postulate (constancy of the velocity of light) used by Einstein was
not necessary to explain the thought experiment. Only the relativity postulate and
the magnetic Galilean transformations are necessary as the usual relative velocity of a
real experiment is much more inferior to the velocity of light. Hence for low velocities
regime, we proposed the following removal of Einstein’s asymmetry:

“3. If a unit electric point charge is in motion in an electromagnetic field, the
force acting upon it is equal to the electric force which is present at the locality of the
charge, and which we ascertain by a Galilean magnetic transformation of the field to
a system of co-ordinates at rest relatively to the electrical charge. (New manner of
expression only valid for low velocities.)”

Einstein was right to replace Lorentz explanation as Lorentz thought that the
cross product of the velocity and the magnetic field was not an electric field that’s
why the latter called it in particular the electromotive field. But Einstein did not see
that the same cross product was an effective electric field due to a magnetic Galilean
transformations. Wolfgang Pauli provided a resolution of the asymmetry in his text-
book on electrodynamics but he only assumed that his calculations were a first order
approximation of the relativistic demonstration without acknowledging the existence
of a Galilean approximation as the magnetic limit [42]. Hence, Einstein’s procedure
to remove the asymmetry is completely valid despite the fact that special relativity
is not necessary to remove it but only sufficient. Hence, ironically, the thought ex-
periment who leaded Albert Einstein to special relativity could have been explained
by Galilean relativity only with the use of the magnetic limit...

As pointed out a long time ago by Keswani and Kilminster [43], Maxwell did re-
solve Einstein’s asymmetry within the formalism of the magnetic limit:

“In all phenomena relating to closed circuits and the current in them, it is indif-
ferent whether the axes to which we refer the system be at rest or in motion”.

Indeed,
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“The electromotive intensity is expressed by a formula of the same type, wheter
the motions of the conductors be referred to fixed axes or to axes moving in space,
the only differences between the formulae being that in the case of moving axes the
electric potential V must be changed into V ′ = V − v.A. In all cases in which a
current is produced in a conducting circuit, the electromotive force is the line-integral
e =

∫

C E′.ds taken round the curve. The value of V disappears from this integral, so
that the introduction of −v.A has no influence on its value.”

Concluding remarks

One century after the relativity revolution and more than thirty years after the for-
gotten work of Lévy-Leblond and Le Bellac, Galilean electromagnetism is becoming
a field of actual research as we can explain much more simply scores of experiments
involving the electrodynamics of moving media without the sophisticated formalism
of special relativity.

Moreover, for slow velocities, it is now obvious that special relativity’s effects
such as the length variation cannot explain (as it was believed so far) these experi-
ments since it is negligible. In the realm of mechanics, what would have happened
if Newton was born after Einstein? We are exactly in this situation with respect to
electromagnetism.
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Horzela A, Kapuścik E and Uzes C A 1993 Comment on “Magnetic monopoles,
Galilean invariance, and Maxwell equations” Am. J. Phys. 61 471;

Crawford F S 1993 A response to A. Horzela, E. Kapuścik and C.A. Uzes’ “Com-
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[27] Lévy-Leblond J M 1967 Nonrelativistic particles and wave equations Comm.
Math. Phys. 6 286-311.

[28] Greiter M 2005 Is electromagnetic gauge invariance spontaneously violated in
superconductors? Ann. Phys. (NY) 319 217-249.

[29] Panofsky W K H and Phillips M 1955 Classical Electricity and Magnetism (New
York: Adison-Wesley).

[30] Drezet A 2005 The physical origin of the Fresnel drag of light by a moving
dielectric medium Eur. Phys. J. B 45 103-110.

29



[31] Lorentz H A 1904 Remarque au sujet de l’induction unipolaire Arch. Néer. 9
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