
HAL Id: hal-00016115
https://hal.science/hal-00016115

Preprint submitted on 20 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the formula of Goulden and Rattan for Kerov
polynomials
Philippe Biane

To cite this version:

Philippe Biane. On the formula of Goulden and Rattan for Kerov polynomials. 2005. �hal-00016115�

https://hal.science/hal-00016115
https://hal.archives-ouvertes.fr


cc
sd

-0
00

16
11

5,
 v

er
si

on
 1

 -
 2

0 
D

ec
 2

00
5

On the formula of Goulden and Rattan for Kerov

polynomials

Philippe Biane

Abstract. We give a simple proof of an explicit formula for Kerov polyno-
mials. This explicit formula is closely related to a recent formula of Goulden
and Rattan.

1. Kerov polynomials

Kerov polynomials are universal polynomials which express the characters of
symmetric groups evaluated on cycles, in terms of quantities known as the free
cumulants of a Young diagram. We now explain these notions.

Let λ = λ1 ≥ λ2 ≥ . . . be a Young diagram, to which we associate a piecewise
affine function ω : R → R, with slopes ±1, such that ω(x) = |x| for |x| large enough,
as in Fig. 1 below, which corresponds to the partition 8 = 4+3+1. We can encode
the Young diagram using the local minima and local maxima of the function ω,
denoted by x1, . . . , xm and y1, . . . , ym−1 respectively, which form two interlacing
sequences of integers. These are (-3,-1,2,4) and (-2,1,3) respectively in the picture.

x1 y1 x2 y2 x3 y3 x4

Fig.1

To the Young diagram we associate the rational fraction

Gλ(z) =

∏m−1
i=1 (z − yi)
∏m

i=1(z − xi)
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and the formal power series Kλ, inverse to G for composition,

Kλ(z) = G
(−1)
λ (z) = z−1 +

∞
∑

k=2

Rk(λ)zk−1.

The quantities Rk(λ); k = 2, 3, . . . are called the free cumulants of the diagram λ.
Note that R1(λ) = 0 for any Young diagram, so we do not include it in the series of
free cumulants. These quantities arise in the asymptotic study of representations
of symmetric groups, see [B1]. It turns out that there exists universal polynomi-
als Σ2, Σ3 . . . in the variables R2, R3, . . . such that for any Young diagram λ the
normalized character χλ evaluated on a cycle of length k is given by

(n)kχλ(ck) = Σk(R2(λ), R3(λ), . . .).

The remarkable fact here is that these polynomials do not depend on the size of
the symmetric group. We list the first such polynomials below.

Σ1 = R2

Σ2 = R3

Σ3 = R4 + R2

Σ4 = R5 + 5R3

Σ5 = R6 + 15R4 + 5R2
2 + 8R2

We refer to [B2] and [GR] for more information about results and conjectures on
the coefficients of these polynomials. We take from [B2], section 5, the following
expression for Kerov polynomials. Here [z−k] f(z) denotes the coefficient of z−k

(the residue if k = 1) of a Laurent series f(z).

Proposition 1.1. Consider the formal power series

H(z) = z −
∞
∑

j=2

Bjz
1−j.

Define

Σk = −
1

k
[z−1] H(z)H(z − 1) . . .H(z − k + 1) (1)

and

Rk+1 = −
1

k
[z−1] H(z)k

then the expression of Σk in terms of the Rk
′s is given by Kerov’s polynomials.

Recently I. P. Goulden and A. Rattan [GR] have given an explicit expression
for Kerov polynomials, from which they have deduced a certain number of positivity
properties of the coefficients of these polynomials. Their proof uses the Lagrange
inversion formula. In the next section we use the invariance of residue under change
of variables to derive in a simple way a closely related formula, and show how to
recover Goulden and Rattan’s formula.

2. Explicit expression for Kerov polynomials

We use the notations of Proposition 1.1 above. Let us introduce the power
series

L(z) = z +

∞
∑

j=2

Rjz
1−j.
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One has H ◦ L(z) = z, by Lagrange inversion formula. We use the invariance of
the residue under change of variables, namely if u, f are Laurent series, and u is
invertible for composition, then

[z−1] f(z) = [ζ−1] u′(ζ)f ◦ u(ζ).

Using Taylor’s formula as well as the change of variables z = L(ζ) in the residue,
one gets from (1)

Σk = − 1
k

[z−1]
∏k−1

j=0

(

∑

∞

r=0
(−j)r

r! H(r)(z)
)

= − 1
k

[ζ−1] L′(ζ)
∏k−1

j=0

(

∑

∞

r=0
(−j)r

r! H(r) ◦ L(ζ)
)

.

Using H ′ ◦ L(ζ) = 1
L′(ζ) one gets H(r) ◦ L(ζ) =

(

1
L′(ζ)

d
dζ

)r−1
1

L′(ζ) therefore

Σk = −
1

k
[ζ−1] L′(ζ)

k−1
∏

j=0

(

ζ +

∞
∑

r=1

(−j)r

r!

(

1

L′(ζ)

d

dζ

)r−1
1

L′(ζ)

)

.

Putting F (ζ) = 1
L′(ζ) we obtain the following Proposition.

Proposition 2.1. Let

F (ζ) =
1

L′(ζ)
=

1

1 −
∑

∞

k=2(k − 1)Rkζ−k

then Kerov’s polynomials are given by the following expression

Σk = −
1

k
[ζ−1]

1

F (ζ)

k−1
∏

j=0

(

ζ +
∞
∑

r=1

(−j)r

r!

(

F (ζ)
d

dζ

)r−1

F (ζ)

)

. (2)

3. The formula of Goulden and Rattan

Goulden and Rattan give various equivalent formulas for Σk. They introduce
the series C(ζ) = F (ζ−1), and define polynomials

Pm(z) = −
1

m!
C(z)(D + (m − 2)I) [C(z) . . . (D + I) [C(z)DC(z)] . . .]

where D = z d
dz

. The generating series form of their formula now reads

Σk = −
1

k
[zk+1]

1

C(z)

k−1
∏

j=1

(1 +

∞
∑

i=1

jiPi(z)zi). (3)

We recover this formula using (2). For this we factor out ζk in the expression in
the rhs of (2), and use the change of variable z = ζ−1. This gives

Σk = − 1
k

[ζ−1] 1
F (ζ)

∏k−1
j=0

(

ζ +
∑

∞

r=1
(−j)r

r!

(

F (ζ) d
dζ

)r−1

F (ζ)

)

= − 1
k

[ζ−1−k] 1
F (ζ)

∏k−1
j=1

(

1 +
∑

∞

r=1
(−j)r

r! ζ−1
(

F (ζ) d
dζ

)r−1

F (ζ)

)

= − 1
k

[zk+1] 1
C(z)

∏k−1
j=1

(

1 +
∑

∞

r=1
(−j)r

r! z
(

−C(z)z2 d
dz

)r−1
C(z)

)

= − 1
k

[zk+1] 1
C(z)

∏k−1
j=1

(

1 −
∑

∞

r=1
jrz
r! (C(z)zD)r−1C(z)

)

.
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Now remark that z−j ◦ D ◦ zj = D + jI to get

z(C(z)zD)r−1C(z) = zrC(z)(D + (r − 2)I) [C(z) . . . (D + I) [C(z)DC(z)] . . .]
= −r!Pr(z).
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