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1 INTRODUCTION

In high energy collisions, perturbative Quantum Chromodynamics (pQCD) successfully predicts inclu-
sive energy spectra of particles in jets. They have been determined within the Modified Leading Log-
arithmic Approximation (MLLA) [1] [2] as functions of the logarithm of the energy (ln(1/x)) and the
result is in nice agreement with the data of –e+e− and hadronic – colliders and of deep inelastic scat-
tering (DIS) (see for example [3] [4] [5]). Though theoretical predictions have been derived for smallx

(energy fraction of one parton inside the jet,x ≪ 1) 4 , the agreement turns out to hold even forx ∼ 1.
The shape of the inclusive spectrum can even be successfullydescribed by setting the infrared transverse
momentum cutoffQ0 as low as the intrinsic QCD scaleΛQCD (this is the so-called “limiting spectrum”).

This work concerns the production of two hadrons inside a high energy jet (quark or gluon); they
hadronize out of two partons at the end of a cascading processthat we calculate in pQCD; considering
this transition as a “soft” process is the essence of the “Local Parton Hadron Duality” (LPHD) hypothesis
[1] [6] [7], that experimental data have, up to now, not put injeopardy.

More specifically, we study, in the MLLA scheme of resummation, the double differential inclusive 1-
particle distribution and the inclusivek⊥ distribution as functions of the transverse momentum of the
emitted hadrons; they have up to now only been investigated in DLA (Double Logarithmic Approxima-
tion) [1]. After giving general expressions valid at allx, we are concerned in the rest of the paper with
the smallx region (the range of which is extensively discussed) where explicit analytical formulæ can be
obtained; we furthermore consider the limitQ0 ≈ ΛQCD, which leads to tractable results. We deal with
jets of small aperture; as far as hadronic colliders are concerned, this has in particular the advantage to
avoid interferences between ingoing and outgoing states.

The paper is organized as follows:

• The description of the process, the notations and conventions are presented in section 2. We set there
the general formula of the inclusive 2-particle differential cross section for the production of two hadrons
h1 andh2 at angleΘ within a jet of opening angleΘ0, carrying respectively the fractionsx1 andx2 of
the jet energyE; the axis of the jet is identified with the direction of the energy flow.

• In section 3, we determine the double differential inclusive 1-particle distribution d2N
d ln(1/x1) d ln Θ for

the hadronh1 emitted with the energy fractionx1 of the jet energyE, at an angleΘ with respect to the
jet axis. This expression is valid for allx; it however only simplifies forx ≪ 1, where an analytical
expression can be obtained; this concerns the rest of the paper.

• In section 4, we go to the smallx region and determine d2N
d ln(1/x1) d ln Θ , x1 ≪ 1 both for a gluon jet

and for a quark jet. It is plotted as a function ofln k⊥ (or ln Θ) for different values ofℓ1 = ln(1/x1);
the role of the opening angleΘ0 of the jet is also considered; we compare in particular the MLLA
calculation with a naive approach, inspired by DLA calculations, in which furthermore the evolution of
the starting jet fromΘ0, its initial aperture, to the angleΘ between the two outgoing hadrons is not taken
into account.

The MLLA expressions of the average gluon and quark color currents< C >g and< C >q involve
potentially large corrections with respect to their expressions at leading order; the larger the (small)x

domain extends, the larger they are; keeping then under control sets the boundℓ ≡ ln 1
x ≥ 2.5.

4as the exact solution of the MLLA evolution equations
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• In section 5, we study the inclusivek⊥ distribution dN
d lnk⊥

, which is the integral of d2N
dx1 d ln Θ with

respect tox1; It is shown in particular how MLLA corrections ensure its positivity. The domain of
validity of our predictions is discussed; it is ak⊥ interval, limited by the necessity of staying in the
perturbative regime and the range of applicability of our small x approximation; it increases with the jet
hardness. The case of mixed gluon and quark jets is evoked.

• A conclusion briefly summarizes the results of this work and comments on its extensions under
preparation.

Five appendices complete this work;

• Appendix A is dedicated to the MLLA evolution equation for the partonic fragmentation functions
Dg or q

g and their exact solutions [8][9]. They are plotted, together with their derivatives with respect to
ln(1/x) and ln k⊥. This eases the understanding of the figures in the core of thepaper and shows the
consistency of our calculations.

• Appendix B presents the explicit expressions at leading order for the average color currents of
partons< C >A0

.

• Appendix C completes section 4 and appendix B by providing explicit formulæ necessary to evaluate
the MLLA correctionsδ< C >A0

to the average color currents;

• While the core of the paper mainly give results for LHC, Appendix D provides an overview at
LEP and Tevatron energies. It is shown how, considering too large values ofx (ln 1

x < 2) endanger
the positivity of d2N

dℓ d lnk⊥

at low k⊥. Curves are also given fordN
d ln k⊥

; the range of applicability of our
approximation is discussed in relation with the core of the paper.

• in Appendix E, we compare the DLA and MLLA approximations forthe spectrum, the double
differential 1-particle inclusive distribution, and the inclusivek⊥ distribution.

2 THE PROCESS UNDER CONSIDERATION

It is depicted in Fig. 1 below. In a hard collision, a partonA0 is produced, which can be a quark or a
gluon5 . A0, by a succession of partonic emissions (quarks, gluons), produces a jet of opening angleΘ0,
which, in particular, contains the partonA; A splits intoB andC, which hadronize respectively into the
two hadronsh1 andh2 (and other hadrons).Θ is the angle betweenB andC.

Because the virtualities ofB andC are much smaller than that ofA [10], Θ can be considered to be close
to the angle betweenh1 andh2 [10][11]; angular ordering is also a necessary condition for this property
to hold.

5in p − p or p − p̄ collisions, two partons collide which can createA0 either as a quark or as a gluon; in the deep inelastic
scattering (DIS) and ine+e− colliders, a vector boson (γ or Z) decays into a quark-antiquark pair, andA0 is a quark (or an
antiquark);
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Fig. 1: process under consideration: two hadronsh1 andh2 inside one jet.

A0 carries the energyE. With a probabilityDA
A0

, it gives rise to the (virtual) partonA, which carries the
fraction u of the energyE; ΦBC

A (z) is the splitting function ofA into B andC, carrying respectively
the fractionsuz andu(1 − z) of E; h1 carries the fractionx1 of E; h2 carries the fractionx2 of E;

Dh1

B

(x1

uz
, uzEΘ, Q0

)

andDh2

C

(

x2

u(1 − z)
, u(1 − z)EΘ, Q0

)

are their respective energy distributions.

One hasΘ ≤ Θ0. On the other hand, sincek⊥ ≥ Q0 (Q0 is the collinear cutoff), the emission angle
must satisfyΘ ≥ Θmin = Q0/(xE), x being the fraction of the energyE carried away by this particle
(see also subsection 2.1 below).

The following expression for the inclusive double differential 2-particle cross section has been demon-
strated in [10] [11]:

dσ

dΩjet dx1 dx2 d ln

(

sin2 Θ

2

)

dϕ

2π

=

(

dσ

dΩjet

)

0

∑

A,B,C

∫

du

u2

∫

dz

[

1

z(1 − z)

αs(k
2
⊥
)

4π

ΦBC
A (z)DA

A0
(u,EΘ0, uEΘ)Dh1

B

(x1

uz
, uzEΘ, Q0

)

Dh2

C

(

x2

u (1 − z)
, u(1 − z)EΘ, Q0

)

]

,

(1)

where

(

dσ

dΩjet

)

0

is the Born cross section for the production ofA0, Ωjet is the solid angle of the jet and

ϕ is the azimuthal angle betweenB andC.

αs(q
2) is the QCD running coupling constant:

αs(q
2) =

4π

4Nc β ln
q2

Λ2
QCD

, (2)

whereΛQCD ≈ a few hundred MeV is the intrinsic scale of QCD and

β =
1

4Nc

(

11

3
Nc −

4

3
TR

)

(3)

is the first term in the perturbative expansion of theβ-function,Nc is the number of colors,TR = nf/2,
wherenf is the number of light quark flavors (nf = 3); it is convenient to scale all relevant parameters
in units of4Nc.

In (1), the integrations overu andz are performed from0 to 1; the appropriate step functions ensuring
uz ≥ x1, u(1 − z) ≥ x2 (positivity of energy) are included inDh1

B andDh2

C .
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2.1 Notations and variables

The notations and conventions, that are used above and throughout the paper are the following. For any
given particle with 4-momentum(k0, ~k), transverse momentumk⊥ ≥ Q0 (k⊥ is the modulus of the
trivector~k⊥), carrying the fractionx = k0/E of the jet energyE, one defines

ℓ = ln
E

k0
= ln(1/x), y = ln

k⊥
Q0

. (4)

Q0 is the infrared cutoff parameter (minimal transverse momentum).

If the radiated parton is emitted with an angleϑ with respect to the direction of the jet, one has

k⊥ = |~k| sin ϑ ≈ k0 sinϑ. (5)

The r.h.s. of (5) uses|~k| ≈ k0, resulting from the property that the virtualityk2 of the emitted parton is
negligible in the logarithmic approximation. For collinear emissions (ϑ≪ 1), k⊥ ∼ |~k|ϑ ≈ k0ϑ.

One also defines the variableYϑ

Yϑ = ℓ+ y = ln

(

E
k⊥
k0

1

Q0

)

≈ ln
Eϑ

Q0
; (6)

to the opening angleΘ0 of the jet corresponds

YΘ0
= ln

EΘ0

Q0
; (7)

EΘ0 measures the “hardness” of the jet. Sinceϑ < Θ0, one has the condition, valid for any emitted soft
parton off its “parent”

Yϑ < YΘ0
. (8)

The partonic fragmentation functionDb
a(xb, Q, q) represents the probability of finding the partonb hav-

ing the fractionxb of the energy ofa inside the dressed partona; the virtuality (or transverse momentum)
k2

a of a can go up to|Q2|, that ofb can go down to|q2|.

2.2 The jet axis

The two quantities studied in the following paragraphs (double differential 1-particle inclusive distribu-
tion and inclusivek⊥ distribution) refer to the direction (axis) of the jet, withrespect to which the angles
are measured. We identify it with the direction of the energyflow.

The double differential 1-particle inclusive distribution d2N
dx1d ln Θ is accordingly defined by summing the

inclusive double differential 2-particle cross section over all h2 hadrons and integrating it over their
energy fractionx2 with a weight which is the energy (x2) itself; it measures the angular distribution of an
outgoing hadronh1 with energy fractionx1 of the jet energy, produced at an angleΘ with respect to the
direction of the energy flow.

Once the axis has been fixed, a second (unweighted) integration with respect to the energy of the other
hadron (x1) leads to the inclusivek⊥ distribution dN

d ln k⊥
.
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3 DOUBLE DIFFERENTIAL 1-PARTICLE INCLUSIVE DISTRIBU-

TION
d2N

dx1 d ln Θ

After integrating trivially over the azimuthal angle (at this approximation the cross-section does not
depend on it), and going to smallΘ, the positive quantity d2N

dx1 d ln Θ reads

d2N

dx1 d ln Θ
=
∑

h2

∫ 1

0
dx2 x2

dσ

dΩjet dx1 dx2 d ln Θ

1
(

dσ

dΩjet

)

0

. (9)

We use the energy conservation sum rule [12]

∑

h

∫ 1

0
dxxDh

C(x, . . .) = 1 (10)

expressing that all partonsh2 within a dressed parton (C) carry the total momentum ofC, then make the
change of variablev = x

u(1−z) whereu(1 − z) is the upper kinematic limit forx2, to get

∑

h2

∫ u(1−z)

0
dx2 x2D

h2

C

(

x2

u(1 − z)
, u(1 − z)EΘ, Q0

)

= u2(1 − z)2, (11)

and finally obtain the desired quantity;

d2N

dx1 d ln Θ
=
∑

A,B

∫

du

∫

dz
1 − z

z

αs

(

k2
⊥

)

2π
ΦB

A(z)DA
A0

(u,EΘ0, uEΘ)Dh1

B

(x1

uz
, uzEΘ, Q0

)

;

(12)
the summation indexC has been suppressed since knowingA andB fixesC.

We can transform (12) by using the following trick:
∫

du

∫

dz

z
(1 − z) =

∫

du

∫

dz

z
−
∫

d(uz)

∫

du

u
, (13)

and (12) becomes

d2N

dx1 d ln Θ
=
∑

A

∫

duDA
A0

(u,EΘ0, uEΘ)
∑

B

∫

dz

z

αs

(

k2
⊥

)

2π
ΦB

A(z)Dh1

B

(x1

uz
, uzEΘ, Q0

)

−
∑

B

∫

d(uz)Dh1

B

(x1

uz
, uzEΘ, Q0

)

∑

A

∫

du

u

αs(k
2
⊥
)

4π
ΦB

A

(uz

u

)

DA
A0

(u,EΘ0, uEΘ).

(14)

We then make use of the two complementary DGLAP (see also the beginning of section 4) evolution
equations [13] which contain the Sudakov form factorsdA anddB of the partonsA andB respectively:

d−1
A (k2

A)
d

d ln k2
A

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

=
αs(k

2
⊥
)

4π

∑

B

∫

dz

z
ΦB

A (z)Dh1

B

(x1

uz
, uzEΘ, Q0

)

,

(15)

dB(k2
B)

d

d ln k2
B

[

d−1
B (k2

B)DB
A0

(w,EΘ0, wEΘ)
]

= −αs(k
2
⊥
)

4π

∑

A

∫

du

u
ΦB

A

(w

u

)

DA
A0

(u,EΘ0, uEΘ);

(16)
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the variableuz occurring in (13) has been introduced; in (15) and (16),(uEΘ)2 refers respectively to
the virtualitiesk2

A andk2
B of A andB. Using (15) and (16), (14) transforms into

d2N

dx1 d ln Θ
=
∑

A

∫

duDA
A0

(u,EΘ0, uEΘ)d−1
A (k2

A)
d

d ln k2
A

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

+
∑

B

∫

dwDh1

B

(x1

w
,wEΘ, Q0

)

dB(k2
B)

d

d ln k2
B

[

d−1
B (k2

B)DB
A0

(w,EΘ0, wEΘ)
]

.

(17)

Dh1

A depends on the virtuality ofA through the variable [1]∆ξ = ξ(k2
A)−ξ(Q2

0) =
1

4Ncβ
ln

(

ln(k2
A/Λ

2
QCD)

ln(Q2
0/Λ

2
QCD)

)

and elementary kinematic considerations [10] lead tok2
A ∼ (uEΘ)2.

By renamingB → A andw → u, (17) finally becomes

d2N

dx1 d ln Θ
=
∑

A

∫

du

[

DA
A0

(u,EΘ0, uEΘ)d−1
A (k2

A)
d

d ln Θ

[

dA(k2
A)Dh1

A

(x1

u
, uEΘ, Q0

)]

+Dh1

A

(x1

u
, uEΘ, Q0

)

dA(k2
A)

d

d ln Θ

[

d−1
A (k2

A)DA
A0

(u,EΘ0, uEΘ)
]

]

=
∑

A

d

d ln Θ

[
∫

duDA
A0

(u,EΘ0, uEΘ)Dh1

A

(x1

u
, uEΘ, Q0

)

]

,

(18)

and one gets
d2N

dx1 d ln Θ
=

d

d ln Θ
F h1

A0
(x1,Θ, E,Θ0) (19)

with

F h1

A0
(x1,Θ, E,Θ0) ≡

∑

A

∫

duDA
A0

(u,EΘ0, uEΘ)Dh1

A

(x1

u
, uEΘ, Q0

)

; (20)

F defined in (20) is the inclusive double differential distribution inx1 andΘ with respect to the energy
flux (the energy fraction of the hadronh1 within the registered energy flux) and is represented by the
convolution of the two functionsDA

A0
andDh

A.

The general formula (19) is valid for allx1; its analytical expression in the smallx1 region will be written
in the next section.

4 SOFT APPROXIMATION (SMALL- x1) FOR
d2N

dℓ1 d ln k⊥

At ℓ1 fixed, sincey1 = ln(k⊥/Q0) andY = ln(EΘ/Q0) = ℓ1 + y1, dy1 = d ln k⊥ = d ln Θ and we
write hereafter d2N

dℓ1 d lnk⊥
or d2N

dℓ1 dy1
instead of d2N

dℓ1 d ln Θ .

Since theu-integral (20) is dominated byu = O(1) 6 , the DGLAP [1] partonic distributionsDA
A0

(u, . . .)

are to be used and, since, on the other hand, we restrict to small x1, x1/u ≪ 1 and the MLLA inclusive
Dh1

A ((x1/u), . . .) are requested. The latter will be taken as the exact solution(see [8]) of the (MLLA)
6Dh1

A

(

x1

u
, uEΘ, Q0

)

≈ (u/x1)× (slowly varying function) – see (22) – and the most singular possible behavior of
DA

A0
(u, EΘ0, uEΘ, Q0), which could enhance the contribution of smallu, is∼ 1/u; however, the integrand then behaves like

Const.× (slowly varying function) and the contribution of smallu to the integral is still negligible.
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evolution equations that we briefly sketch out, for the sake of completeness, in appendix A. MLLA evo-
lution equations accounts for the constraints of angular ordering (like DLA but unlike DGLAP equations)
and of energy-momentum conservation (unlike DLA).

For soft hadrons, the behavior of the functionDh1

A (x1, EΘ, Q0) atx1 ≪ 1 is [1]

Dh1

A (x1, EΘ, Q0) ≈
1

x1
ρh1

A

(

ln
1

x1
, ln

EΘ

Q0
≡ YΘ

)

, (21)

whereρh1

A is a slowly varying function of two logarithmic variables that describes the “hump-backed”
plateau.

ForDh1

A

(x1

u
, uEΘ, Q0

)

occurring in (20), this yields

Dh1

A

(x1

u
, uEΘ, Q0

)

≈ u

x1
ρh1

A

(

ln
u

x1
, ln u+ YΘ

)

. (22)

Because of (6), one has
ρh

A(ℓ, YΘ) = ρh1

A (ℓ, ℓ+ y) = D̃h
A(ℓ, y), (23)

and, in what follows, we shall always consider the functions

xDA(x,EΘ, Q0) = D̃A(ℓ, y). (24)

The expansion ofρh1

A

(

ln
u

x1
, ln u+ YΘ

)

aroundu = 1 (lnu = ln 1) reads

x1

u
Dh1

A

(x1

u
, uEΘ, Q0

)

= ρh1

A (ℓ1 + lnu, YΘ + lnu) = ρh1

A (ℓ1 + lnu, y1 + ℓ1 + lnu)

= D̃h1

A (ℓ1 + lnu, y1) = D̃h1

A (ℓ1, y1) + lnu
d

dℓ1
D̃h1

A (ℓ1, y1) + . . . ,(25)

such that

x1F
h1

A0
(x1,Θ, E,Θ0) ≈

∑

A

∫

du uDA
A0

(u,EΘ0, uEΘ)

(

D̃h1

A (ℓ1, y1) + lnu
dD̃h1

A (ℓ1, y1)

dℓ1

)

=
∑

A

[
∫

duuDA
A0

(u,EΘ0, uEΘ)

]

D̃h1

A (ℓ1, y1)

+
∑

A

[
∫

duu lnuDA
A0

(u,EΘ0, uEΘ)

]

dD̃h1

A (ℓ1, y1)

dℓ1
; (26)

the second line in (26) is theO(1) main contribution; the third line, which accounts for the derivatives,
including the variation ofαs, makes up corrections of relative orderO(

√
αs) with respect to the leading

terms (see also (37)), which have never been considered before; since, in the last line of (26),u ≤ 1 ⇒
lnu ≤ 0 and

dD̃
h1
A

dℓ1
is positive (see appendix A.4), the corresponding correction is negative. A detailed

discussion of all corrections is made in subsections 4.1 and4.4

It is important for further calculations that (20) has now factorized.

While (20) (26) involve (inclusive)hadronic fragmentation functions̃Dh1

A = D̃h1
g or D̃h1

q , the MLLA
partonic functionsD̃b

A(ℓ, y) satisfy the evolution equations (46) with exact solution (52), demonstrated
in [8] and recalled in appendix A. The link between the latter(D̃g

g , D̃g
q , D̃q

g, D̃q
q) and the former goes

as follows. At smallx, since quarks are secondary products of gluons, for a given “parent”, the number

7



of emitted quarks is a universal function of the number of emitted gluons: the upper indices of emitted
partons are thus correlated, and we can replace in (26) the inclusive fragmentation functions by the
partonic ones, go to the functions̃DA(ℓ, y), where the upper index (which we will omit) is indifferently
g or q, and rewrite

x1F
h1

A0
(x1,Θ, E,Θ0) ≈

∑

A

(

< u >A
A0

+δ< u >A
A0
ψA,ℓ1(ℓ1, y1)

)

D̃A(ℓ1, y1), (27)

with 7

< u >A
A0

=

∫ 1

0
duuDA

A0
(u,EΘ0, uEΘ) ≈

∫ 1

0
duuDA

A0
(u,EΘ0, EΘ) ,

δ< u >A
A0

=

∫ 1

0
du (u ln u)DA

A0
(u,EΘ0, uEΘ) ≈

∫ 1

0
du(u ln u)DA

A0
(u,EΘ0, EΘ) , (28)

and

ψA,ℓ1(ℓ1, y1) =
1

D̃A(ℓ1, y1)

dD̃A(ℓ1, y1)

dℓ1
. (29)

Thus, for a gluon jet

x1F
h1
g (x1,Θ, E,Θ0) ≈ < u >g

g D̃g(ℓ1, y1)+ < u >q
g D̃q(ℓ1, y1)

+ δ< u >g
g ψg,ℓ1(ℓ1, y1)D̃g(ℓ1, y1)

+ δ< u >q
g ψq,ℓ1(ℓ1, y1)D̃q(ℓ1, y1),

(30)

and for a quark jet

x1F
h1
q (x1,Θ, E,Θ0) ≈ < u >g

q D̃g(ℓ1, y1)+ < u >q
q D̃q(ℓ1, y1)

+ δ< u >g
q ψg,ℓ1(ℓ1, y1)D̃g(ℓ1, y1)

+ δ< u >q
q ψq,ℓ1(ℓ1, y1)D̃q(ℓ1, y1).

(31)

It turns out (see [1]) that the MLLA corrections to the formulæ

D̃g
q ≈ CF

Nc
D̃g

g , D̃q
q ≈ CF

Nc
D̃q

g, (32)

do not modify the results and we use (32) in the following. We rewrite accordingly (30) and (31)

x1F
h1
g (x1,Θ, E,Θ0) ≈

< C >0
g +δ< C >g

Nc
D̃g(ℓ1, y1) ≡

< C >g

Nc
D̃g(ℓ1, y1),

x1F
h1
q (x1,Θ, E,Θ0) ≈

< C >0
q +δ< C >q

Nc
D̃g(ℓ1, y1) ≡

< C >q

Nc
D̃g(ℓ1, y1), (33)

with

< C >0
g = < u >g

g Nc+ < u >q
g CF ,

< C >0
q = < u >g

q Nc+ < u >q
q CF , (34)

7In (28),u is integrated form0 to 1, while, kinematically, it cannot get lower thanx1; since we are working at smallx1, this
approximation is reasonable.
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and where we have called

δ< C >g = Nc δ< u >g
g ψg,ℓ1(ℓ1, y1) + CF δ< u >q

g ψq,ℓ1(ℓ1, y1),

δ< C >q = Nc δ< u >g
q ψg,ℓ1(ℓ1, y1) + CF δ< u >q

q ψq,ℓ1(ℓ1, y1). (35)

< C >A0
is the average color current of partons caught by the calorimeter.

Plugging (33) into (19) yields the general formula
(

d2N

dℓ1 d ln k⊥

)

q,g

=
d

dy1

[

< C >q,g

Nc
D̃g(ℓ1, y1)

]

(36)

The first line of (30) and (31) are the leading terms, the second and third lines are corrections. Their
relative order is easily determined by the following relations (see (47) for the definition ofγ0)

d2N

dℓ1 d ln k⊥
=
< C >q,g

Nc

d

dy1
D̃g(ℓ1, y1) +

1

Nc
D̃g(ℓ1, y1)

d

dy1
< C >q,g,

d

dy1
D̃g(ℓ1, y1) = O(γ0) = O(

√
αs),

d

dy1
< C >q,g= O(γ2

0) = O(αs); (37)

The different contributions are discussed in subsections 4.1 and 4.4 below.

• dD̃g(ℓ,y)
d ln k⊥

≡ dD̃g(ℓ,y)
dy (see the beginning of this section) occurring in (36) is plotted in Fig. 12 and 13 of

appendix A, anddD̃g(ℓ,y)
dℓ occurring in (27) (29) is plotted in Figs. 14 and 15.

• The expressions for the leading terms ofx1F
h1

A0
(x1,Θ, E,Θ0) together with the ones of< C >0

g and
< C >0

q are given in appendix B.

• The calculations ofδ < C >g andδ < C >q are detailed in appendix C, where the explicit analytical
expressions for the< u >’s andδ < u >’s are also given.

We call “naive” the approach” in which one disregards the evolution of the jet betweenΘ0 andΘ; this
amounts to taking to zero the derivative of< C >q,g in (36); (58), (59), (60) then yield

< C >naive
g = Nc, < C >naive

q = CF . (38)

4.1 The average color current< C >A0

On Fig. 2 below, we plot, forYΘ0
= 7.5, < C >0

q,< C >0
q +δ< C >q,< C >0

g,< C >0
g +δ< C >g

as functions ofy, for ℓ = 2.5 on the left andℓ = 3.5 on the right. SinceΘ ≤ Θ0, the curves stop aty such
thaty+ℓ = YΘ0

; they reach then their respective asymptotic valuesNc for< C >g andCF for< C >q,
at whichδ< C >q andδ< C >g also vanish (see also the naive approach (38)). These corrections also
vanish aty = 0 because they are proportional to the logarithmic derivative (1/D̃(ℓ, y))(dD̃(ℓ, y)/dℓ)

(see (35)) which both vanish, forq andg, aty = 0 (see appendix A, and Figs. 16-17); there, the values
of < C >g and< C >q can be determined from (58)(59).

The curves corresponding to LEP and Tevatron working conditions,YΘ0
= 5.2, are shown in appendix

D.
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Fig. 2: < C >0
A0

and< C >0
A0

+δ< C >A0
for quark and gluon jets, as functions ofy,

for YΘ0
= 7.5, ℓ = 2.5 on the left andℓ = 3.5 on the right.

Two types of MLLA corrections arise in our calculation, which are easily visualized on Fig. 2:

∗ through the expansion (25) aroundu = 1, the average color current< C >0
A0

gets modified by
δ < C >A0

≤ 0 of relative orderO(
√
αs); it is represented on Fig. 2 by the vertical difference between

the straight lines (< C >0
A0

) and the curved ones (< C >0
A0

+δ< C >A0
);

∗ the derivative of< C >0
A0

with respect toy is itself of relative orderO(
√
αs) with respect to that of

D̃g; it is the slopes of the straight lines in Fig. 2.

They derivatives of< C >0
A0

+δ < C >A0
differ from the ones of the leading< C >0

A0
; this effect

combines the two types of MLLA corrections mentioned above:the derivation of< C > with respect to
y and the existence ofδ< C >.

ForYΘ0
= 7.5, theδ< C > correction can represent50% of < C >g at ℓ = 2.5 andy ≈ 1.5; for higher

values ofℓ (smallerx), as can be seen on the right figure, its importance decreases; it is remarkable that,
whenδ< C > is large, the corrections tod<C>

dy with respect tod<C>0

dy become small,and vice-versa: at
both extremities of the curves for the color current, theδ< C > corrections vanish, but their slopes are
very different from the ones of the straight lines corresponding to< C >0.

So, all corrections that we have uncovered are potentially large, evendδ<C>
dy , which is they derivative of

a MLLA corrections. This raises the question of the validityof our calculations. Several conditions need
to be fulfilled at the same time:

∗ one must stay in the perturbative regime, which needsy1 ≥ 1 (k⊥ > 2.72ΛQCD ≈ .7 GeV; this
condition excludes in particular the zone of very large increase of d2N

dℓ1 d ln k⊥
wheny1 → 0 (this property

is linked to the divergence of the running coupling constantof QCDαs(k
2
⊥
) → ∞ whenk⊥ → ΛQCD).

∗ x must be small, that isℓ large enough, since this is the limit at which we have obtained analytical
results; we see on Fig. 2 that it cannot go reasonably belowℓ = 2.5; this lower threshold turns out to be
of the same order magnitude as the one found in the forthcoming study of 2-particle correlations inside
one jet in the MLLA approximation [9];

∗ (MLLA) corrections to the leading behavior must stay under control (be small “enough”); if one only
looks at the size of theδ < C > corrections atYΘ0

= 7.5, it would be very tempting to exclude
y ∈ [.5, 2.5]; however this is without taking into account they derivatives of< C >, which also play an
important role, as stressed above; our attitude, which willbe confirmed or not by experimental results, is
to only globally constrain the overall size of all corrections by settingx small enough.
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Would the corrections become excessively large, the expansion (25) should be pushed one step further,
which corresponds to next-to-MLLA (NMLLA) corrections; this should then be associated with NMLLA
evolution equations for the inclusive spectrum, which liesout of the scope of the present work.

Thoughδ < C > can be large, specially at small values ofℓ, the positivity of< C >0 +δ < C > is
always preserved on the whole allowed range ofy.

The difference between the naive and MLLA calculations liesin neglecting or not the evolution of the
jet betweenΘ0 andΘ, or, in practice, in considering or not the average color current< C >A0

as a
constant.

We present below our results for a gluon and for a quark jet. Wechoose two valuesYΘ0
= 7.5, which can

be associated with the LHC environment8 , and the unrealisticYΘ0
= 10 (see appendix D forYΘ0

= 5.2

and5.6, corresponding to the LEP and Tevatron working conditions). For each value ofYΘ0
we make

the plots for two values ofℓ1, and compare one of them with the naive approach.

In the rest of the paper we always consider the limiting caseQ0 → ΛQCD ⇔ λ ≈ 0,

λ = ln
Q0

ΛQCD
. (39)

The curves stop at their kinematic limity1max such thaty1 max + ℓ1 = YΘ0
.

4.2
d2N

dℓ1 d ln k⊥

at small x1: gluon jet

On Fig. 3 below is plotted the double differential distribution d2N
dℓ1 d lnk⊥

of a parton inside a gluon jet as
a function ofy1 for different values ofℓ1 (fixed).
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Fig. 3: d2N
dℓ1 d ln k⊥

for a gluon jet.

On Fig. 4 are compared, for a given value ofℓ1, the two following cases:

∗ the first corresponds to the full formulæ (33) (36);
8Sharing equally the14 TeV of available center of mass energy between the six constituent partons of the two colliding

nucleons yieldsE ≈ 2.3 TeV by colliding parton, one considers a jet opening angle ofΘ ≈ .25 andQ0 ≈ ΛQCD ≈ 250 MeV;
this givesY = ln EΘ

Q0
≈ 7.7.
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∗ the second corresponds to the naive approach (see the definition above (38))
(

d2N

dℓ1 d ln k⊥

)naive

g

=
d

dy1
D̃g(ℓ1, y1); (40)

dD̃g(ℓ1, y1)

dy1
is given in (56).
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Fig. 4: d2N
dℓ1 d ln k⊥

for a gluon jet at fixedℓ1, MLLA and naive approach.

The raise of the distribution at largek⊥ is due to the positive corrections already mentioned in the
beginning of this section, which arise from the evolution ofthe jet betweenΘ andΘ0.

4.3
d2N

dℓ1 d ln k⊥

at small x1: quark jet

On Fig. 5 is plotted the double differential distribution d2N
dℓ1 d lnk⊥

of a parton inside a quark jet as a
function ofy1 for different values ofℓ1 (fixed).
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Fig. 5: d2N
dℓ1 d lnk⊥

for a quark jet.

On Fig. 6 are compared, for a givenℓ1 fixed, the full formulæ (33) (36) and the naive approach
(

d2N

dℓ1 d ln k⊥

)naive

q

=
CF

Nc

d

dy1
D̃g(ℓ1, y1). (41)
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Fig. 6: d2N
dℓ1 d lnk⊥

for a quark jet at fixedℓ1, MLLA and naive approach.

We note, like for gluon jets, at largey, a (smaller) increase of the distribution, due to taking into account
the jet evolution betweenΘ andΘ0.

4.4 Comments

The gluon distribution is always larger than the quark distribution; this can also be traced in Fig. 2 which
measures in particular the ratio of the color currents< C >g / < C >q.

The curves for d2N
dℓ1 d lnk⊥

have been drawn forℓ1 ≡ ln(1/x1) ≥ 2.5; going below this threshold exposes
to excessively large MLLA corrections.

The signs of the two types of MLLA corrections pointed at in subsection 4.1 vary withy: δ < C >

always brings a negative correction to< C >0, and to d2N
dℓ1 d lnk⊥

; for y ≥ 1.5, the slope of< C > is
always larger that the one of< C >0, while fory ≤ 1.5 it is the opposite. It is accordingly not surprising
that, on Figs. 4 and 6, the relative positions of the curves corresponding to the MLLA calculation and
to a naive calculation change with the value ofy. At largey, one gets a growing behavior of d2N

dℓ1 d ln k⊥

for gluon jets (Fig. 4), and a slowly decreasing one for quarkjets (Fig. 6), which could not have been
anticipateda priori.

We study in appendix E.2, how MLLA results compare with DLA [14] [15], in which the running ofαs

has been “factored out”.

5 INCLUSIVE k⊥ DISTRIBUTION
dN

d ln k⊥

Another quantity of interest is the inclusivek⊥ distribution which is defined by

(

dN

d ln k⊥

)

g or q

=

∫

dx1

(

d2N

dx1 d ln k⊥

)

g or q

≡
∫ YΘ0

−y

ℓmin

dℓ1

(

d2N

dℓ1 d ln k⊥

)

g or q

; (42)

it measures the transverse momentum distribution of one particle with respect to the direction of the
energy flow (jet axis).
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We have introduced in (42) a lower bound of integrationℓmin because our calculations are valid for
smallx1, that is for largeℓ1. In a first step we takeℓmin = 0, then vary it to study the sensitivity of the
calculation to the region of largex1.

We plot below the inclusivek⊥ distributions for gluon and quark jets, for the same two valuesYΘ0
= 7.5

andYΘ0
= 10 as above, and compare them, on the same graphs, with the “naive calculations” of the

same quantity.

5.1 Gluon jet; ℓmin = 0
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Fig. 7: dN
d lnk⊥

for a gluon jet, MLLA and naive approach,
for ℓmin=0, YΘ0

= 7.5 andYΘ0
= 10.
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Fig. 8: enlargements of Fig. 7 at largek⊥
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5.2 Quark jet; ℓmin = 0
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Fig. 9: dN
d ln k⊥

for a quark jet, MLLA and naive approach,
for ℓmin=0, YΘ0

= 7.5 andYΘ0
= 10.
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Fig. 10: enlargements of Fig. 9 at largek⊥

5.3 Role of the lower limit of integration ℓmin

To get an estimate of the sensitivity of the calculation ofdN
d ln k⊥

to the lower bound of integration in (42),
we plot in Fig. 11 below the two results obtained atYΘ0

= 7.5 for ℓmin = 2 andℓmin = 0, for a gluon
jet (left) and a quark jet (right).
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Fig. 11: dN
d ln k⊥

with ℓmin = 2 andℓmin = 0

for gluon (left) and quark (right) jet.

The shapes of the corresponding distributions are identical; they only differ by a vertical shift which is
small in the perturbative regiony ≥ 1 (restricting the domain of integration – increasingℓmin – results
as expected in a decrease ofdN

d ln k⊥

). This shows that, though our calculation is only valid at small x1,
the sensitivity of the final result to this parameter is small.

5.4 Discussion

MLLA corrections are seen on Fig. 8 and Fig. 10 to cure the problems of positivity which occur in the
naive approach.

The range ofℓ1 integration in the definition (42) of dN
d lnk⊥

should be such that, at least, its upper bound
corresponds tox1 small enough; we have seen in the discussion of MLLA corrections to the color current
in subsection 4.1 that one should reasonably considerℓ1 ≥ 2.5; at fixedYΘ0

this yields the upper bound
y1 ≤ YΘ0

− 2.5, that is, at LHCy1 ≤ 5.

On the other side, the perturbative regime we suppose to start at y1 ≥ 1. These mark the limits of
the interval where our calculation can be trusted1 ≤ y1 ≤ 5 at LHC. Fory1 < 1 non-perturbative
corrections will dominate, and fory1 > YΘ0

− ℓmin
1 ≈ YΘ0

− 2.5, the integration defining dN
d lnk⊥

ranges
over values ofx1 which lie outside our smallx approximation and for which the MLLA corrections
become accordingly out of control.

On the curves of Figs. 7 and 9 atYΘ0
= 10, the smally region exhibits a bump which comes from the

competition between two phenomena: the divergence ofαs(k
2
⊥
) whenk⊥ → Q0 and coherence effects

which deplete multiple production at very small momentum. The separation of these two effects is still
more visible atYΘ0

= 15, which is studied in appendix E.3, where a comparison with DLA calculations
is performed. At smallerYΘ0

, the divergence ofαs wins over coherence effects and the bump disappears.

The curves corresponding to the LEP and Tevatron working conditions are given in appendix D.

5.4.1 Mixed quark and gluon jets

In many experiments, the nature of the jet (quark or gluon) isnot determined, and one simply detects
outgoing hadrons, which can originate from either type; onethen introduces a “mixing” parameterω,
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which is to be determined experimentally, such that, for example if one deals with the inclusivek⊥
distribution

(

dN

d ln k⊥

)

mixed

= ω

(

dN

d ln k⊥

)

g

+ (1 − ω)

(

dN

d ln k⊥

)

q

. (43)

It is in this framework that forthcoming data from the LHC will be compared with our theoretical pre-
dictions; since outgoing charged hadrons are detected, oneintroduces the phenomenological parameter
Kch [1][7] normalizing partonic distributions to the ones of charged hadrons

(

dN

d ln k⊥

)ch

= Kch

(

dN

d ln k⊥

)

mixed

. (44)

6 CONCLUSION

After deducing a general formula, valid for allx, for the double differential 2-particle inclusive cross
section for jet production in a hard collision process, the exact solutions of the MLLA evolution equa-
tions [8] have been used to perform a smallx calculation of the double differential 1-particle inclusive
distributions and of the inclusivek⊥ distributions for quark and gluon jets.

Sizable differences with the naive approach in which one forgets the jet evolution between its opening
angleΘ0 and the emission angleΘ have been found; their role is emphasized to recover, in particular,
the positivity of the distributions.

MLLA corrections increase withx and decrease when the transverse momentumk⊥ of the outgoing
hadrons gets larger; that they stay “within control” requires in practice that the smallx region should
not be extended beyondℓ < 2.5; it is remarkable that similar bounds arise in the study of 2-particle
correlations [9]. At fixedYΘ0

, the lower bound forℓ translates into an upper bound fory; this fixes in
particular the upper limit of confidence for our calculationof dN

d ln k⊥

; above this threshold, thoughk⊥ is
larger (more “perturbative”), the smallx approximation is no longer valid.

The “divergent” behavior of the MLLA distributions fory → 0 forbids extending the confidence domain
of MLLA lower that y ≥ 1, keeping away from the singularity ofαs(k

2
⊥
) whenk⊥ → ΛQCD.

The two (competing) effects of coherence (damping of multiple production at small momentum) and
divergence ofαs(k

2
⊥
) at smallk⊥ for the inclusivek⊥ distribution have been exhibited.

MLLA and DLA calculations have been compared; in “modified” MLLA calculations, we have further-
more factored out theαs dependence to ease the comparison with DLA.

While the goal of this work is a comparison of our theoreticalpredictions with forthcoming data from
LHC and Tevatron, we have also given results for LEP. LHC energies will provide a larger trustable
domain of comparison with theoretical predictions at smallx.

Further developments of this work aim at getting rid of the limit Q0 ≈ ΛQCD and extending the calcu-
lations to a larger range of values ofx; then, because of the lack of analytical expressions, the general
formulæ (19) and (20) should be numerically investigated, which will also provide a deeper insight into
the connection between DGLAP and MLLA evolution equations [16].

Acknowledgments: It is a pleasure to thank M. Cacciari, Yu.L. Dokshitzer and G.P. Salam for many
stimulating discussions, and for expert help in numerical calculations. R. P-R. wants to specially thank
Y.L. Dokshitzer for his guidance and encouragements.
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APPENDIX

A EXACT SOLUTION OF THE MLLA EVOLUTION EQUATION FOR
THE FRAGMENTATION FUNCTIONS; THE SPECTRUM AND ITS
DERIVATIVES

A.1 MLLA evolution equation for a gluon jet

Because of (32), we will only write the evolution equations for gluonic fragmentation functionsDb
g.

The partonic structure functionsDb
a satisfy an evolution equation which is best written when expressed

in terms of the variablesℓ andy and the functions̃Db
a defined by [1] (see also (21) (23)):

xbD
b
a(xb, ka, q) = D̃b

a(ℓb, yb). (45)

The parton content̃Dg of a gluon is shown in [8] to satisfy the evolution equation (Y andy are linked by
(6))

D̃g(ℓ, y) = δ(ℓ) +

∫ y

0
dy′
∫ ℓ

0
dℓ′γ2

0(ℓ′ + y′)
[

1 − aδ(ℓ′−ℓ)
]

D̃g(ℓ
′, y′), (46)

where the anomalous dimensionγ0(y) is given by (λ is defined in (39))

γ2
0(y) = 4Nc

αs(k
2
⊥
)

2π
≈ 1

β(y + λ)
. (47)

(see the beginning of section 2 forβ, TR, CF , αs,Nc) and

a =
1

4Nc

[

11

3
Nc +

4

3
TR

(

1 − 2CF

Nc

)]

; CF = 4/3 for SU(3)c. (48)

The (single logarithmic) subtraction term proportional toa in (46) accounts forgluon→ quark transi-
tions in parton cascades as well as for energy conservation –the so-called “hard corrections” to parton
cascading –.

No superscript has been written in the structure functionsDg because the same equation is valid indif-
ferently forDg

g andDq
g (see section 4). One considers that the same evolution equations govern the

(inclusive) hadronic distributionsDh
g (Local Hadron Parton Duality).

A.2 Exact solution of the MLLA evolution equation for partic le spectra

The exact solution of the evolution equation (46), which includes constraints of energy conservation and
the running ofαs, is demonstrated in [8] to be given by the following Mellin’srepresentation

D̃g (ℓ, y, λ) = (ℓ+ y + λ)

∫

dω

2πi

∫

dν

2πi
eωℓ+νy

∫

∞

0

ds

ν + s

(

ω (ν + s)

(ω + s) ν

)1/(β(ω−ν)) ( ν

ν + s

)a/β

e−λs.

(49)
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From (49) and taking the high energy limitℓ+ y ≡ Y ≫ λ 9 one gets [1][7] the explicit formula

D̃g(ℓ, y) =
ℓ+ y

βB(B + 1)

∫

dω

2πi
e−ωy Φ

(

A+ 1, B + 2, ω(ℓ + y)
)

, (50)

whereΦ is the confluent hypergeometric function the integral representation of which reads [17] [18]

Φ(A+ 1, B + 2, ωY ) = Γ(B + 2) (ωY )−B−1

∫

dt

(2πi)

t−B

t(t− 1)

(

t

t− 1

)A

eωY t;

with A =
1

βω
, B =

a

β
, Γ(n) =

∫

∞

0
dχχn−1e−χ. (51)

Exchanging thet andω integrations of (50) (51) and going fromt to the new variableα =
1

2
ln

t

t− 1
,

(50) becomes

D̃g(ℓ, y) = 2
Γ(B)

β
ℜ
(

∫ π
2

0

dτ

π
e−Bα FB(τ, y, ℓ)

)

, (52)

where the integration is performed with respect toτ defined byα =
1

2
ln
y

ℓ
+ iτ ,

FB(τ, y, ℓ) =









coshα− y − ℓ

y + ℓ
sinhα

ℓ+ y

β

α

sinhα









B/2

IB(2
√

Z(τ, y, ℓ)),

Z(τ, y, ℓ) =
ℓ+ y

β

α

sinhα

(

coshα− y − ℓ

y + ℓ
sinhα

)

; (53)

IB is the modified Bessel function of the first kind.

A.3 The spectrum

On Fig. 12 below, we represent, on the left, the spectrum as a function of the transverse momentum (via
y) for fixed ℓ and, on the right, as a function of the energy (viaℓ) for fixed transverse momentum.

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5  6

y

D, l = 2.5

D, l = 3.5

D, l = 5.0

D, l = 7.0

D, l = 9.0

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6

l

D, y = 1.5

D, y = 2.5

D, y = 3.5

D, y = 4.5

Fig. 12: spectrumD̃(ℓ, y) of emitted partons
as functions of transverse momentum (left) and energy (right)

9Y ≫ λ ⇔ EΘ ≫ Q2
0/ΛQCD is not strictly equivalent toQ0 → ΛQCD (limiting spectrum).
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Fig. 13 shows enlargements of Fig. 12 for small values ofy andℓ respectively; they ease the understand-
ing of the curves for the derivatives of the spectrum presented in subsection A.4.
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Fig. 13: spectrumD̃(ℓ, y) of emitted partons
as functions of transverse momentum (left) and energy (right): enlargement of Fig. 12

A comparison between MLLA and DLA calculations of the spectrum is done in appendix E.1.

A.4 Derivatives of the spectrum

We evaluate below the derivatives of the spectrum w.r.t.ln k⊥ andln(1/x).

We make use of the following property for the confluent hypergeometric functionsΦ [18]:

d

dℓ
Φ (A+ 1, B + 2, ω (ℓ+ y)) ≡ d

dy
Φ (A+ 1, B + 2, ω (ℓ+ y)) = ω

A+ 1

B + 2
Φ (A+ 2, B + 3, ω (ℓ+ y)) .

(54)

• We first determine the derivative w.r.t.ℓ ≡ ln(1/x). Differentiating (50) w.r.t.ℓ, and expanding (54),
one gets10 [8]

d

dℓ
D̃g (ℓ, y) = 2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[

1

ℓ+ y
(1 + 2eα sinhα)FB +

1

β
eαFB+1

]

; (55)

• Differentiating w.r.t.y ≡ ln
k⊥
Q0

yields

d

dy
D̃g (ℓ, y) = 2

Γ(B)

β

∫ π
2

0

dτ

π
e−Bα

[

1

ℓ+ y
(1 + 2eα sinhα)FB +

1

β
eαFB+1 −2 sinhα

ℓ+ y
FB−1

]

.

(56)
In Fig. 14, Fig. 15, Fig. 16 and Fig. 17 below, we draw the curves for:

∗ dD̃g(ℓ, y)

dy
as a function ofy, for different values ofℓ fixed;

∗ dD̃g(ℓ, y)

dy
as a function ofℓ, for different values ofy fixed;

10(55) and (56) have also been checked by numerically differentiating (52).
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∗ dD̃g(ℓ, y)

dℓ
as a function ofℓ for different values ofy fixed;

∗ dD̃g(ℓ, y)

dℓ
as a function ofy for different values ofℓ fixed.

In each case the right figure is an enlargement, close to the origin of axes, of the left figure.
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Fig. 14: dD̃g(ℓ,y)
dy as a function ofy for different values ofℓ

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5

l

Dy, y = 1.5

Dy, y = 2.5

Dy, y = 3.5

Dy, y = 4.5

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

l

Dy, y = 1.5

Dy, y = 2.5

Dy, y = 3.5

Dy, y = 4.5

Fig. 15: dD̃g(ℓ,y)
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Fig. 16: dD̃g(ℓ,y)
dℓ as a function ofℓ for different values ofy
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Fig. 17: dD̃g(ℓ,y)
dℓ as a function ofy for different values ofℓ

That
dD̃g(ℓ, y)

dy
goes to infinity wheny → 0 is in agreement with the analytic behavior inln(ℓ/y) of this

derivative.

B LEADING CONTRIBUTIONS TO x1F
h1

A0
(x1, Θ, E, Θ0) AT SMALL

x1

Using (32), the leading terms ofx1F
h1

A0
(x1,Θ, E,Θ0) (26) calculated at smallx1 read

x1F
h1
g (x1,Θ, E,Θ0)

0 ≈ D̃g(ℓ1, y1)

(

< u >g
g +

CF

Nc
< u >q

g

)

=
< C >0

g

Nc
D̃g(ℓ1, y1),

x1F
h1
q (x1,Θ, E,Θ0)

0 ≈ D̃g(ℓ1, y1)

(

< u >g
q +

CF

Nc
< u >q

q

)

=
< C >0

q

Nc
D̃g(ℓ1, y1).

(57)

The leading< C >0
g and< C >0

q in (34) for a quark and a gluon jet are given respectively by (see [1],
chapt. 911 )

< C >0
q = < C >∞ −c1 (Nc − CF )

(

ln (EΘ/ΛQCD)

ln (EΘ0/ΛQCD)

)(c3/4Ncβ)

= < C >∞ −c1 (Nc − CF )

(

YΘ + λ

YΘ0
+ λ

)(c3/4Ncβ)

, (58)

< C >0
g = < C >∞ +c2 (Nc − CF )

(

ln (EΘ/ΛQCD)

ln (EΘ0/ΛQCD)

)(c3/4Ncβ)

= < C >∞ +c2 (Nc − CF )

(

YΘ + λ

YΘ0
+ λ

)(c3/4Ncβ)

, (59)

11The coefficientβ, omitted in the exponents of eqs. (9.12a), (9.12b), (9.12c)of [1] has been restored here. The factor4Nc

is due to our normalization (see the beginning of section 2).
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with

< C >∞ = c1Nc + c2CF ,

c1 =
8

3

CF

c3
, c2 = 1 − c1 =

2

3

nf

c3
, c3 =

8

3
CF +

2

3
nf ; (60)

in the r.h.s of (58) (59) we have used the definitions (6) (7).< C >∞ corresponds to the limitE →
∞,Θ → 0.

In practice, we take in this work
Q0 ≈ ΛQCD ⇔ λ ≈ 0, (61)

which ensures in particular the consistency with the analytical calculation of the MLLA spectrum (ap-
pendix A), which can only be explicitly achieved in this limit.

C CALCULATION OF δ< C >g and δ< C >q OF SECTION 4

C.1 Explicit expressions for< u >A
A0

and δ < u >A
A0

defined in (28)

The expressions (28) for< u >A
A0

andδ< u >A
A0

are conveniently obtained from the Mellin-transformed
DGLAP fragmentation functions [1]

D(j, ξ) =

∫ 1

0
duuj−1D(u, ξ), (62)

which, if one deals withDB
A(u, r2, s2), depends in reality on the differenceξ(r2) − ξ(s2):

ξ(Q2) =

∫ Q2

µ2

dk2

k2

αs(k
2)

4π
, ξ(r2) − ξ(s2) ≈ 1

4Ncβ
ln

(

ln(r2/Λ2
QCD)

ln(s2/Λ2
QCD)

)

. (63)

One has accordingly

< u >A
A0

= DA
A0

(2, ξ(EΘ0) − ξ(EΘ)), δ< u >A
A0

=
d

dj
DA

A0
(j, ξ(EΘ0) − ξ(EΘ))

∣

∣

∣

j=2
. (64)

The DGLAP functionsD(j, ξ) are expressed [1] in terms of the anomalous dimensionsνF (j), νG(j) and
ν±(j), thej dependence of which is in particular known.

For the sake of completeness, we give below the expressions for the< u >’s andδ < u >’s.

< u >q
g =

9

25

(

(

YΘ0
+ λ

YΘ + λ

)
50

81

− 1

)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

< u >g
g = 1/25

(

16

(

YΘ0
+ λ

YΘ + λ

)
50

81

+ 9

)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

< u >g
q =

16

25

(

(

YΘ0
+ λ

YΘ + λ

)
50

81

− 1

)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

,
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< u >sea
q = −1/25

(

−9

(

YΘ0
+ λ

YΘ + λ

)
50

81

− 16 + 25

(

YΘ0
+ λ

YΘ + λ

)2/9
)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

< u >val =

(

YΘ0
+ λ

YΘ + λ

)−
32

81

,

< u >sea
q + < u >val = 1/25

(

9

(

YΘ0
+ λ

YΘ + λ

)
50

81

+ 16

)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

;

δ < u >q
g = − 1

337500

(

−43011

(

YΘ0
+ λ

YΘ + λ

)
50

81

+ 43011 − 6804π2

(

YΘ0
+ λ

YΘ + λ

)
50

81

+6804π2 − 48600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

+21600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

π2 + 109525 ln

(

YΘ0
+ λ

YΘ + λ

)

−17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

δ < u >g
g = − 1

337500

(

−11664

(

YΘ0
+ λ

YΘ + λ

)
50

81

+ 31104π2

(

YΘ0
+ λ

YΘ + λ

)
50

81

−86400 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

+38400 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

π2

+11664 − 31104π2 − 109525 ln

(

YΘ0
+ λ

YΘ + λ

)

+17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

δ < u >g
q = − 4

759375

(

48114

(

YΘ0
+ λ

YΘ + λ

)
50

81

− 48114 − 6804π2

(

YΘ0
+ λ

YΘ + λ

)
50

81

+6804π2 − 48600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

+21600 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

π2 + 109525 ln

(

YΘ0
+ λ

YΘ + λ

)

−17400 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

δ < u >sea
q =

2

759375

(

−13122

(

YΘ0
+ λ

YΘ + λ

)
50

81

+ 34992π2

(

YΘ0
+ λ

YΘ + λ

)
50

81
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+54675 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

−24300 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

π2

+13122 − 34992π2 + 219050 ln

(

YΘ0
+ λ

YΘ + λ

)

− 34800 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

−265625 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)2/9

+37500 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)2/9

π2

)

(

YΘ0
+ λ

YΘ + λ

)−
50

81

,

δ < u >val = − 2

243

(

−85 + 12π2
)

ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)−
32

81

,

δ < u >val +δ < u >sea
q = − 2

759375

(

13122

(

YΘ0
+ λ

YΘ + λ

)
50

81

− 34992π2

(

YΘ0
+ λ

YΘ + λ

)
50

81

−54675 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

+24300 ln

(

YΘ0
+ λ

YΘ + λ

)(

YΘ0
+ λ

YΘ + λ

)
50

81

π2 − 13122 + 34992π2

−219050 ln

(

YΘ0
+ λ

YΘ + λ

)

+ 34800 ln

(

YΘ0
+ λ

YΘ + λ

)

π2

)(

YΘ0
+ λ

YΘ + λ

)−
50

81

.

(65)

WhenΘ → Θ0, all δ< u >’s vanish, ensuring that the limitsξ(EΘ0) − ξ(EΘ) → 0 of the(< C >0
A0

+δ< C >A0
)’s are the same as the ones of the< C >0

A0
’s.

C.2 δ < C >q and δ < C >g

They are given in (35), and one uses (32) such that onlyψg,ℓ1 (see (29)) appears. Their full analytical
expressions for theδ< C >’s are too complicated to be easily written and manipulated.

Using the formulæ of C.1, one gets the approximate results

δ< C >q ≈
(

1.4676 − 1.4676

(

YΘ0
+ λ

YΘ + λ

)−
50

81

− 3.2510 ln

(

YΘ0
+ λ

YΘ + λ

)

+0.5461

(

YΘ0
+ λ

YΘ + λ

)−
50

81

ln

(

YΘ0
+ λ

YΘ + λ

)

)

ψg,ℓ1(ℓ1, y1), (66)

and
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δ< C >g ≈
(

−2.1898 + 2.1898

(

YΘ0
+ λ

YΘ + λ

)−
50

81

− 3.2510 ln

(

YΘ0
+ λ

YΘ + λ

)

−0.3072

(

YΘ0
+ λ

YΘ + λ

)−
50

81

ln

(

YΘ0
+ λ

YΘ + λ

)

)

ψg,ℓ1(ℓ1, y1). (67)

The logarithmic derivativeψg,ℓ1(ℓ1, y1) (29) of the MLLA spectrumD̃g(ℓ1, y1) is obtained from (52) of
appendix A.

D AT LEP AND TEVATRON

At LEP energy, the working conditions correspond toYΘ0
≈ 5.2; they are not very different at the

Tevatron whereYΘ0
≈ 5.6. We first present the curves for LEP, then, after the discussion concerning

the size of the corrections and the domain of validity of our calculations, we give our predictions for the
Tevatron.

D.1 The average color current
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Fig. 18< C >0
A0

and< C >0
A0

+δ< C >A0
for quark and gluon jets, as functions ofy,

for YΘ0
= 5.2, ℓ = 1.5 on the left andℓ = 2.5 on the right.

Owing to the size of the (MLLA) corrections to the< C >’s and theiry derivatives, we will keep to the
lower boundℓ1 ≥ 2.5.

D.2
d2N

dℓ1 d ln k⊥

for a gluon jet

We plot below d2N
dℓ1 d ln k⊥

for the two valuesℓ = 1.5 andℓ = 2.5.
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Fig. 19: d2N
dℓ1 d ln k⊥

for a gluon jet at fixedℓ1, MLLA and naive approach.

The excessive size of theδ< C > corrections emphasized in subsection D.1 translates here into the loss
of the positivity for d2N

dℓ1 d ln k⊥
at ℓ = 1.5 for y < 1: our approximation is clearly not trustable there.

D.3
d2N

dℓ1 d ln k⊥

for a quark jet

We consider the same two values ofℓ as above.
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Fig. 20: d2N
dℓ1 d lnk⊥

for a quark jet at fixedℓ1, MLLA and naive approach.

Like for the gluon jet, we encounter positivity problems atℓ = 1.5 for y < 1.25.

D.4
dN

d ln k⊥

for a gluon jet

We plot below dN
d lnk⊥

for a gluon jet obtained by the “naive” approach and including the jet evolution
from Θ0 to Θ; on the right is an enlargement which shows how positivity isrecovered when MLLA
corrections are included.
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Fig. 21: dN
d ln k⊥

for a gluon jet, MLLA and naive approach.

D.5
dN

d ln k⊥

for a quark jet

We proceed like for a gluon jet. The curves below show the restoration of positivity by MLLA correc-
tions.
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Fig. 22: dN
d lnk⊥

for a quark jet, MLLA and naive approach.

That the upper bound of theℓ1 domain of integration defining dN
d lnk⊥

corresponds to a large enough
ℓ1 ≥ 2.5 requires that, for LEP,y1 should be smaller that5.2 − 2.5 = 2.7; combined with the necessity
to stay in the perturbative regime, it yields1 ≤ y1 ≤ 2.7.

D.6 Discussion and predictions for the Tevatron

The similar condition at Tevatron is1 ≤ y1 ≤ 5.6 − 2.5 = 3.1; like for LEP, it does not extend to large
values ofk⊥ because, there, the smallx approximation is no longer valid. We give below the curves that
we predict in this confidence interval.
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Fig. 23: dN
d lnk⊥

for a gluon (left) and a quark (right) jets, MLLA predictionsfor the Tevatron.

Since experimental results involve a mixture of gluon and quark jets, the mixing parameterω (subsection
5.4.1) has to be introduced in the comparison with theoretical curves, together with the phenomenological
factorKch normalizing partonic to charge hadrons distributions.

E COMPARING DLA AND MLLA APPROXIMATIONS

DLA [14] [15] and MLLA approximations are very different [1]; in particular, the exact balance of
energy (recoil effects of partons) is not accounted for in DLA.

We compare DLA and MLLA results for the two distributions of concern in this work. Studying first
their difference for the spectrum itself eases the rest of the comparison.

We choose the two valuesYΘ0
= 7.5 andYΘ0

= 15. While the first corresponds to the LHC working
conditions (see footnote 8), the second is purely academic since, taking for exampleΘ0 ≈ .5 andQ0 ≈
250 MeV , it corresponds to an energy of1635 TeV ; it is however suitable, as we shall see in subsection
E.3 to disentangle the effects of coherence and the ones of the divergence ofαs at low energy in the
calculation of the inclusivek⊥ distribution.

E.1 The spectrum

Fixing αs in DLA at the largest scale of the process, the collision energy, enormously damps the cor-
responding spectrum (it does not take into account the growing ofαs accompanying parton cascading),
which gives an unrealistic aspect to the comparison.

This is why, as far as the spectra are concerned, we shall compare their MLLA evaluation with that
obtained from the latter by taking to zero the coefficienta given in (48), which also entailsB = 0;
F0(τ, y, ℓ) in (53) becomesI0(2

√

Z(τ, y.ℓ). The infinite normalization that occurs in (52) because of
Γ(B = 0) we replace by a constant such that the two calculations can beeasily compared. This realizes
a DLA approximation (no accounting for recoil effects) “with runningαs”.

On Fig. 24 below are plotted the spectrum̃Dg(ℓ, y ≡ YΘ0
− ℓ) for gluon jets in the MLLA and DLA

“with runningαs” approximations.
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Fig. 24: the spectrum̃Dg(ℓ, YΘ0
− ℓ) for gluon jets;

comparison between MLLA and DLA (“with runningαs”) calculations.

The peak of the MLLA spectrum is seen, as expected, to occur atsmaller values of the energy than that
of DLA.

E.2 Double differential 1-particle inclusive distribution

The genuine MLLA calculations being already shown on Figs. 3and 5, Fig. 25 displays, on the left,
a “modified” MLLA calculation obtained by dividing byαs(k

2
⊥
) ≈ π

2Ncβy (see (47) withλ → 0);
subtracting in the MLLA calculations the dependence onk⊥ due to the running ofαs(k

2
⊥
) allows a

better comparison with DLA (with fixedαs) by getting rid of the divergence whenk⊥ → Q0.

On the right are plotted the DLA results for gluon jets, in whichαs has been fixed at the collision energy
(it is thus very small). Since their normalizations are now different, only theshapesof the two types of
curves must be compared; we indeed observe that the DLA growing of d2N

dℓ1 d ln k⊥

with k⊥ (or y1) also
occurs in the “modified” MLLA curves.
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Fig. 25: comparison between MLLA (after dividing byαs(k
2
⊥
), on the left)

and DLA calculation withαs fixed (on the right) of d2N
dy d lnk⊥

for gluon jets.

The DLA distribution for quark jets is obtained from that of gluon jets by multiplication by the factor
CF /Nc; it it thus also a growing function ofy1.
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The MLLA distribution for quark jets, which is, unlike that for gluon jets, a decreasing function ofy1

(see Fig. 6), becomes, like the latter, growing, after the dependence onαs(k
2
⊥
) has been factored out:

one finds the same behavior as in DLA.

E.3 Inclusivek⊥ distribution

On Fig. 26 we have plotted, atYΘ0
= 7.5:

- the MLLA calculation of dN
d ln k⊥

divided byαs(k
2
⊥
), such that the divergence due to the running ofαs

has been factored out, leaving unperturbed the damping due to coherence effects;

- the DLA calculation of dN
d lnk⊥

with αs fixed at the collision energy.

Like in E.2, because of the division byαs, the two curves are not normalized alike, such that only their
shapesshould be compared.

The comparison of the DLA curve (at fixedαs) with the genuine MLLA calculation displayed in Fig. 7
(left) shows how different are the outputs of the two approximations; while at largek⊥ they are both
decreasing, at smallk⊥ the running ofαs makes the sole MLLA distribution diverge whenk⊥ → Q0

(non-perturbative domain).
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Fig. 26: YΘ0
= 7.5: comparing MLLA and DLA calculations ofdN

d lnk⊥

(see also Fig. 7);
from left to right: 1

αs(k2
T

)
MLLA and DLA (αs fixed).

In the extremely high domain of energyYΘ0
= 15 used for Fig. 27, the two competing phenomena

occurring at smally1 can then be neatly distinguished.

The first plot, showing MLLA results, cleanly separates coherence effects from the running ofαs; in the
second figure we have plotted the MLLA calculation divided byαs(k

2
⊥
): damping at smally1 due to

coherence effects appears now unspoiled; finally, DLA calculations clearly exhibit, too, the damping due
to coherence12 .

The large difference of magnitude observed between the first(genuine MLLA) and the last (DLA) plots
occurs because DLA calculations have been performed withαs fixed at the very high collision energy.

Like in E.2, because of the division byαs, the second curve is not normalized like the two others, such
that only itsshapeshould be compared with theirs.

12The DLA points corresponding toy1 = 0 can be analytically determined to be4Nc/nf (gluon jet) and4CF /nf (quark
jet); they are independent of the energyYΘ0

.
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Figure captions

Fig. 1: the process under consideration: two hadronsh1 andh2 inside one jet;

Fig. 2:< C >0
A0

and< C >0
A0

+δ < C >A0
for quark and gluon jets, as functions ofy, for YΘ0

= 7.5,
ℓ = 2.5 andℓ = 3.5;

Fig. 3: d2N
dℓ1 d ln k⊥

for a gluon jet,YΘ0
= 7.5 andYΘ0

= 10;

Fig. 4: d2N
dℓ1 d ln k⊥

at fixedℓ1 for a gluon jet, comparison between MLLA and the naive approach;

Fig. 5: d2N
dℓ1 d ln k⊥

for a quark jet,YΘ0
= 7.5 andYΘ0

= 10;

Fig. 6: d2N
dℓ1 d ln k⊥

at fixedℓ1 for a quark jet, comparison between MLLA and the naive approach;

Fig. 7: inclusivek⊥ distribution dN
d lnk⊥

for a gluon jet,YΘ0
= 7.5 andYΘ0

= 10, MLLA and naive
approach, both forℓmin = 0;

Fig. 8: enlargements of Fig. 6 at largek⊥;

Fig. 9: inclusivek⊥ distribution dN
d lnk⊥

for a quark jet,YΘ0
= 7.5 andYΘ0

= 10, MLLA and naive
approach, both forℓmin = 0;

Fig. 10: enlargements of Fig. 8 at largek⊥;

Fig. 11: role of the upper limit of integration overx1 in the inclusivek⊥ distribution dN
d ln k⊥

for gluon
(left) and quark (right) jet;

Fig. 12: spectrumD̃g(ℓ, y) of emitted partons as functions of transverse momentum (left) and energy
(right);

Fig. 13: enlargements of Fig. 11 close to the origin;

Fig. 14: dD̃g(ℓ,y)
dy as a function ofy for different values ofℓ;

Fig. 15: dD̃g(ℓ,y)
dy as a function ofℓ for different values ofy;

Fig. 16: dD̃g(ℓ,y)
dℓ as a function ofℓ for different values ofy;

Fig. 17: dD̃g(ℓ,y)
dℓ as a function ofy for different values ofℓ;

Fig. 18:< C >0
A0

and< C >0
A0

+δ< C >A0
for quark and gluon jets, as functions ofy, for YΘ0

= 5.2,
ℓ = 1.5 andℓ = 2.5;

Fig. 19: d2N
dℓ1 d lnk⊥

for a gluon jet forYΘ0
= 5.2 at fixedℓ1, MLLA and naive approach;

Fig. 20: d2N
dℓ1 d lnk⊥

for a quark jet forYΘ0
= 5.2 at fixedℓ1, MLLA and naive approach;

Fig. 21: dN
d ln k⊥

for a gluon jet forYΘ0
= 5.2, MLLA and naive approach;

Fig. 22: dN
d ln k⊥

for a quark jet forYΘ0
= 5.2, MLLA and naive approach;

Fig. 23: dN
d ln k⊥

for a gluon and a quark jets, MLLA predictions for the Tevatron.

Fig. 24: the spectrum̃Dg(ℓ, YΘ0
−ℓ) for gluon jets; comparison between MLLA and DLA (“with running

αs”) calculations;

Fig. 25: comparison between MLLA (after dividing byαs(k
2
⊥
), on the left) and DLA calculation with

αs fixed (on the right) of d2N
dy d ln k⊥

for gluon jets;
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Fig. 26: YΘ0
= 7.5: comparing MLLA and DLA calculations of dN

d lnk⊥
(see also Fig. 6); from left to

right: 1
αs(k2

T
)
MLLA and DLA (αs fixed);

Fig. 27: YΘ0
= 15: comparing MLLA and DLA calculations of dN

d ln k⊥
; from left to right: MLLA,

1
αs(k2

T
)
MLLA and DLA (αs fixed).

34



References

[1] Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan: “Basics of Perturbative QCD”(Edi-
tions Frontières, Paris, 1991), and references therein.

[2] C.P. Fong and B.R. Webber: Phys. Lett.B 229(1989) 289.

[3] OPAL Collab., M.Z. Akrawy et al.: Phys. Lett.B 247(1990) 617-628.

JADE Collab. and OPAL Collab., P. Pfeifenschneider et al.: Eur. Phys. J.C 17 (2000) 19-51.

[4] CDF Collab., T. Affolder at al.: Phys. Rev. Lett.87 (2001) 211804;

CDF Collab., D. Acosta et al.: Phys. Rev.D 68 (2003) 012003.

[5] H1 Collab., C. Adloff et al.: Eur. Phys. J.C 21 (2001) 33-61;

H1 Collab., C. Adloff et al.: Phys. Lett.B 542(2002) 193.

[6] Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan and A.H. Mueller: Rev. Mod. Phys.60 (1988) 373-388.

[7] V.A. Khoze and W. Ochs: Int. J. Mod. Phys.A12 (1997) 2949.

[8] R. Perez Ramos:“Two particle correlations in QCD jets”, to appear.

[9] R. Perez Ramos:“Correlations between two particle in jets”, in “QCD and High Energy Hadronic
Interactions”, Proceedings of “Rencontres de Moriond” (LaThuile, March 12-19th 2005), THE
GIOI Publishers, E. Auger & J. Tran Thanh Van, editors, p. 197.

[10] Yu.L. Dokshitzer, D.I. Dyakonov and S.I. Troyan:“Inelastic processes in Quantum Chromodynam-
ics” , SLAC-TRANS-183, translated from Proceedings of 13th Leningrad Winter School (1978),
1-89;

Yu.L. Dokshitzer, D.I. Dyakonov and S.I. Troyan:“Hard processes in Quantum Chromodynam-
ics” , Phys. Rept.58 (1980) 269-395.

[11] Yu.L. Dokshitzer and D.I. Dyakonov:“Quantum Chromodynamics and hadron jets”, DESY-L-
TRANS-234 (Jul. 1979). Translated from Proceedings of 14thLeningrad Winter School (1979) p.
27-108 (translation).

[12] H.D. Politzer: Phys. Rep.14 C (1974) 130.

[13] V.N. Gribov and L.N. Lipatov: Sov. J. Nucl. Phys.15 (1972) 438 and 675;
L.N. Lipatov: Sov. J. Nucl. Phys.20 (1975) 94;
A.P. Bukhvostov, L.N. Lipatov and N.P. Popov: Sov. J. Nucl. Phys.20 (1975) 286;
G. Altarelli and G. Parisi: Nucl. Phys.B 126 (1977) 298;
Yu.L. Dokshitzer: Sov. Phys. JETP46 (1977) 641.

[14] Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze: Z. Phys.C18 (1983) 37.

[15] Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze: Phys. Lett. B 115(1982) 242.

[16] R. Perez-Ramos & G.P. Salam: in preparation.

[17] I.S. Gradshteyn and I.M. Ryzhik:“Table of Integrals, Series, and Products”(Academic Press, New
York and London, 1965).

35



[18] L.J. Slater, D. Lit (Ph.D):“Confluent Hypergeometric Functions”, Cambridge University Press
(London, New-York) 1960.

36


