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ON EXPONENTIAL OBSERVABILITY ESTIMATES FOR THE

HEAT SEMIGROUP IN SHORT AND INFINITE TIME

LUC MILLER

1. Introduction

The natural setting for the problem to be discussed is on manifolds, but all the
statements can be understood, and are already interesting, when the domain M
is a smooth bounded open set of Rd with the flat metric so that the distance is

dist(x, y) = |y1 − x1|2 + · · · + |yd − xd|2 and the Laplacian is ∆ = ∂2

∂x2

1

+ · · · + ∂2

∂x2

d

,

always considered with Dirichlet condition on the boundary ∂M . We shall refer to
this setting as the Euclidean case.

Although it can be skipped, for completeness we now describe the general setting.
Let (M, g) be a smooth connected compact d-dimensional Riemannian manifold
with metric g and smooth boundary ∂M . When ∂M 6= ∅, M denotes the interior

and M = M∪∂M . Let dist : M
2 → R+ denote the distance function. Let ∆ denote

the (negative) Dirichlet Laplacian on L2(M) (with domain H1
0 (M) ∩ H2(M)).

The observation region Ω, is a non-empty open subset of M such that Ω 6= M .
Unless mentioned otherwise, the range of the time T is (0,∞) and the range of the
initial state u0 is L2(M). The corresponding solution of the Cauchy problem for the
(forward) heat equation is denoted by u(T, x) = (eT∆u0)(x), in short: u = eT∆u0

is the (relative) temperature on R+ × M .
In this note, we make some remarks about the following observability inequality

from Ω of the final state at time T : for all small times T (hence for all times T ),

∀u0,

∫

M

|eT∆u0|2dx ≤ K

∫ T

0

∫

Ω

|et∆u0|2dxdt with K = CeA/T .(1)

When K is an unspecified constant, this inequality is interesting from various
points of view. If u is always zero on Ω then it implies that u is zero everywhere on
M at the final time T , which implies by backward uniqueness that u is always zero
everywhere. Thus (1) is a unique continuation estimate. Moreover, by the duality
in [DR77], the existence of a constant K such that (1) holds is equivalent to the
ability of steering the heat flux from any u0 to zero in time T by a square integrable
source supported in Ω at a cost K (hence the optimal K does not increase with
T ). This property is called null-controllability or exact controllability to zero. Its

validity in this context was proved a decade ago in [LR95, Èma95].
Indeed (1) specifies how the cost K = CeA/T depends on T . The first such

exponential cost estimate are due to Seidman (cf. [Sei84] and the survey [Sei05]).
As far as I know, the best results about the validity of this estimate are threefold and
use different methods. In the Euclidean case, (1) was proved in [FCZ00] by global

Carleman estimates with singular weights as in [Èma95]. Under the geometrical
optics condition on Ω (i.e. LΩ < ∞ with the notation of theorem 4), (1) was deduced
in [Mil04b] by the control transmutation method (in short CTM, cf. section 2.2)
from the observability of the wave group in [BLR92]. In the general setting, a

Date: December 16, 2005.
2000 Mathematics Subject Classification. 93B07, 35B37, 35K05.

1



2 L. MILLER

slightly weaker exponential cost estimate was proved in [Mil05c] by the control
strategy of [LR95] as implemented in the [LZ98]: for all β > 1, there are positive

constants Aβ and Cβ such that (1) holds with K = CβeAβ/T β

.
This note reviews the known bounds on the optimal rate A in (1) (section 2)

and other similar cost estimates (section 3), and relates (1) to several of the fol-
lowing variants considered in [FCZ00, Zua01] in the Euclidean case (theorem 1).
The method of global Carleman estimates leads more naturally to the following
integrated inequality with singular weight:

∀u0,

∫ T

0

∫

M

e−Ã/t|et∆u0|2dxdt ≤ C̃

∫ T

0

∫

Ω

|et∆u0|2dxdt,(2)

This is proved in proposition 6.1 of [FCZ00]. Among open problems, it is stated in
[Zua01] (equation 4.3) that the following variant for infinite time still holds:

∀u0,

∫ ∞

0

∫

M

e−A/t|et∆u0|2dxdt ≤ C∞

∫ ∞

0

∫

Ω

|et∆u0|2dxdt .(3)

Remark 6.1 of [FCZ00] extracts from the proof of theorem 6.1 the following in-
equality for fixed T , which is sharper than (1), at least when T ≥ B:

∀u0,

∫

M

|e−B
√
−∆u0|2dx ≤ K ′

∫ T

0

∫

Ω

|et∆u0|2dxdt with K ′ = C ′eA′/T .(4)

Replacing the L2 norm of the final state in (1) by its norm in a Sobolev space of
real order s yields the following inequality, better for positive s:

∀u0 ∈ Hs(M), ‖eT∆u0‖2
Hs ≤ Ks

∫ T

0

∫

Ω

|et∆u0|2dxdt with Ks = Cse
As/T .(5)

We prove in this note that (1) for small times implies its four variants (2), (3),

(4) and (5), with rates A, Ã, A′ and As which are roughly the same everywhere.
More precisely, section 4 proves:

Theorem 1. For B >
√

2A, A′ > A, s ∈ R and As > A (As = A if s ≤ 0), if the
final time observability inequality (1) holds for all T ≤ T0, then

i. the integrated inequality (2) holds for all T ≤ T0 with Ã = A, and C̃ = CT ,
ii. the infinite time inequality (3) holds with C∞ = CT0(1 + eA/T0),
iii. the sharp inequality (4) holds for all T .
iv. the Sobolev inequality (5) holds for all T .

Conversely, for A > Ã, if the integrated inequality (2) holds for all T ≤ T0, then
the final time inequality (1) holds for all T .

Even in the Euclidean case and for fixed T , theorem 1 simplifies the proof of
(4) (proposition 6.1 in [FCZ00] already uses (1) but also goes back to the global
Carleman inequality). The fast cost estimate in (4) seems to be new:

Corollary 2. Under the geometrical optics condition on Ω or in the Euclidean
case, there are positive constants B, A′ and C ′ such that:

∀T,∀u0,

∫

M

|e−B
√
−∆u0|2dx ≤ C ′eA′/T

∫ T

0

∫

Ω

|et∆u0|2dxdt .

2. Bounds on the optimal rate A in (1)

2.1. Lower bounds. It is proved in [Mil04b] that (1) for all small T implies

A ≥ sup
y∈M

dist(y, Ω)2/2 .(6)
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The proof relies on Varadhan’s formula for the heat kernel in small time (cf. [Var67]),
which requires very low smoothness assumptions as proved in [Nor97]. This im-
proves on the former lower bound in the Euclidean case stated in section 4.1 of
[Zua01] which was based on a construction made in the proof of Theorem 6.2 in
[FCZ00]: A ≥ supBρ⊂M\Ω ρ2/4, where the supremum is taken over balls Bρ of

radius ρ.
For finite times T , the lack of observability at a better cost is only due to the

finite linear combinations of the eigenmodes corresponding to frequencies lower than
a threshold of order 1/T . To state this result from [Mil04b] more precisely 1, we
introduce the spectral data: (ωk)k∈N∗ is a nondecreasing sequence of nonnegative
real numbers and (ek)k∈N∗ is an orthonormal basis of L2(M) such that ek is an
eigenvector of −∆ with eigenvalue ω2

k, i.e.:

−∆ek = ω2
kek and ek = 0 on ∂M .(7)

Theorem 3 ([Mil04b]). Let d ∈ (0, supy∈M dist(y, Ω)). If (1) holds for all small

T and for any u0 in the linear span of {ek}ωk≤d/T , then A ≥ d2/2.

2.2. Upper bounds. In view of theorem 1, upper bounds on the optimal rate A
in (1) imply upper bounds on the optimal rates in (2), (3), (4) and (5).

Theorem 4 ([Mil04b]). Let LΩ be the length of the longest generalized geodesic2

in M which does not intersect Ω. For all A > (2(36/37)LΩ)
2

there is a positive
constant C such that (1) holds for all u0 and T .

The same bound is immediately deduced, by Theorem 1.6 in [Mil05d], for the

heat semigroup on the product manifold M × M̃ observed from Ω × M̃ , where
M̃ denotes another smooth complete ñ-dimensional Riemannian manifold (e.g. an
infinite strip observed from any infinite strip in the interior). To the best of my
knowledge, there are no better upper bound of the optimal rate in the literature.

When comparing theorem 4 to the lower bound in (6), one should bear in mind
that LΩ is always greater than 2 supy∈M dist(y, Ω) (as the length of a generalized

geodesic through y which does not intersect Ω is always greater than 2 dist(y, Ω))
and can be infinitely so. But, for some simple geometries, theorem 4 implies an
upper bound of the optimal rate in terms of supy∈M dist(y, Ω) as well, e.g.:

Corollary 5. In the Euclidean case, if M is a ball and Ω is a small enough neigh-
borhood of its boundary then for all A > 16 supy∈M dist(y, Ω)2 there is a C > 0
such that (1) holds for all T .

Theorem 4 is deduced from the observability of the wave group (cf. [BLR92]) by
the Control Transmutation Method, in short CTM. This method applies to control
problems the guiding principle in the kernel estimates method of [CGT82]: systems
with finite propagation speed yield geometrical information in small times about
systems with similar generators but without propagation speed. Here, it consists in
constructing a time kernel k, coined “the fundamental controlled solution”, which

1Theorem 3 is not explicitely stated in [Mil04b], but it is roughly explained after theorem 2.1 in
[Mil04b]. Moreover, theorem 3 for the Schrödinger group instead of the heat semigroup is proved
by the same method and explicitely stated in [Mil04c].

2In this context, the generalized geodesics are continuous trajectories t 7→ x(t) in M which
follow geodesic curves at unit speed in M (so that on these intervals t 7→ ẋ(t) is continuous); if
they hit ∂M transversely at time t0, then they reflect as light rays or billiard balls (and t 7→ ẋ(t)
is discontinuous at t0); if they hit ∂M tangentially then either there exists a geodesic in M which
continues t 7→ (x(t), ẋ(t)) continuously and they branch onto it, or there is no such geodesic curve
in M and then they glide at unit speed along the geodesic of ∂M which continues t 7→ (x(t), ẋ(t))
continuously until they may branch onto a geodesic in M . The meaning of the geometrical optics
condition LΩ < ∞, due to Bardos-Lebeau-Rauch in [BLR92], is discussed at length in [Mil02].
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transforms the control function for the wave group in time L into an input function
for the heat semigroup in time T : the norms of k must be estimated explicitly in
terms of L and T only. Contrary to Russell’s harmonic analysis method in [Rus73],
it does not use information on the spectrum and it extends to the most general
abstract setting (cf. [Mil04a]).

3. A conjecture and related results

3.1. Conjecture and open problems. Combining the upper and lower bounds
for the optimal rate A in (1) in the simple example of corollary 5 (M is a Euclidean
ball and Ω is a small enough neighborhood of its boundary) yields

α := A

(

sup
y∈M

dist(y, Ω)

)−2

∈ [1/2, 16) .

Since we believe that there is no solution of the heat equation which is more sin-
gular than the heat kernel, it is natural to conjecture that the lower bound (6)
is also an upper bound : the optimal rate A such that (1) holds for small T is
supy∈M dist(y, Ω)2/2 for any (M, g) and Ω 6= M (i.e. α = 1/2).

If K(T ) denotes the optimal cost in (1) for fixed T , then the function K :
(0,∞) → (0,∞) does not increase (as a result of the semigroup property or the dual-
ity with null-controllability), but this is not enough to ensure that limT→0 T lnK(T )
exists. The existence of this limit is part of the conjecture but could possibly be
established independently. Until then, the optimal rate can only be defined as3

A∗ = lim supT→0 T lnK(T ).
Theorem 1 roughly says that the “optimal rates” A and A′ in (1) and (2) are

equal4. It does not say wether the “optimal rates” A in (1) and (3) are also equal
(it roughly says that the “optimal rate” is not greater in (3) than in (1)).

Other related open problems shall appear in [Zua05].

3.2. Boundary observability and window problems. For steering the tem-
perature to zero with the temperature on Γ ⊂ ∂M as input, the corresponding
observability inequality of the final state from Γ is similar to (1):

∀u0,

∫

M

|eT∆u0|2dx ≤ Kν

∫ T

0

∫

Γ

|∂νu|2dxdt with Kν = CνeAν/T ,(8)

where ∂ν denotes the Neumann derivative at the boundary.
When M is a Euclidean segment and Γ is one endpoint, (8) is an inequality on

sums of exponentials coined a “window problem” in [SAI00]. A well trodden path in
the harmonic analysis of this problem is to construct a Riesz basis of bi-orthogonal
functions. This reduces by the Paley-Wiener theorem to the construction of entire
functions with zeros and growth conditions. Proving exponential cost estimates in
this setting is a non-classical aspect of this problem deeply studied in [SAI00]. We
refer to [SAI00, Sei05, Mil04b] for more details and references.

In this context, L = supy∈M dist(y, Γ) is the length of the segment M . The best

upper bound obtained so far by this method is (cf. [Mil04b]): for Aν > 2α∗L2, (8)

holds for all T , where α∗ = 2
(

36
37

)2
< 2. Any improvement of the value of α∗ in

this result, and in the analogous result where the Neumann derivative is removed
in (8), will improve theorem 4 to A > 2α∗L2

Ω. N.b. in the CTM which deduces this
theorem from the boundary observability estimate on the segment there is a loss of
a factor 4 since LΓ = 2L on the segment.

3If A > A∗ then (1) holds for small T , and conversely, if (2) holds for small T then A ≥ A∗.
Wether (1) holds for small T when A = A∗ is an open problem.

4Theorem 1 proves: Ã > A∗ implies “(2) holds for small T” implies Ã ≥ A∗.
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The CTM has been extended in [Mil04a] to the observability (by unbounded op-
erators) of holomorphic semigroups generated by the generator of a cosine operator
function. Since [BLR92] proved the boundary observability for (the real part of)
the wave group cos(t

√
−∆), which is the model of all cosine operator evolutions,

theorem 4 still holds when (1) and Ω are replaced by (8) and Γ (this is theorem 6.1
in [Mil04a]).

By theorem 1.5 in [Mil05d], these two estimates of the cost in (8) for problems in
dimension one and greater extend to the problems that can be deduced from them
by a tensor product, e.g. the better one dimensional result extends to an infinite
strip observed from one of the boundary lines.

3.3. Other evolution systems. The heat kernel method used to prove the lower
bound in theorem 3 and the control transmutation method (CTM) used to prove
the upper bound in theorem 4 were adapted to the interior observability of the
Schrödinger group in [Mil04c] (n.b. this is the observation-control system to which a
transmutation method was first applied in [Phu01]). Thanks to a new necessary and
sufficient condition for the observability of unitary groups by unbounded operators,
coined a “resolvent observability estimate” (this theorem 5.1 in [Mil05a] is the
analogue of the Hautus test for finite dimensional control systems, cf. [RW94]), the
CTM has been extended to this abstract setting. Thus it allows to the deduce from
[BLR92] exponential observability estimates from the boundary for the Schrödinger
group (theorem 10.2 in [Mil05a]).

The slightly weaker exponential cost estimates mentioned in the introduction

i.e. K = CβeAβ/T β

for any β > 1 and some Aβ > 0 and Cβ > 0, were generalized
by the same method to the system of thermoelastic plates without rotationary
inertia (in the Euclidean case, with hinged mechanical boundary conditions and
Dirichlet thermal boundary condition) observed from Ω by either the mechanical
or thermal component (cf. [Mil05e]), and to the plate equation with square root
damping observed from Ω (in the Euclidean case, with hinged boundary conditions,
cf. [Mil05b] where the CTM was also adapted to this system and yields β = 1
under the geometrical optics condition on Ω). The same method was applied to
more general abstract linear elastic systems with structural damping in [Mil05b]
and yields various ranges for β depending on the strength of the damping. It also
applies to anomalous diffusions generated by the fractional Laplacian −(−∆)p, for
p > 1/2, where it yields β > 1/(2p − 1) (cf. [Mil05c]).

The exponential cost estimates in [Mil05b, Mil05e] use earlier polynomial cost
estimates proved in [Tri03, AL03b, AL03a] in the case Ω = M which we have
excluded at the very beginning of this note because (1) holds with K = C/T 1/2

when Ω = M . Triggiani, Lasiecka and Avalos proved cost estimates of the form
K = C/T p, p ≥ 1/2, where p is related to the strength of the damping. These
estimates are similar to the optimal cost estimates for finite dimensional control
systems proved in [Sei88] which we now describe. Let A be an n×n matrix defining
a system of linear differential equations in R

n, and let B be the m×n matrix which
prescribes the m observed coordinates in R

n. The observability inequality is:

∀x0 ∈ R
n, ‖x0‖2 ≤ K

∫ T

0

‖BetAx0‖2dt .(9)

Kalman proved that (9) holds if and only if there is an integer p < n such that
the n × nm block matrix {B∗, A∗B∗, · · · , A∗pB∗} is of rank n (the star denotes
transposed matrices). Seidman proved that, as T tends to zero, the optimal cost
in (9) satisfies K ∼ C/T 1/2+p where p is the smallest integer satisfying Kalman’s
rank condition.
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We are still longing for such a complete result regarding infinite dimensional
control systems, at least for distributed systems with infinite propagation speed
such as the heat semigroup.

4. Proof of theorem 1

i. For T ≤ T ′ ≤ T0, multiplying (1) by e−A/T , bounding
∫ T

0
from above by

∫ T ′

0
,

then integrating T over (0, T ′) yields (2) with T = T ′, C̃ = CT ′, A = Ã.
ii. This point results from the previous one and the following lemma.

Lemma 6. If (1) and (2) hold, then (3) holds with C∞ = C̃ + CTeA/T .

Proof. Since e−A/t ≤ 1 and t 7→ ‖et∆u0‖L2(M) does not increase: for all n ∈ N
∗,

∫ (n+1)T

nT

∫

M

e−A/t|et∆u0|2dxdt ≤ T

∫

M

|enT∆u0|2dx ≤ CTeA/T

∫ nT

(n−1)T

∫

Ω

|et∆u0|2dxdt ,

where (1) with u0 replaced by e(n−1)T u0 is used in the last step. Summing up over
n ≥ 1, yields:

∫ ∞

T

∫

M

e−A/t|et∆u0|2dxdt ≤ CTeA/T

∫ ∞

0

∫

Ω

|et∆u0|2dxdt .

Adding this inequality to (2) yields (3) with C∞ = C̃ + CTeA/T . �

iii. This point results from the previous one and the following lemma.

Lemma 7. For B >
√

2A and A′ > A, there is a C ′ > 0 such that for all T :

∀u0,

∫

M

|e−B
√
−∆u0|2dx ≤ C ′eA′/T

∫ T

0

∫

M

e−A/t|et∆u0|2dxdt .(10)

Proof. Let T0 > 0. Writing u0 =
∑

k ckek with
∑

k|ck|2 in the eigenbasis (7) yields:
∫

M

|e−B
√
−∆u0|2dx =

∑

k

e−2Bωk |ck|2,(11)

∫ T

0

∫

M

e−A/t|et∆u0|2dxdt =
∑

k

IA(T, 2ω2
k)|ck|2,(12)

with IA(T, λ) =

∫ T

0

e−λt−A/tdt =
√

λ/A

∫ T
√

A/λ

0

e−
√

Aλ(s+1/s)ds .

Henceforth, we keep the same notation ε and Cε meaning “for all small ε > 0, there
is Cε > 0 independent of λ and T such that. . . ” although their value may change.

For T
√

A/λ > 1, we may bound the last integral from below by
∫ 1

1−ε
· · · ds, hence:

IA(T, λ) ≥ ε
√

λ/Ae−
√

Aλ(1−ε+1/(1−ε)) ≥ Cεe
−2(1+ε)

√
Aλ .

For T
√

A/λ ≤ 1, i.e. λ ≥ AT 2, we have IA(T, λ) ≥ IA(T,AT 2), hence:

IA(T, λ) ≥ e−AT 3

∫ T

(1−ε)T

e−A/tdt ≥ e−AT 3

εTe−A/((1−ε)T ) ≥ Cεe
−(1+ε)A/T ,

where T ≤ T0 was used in the last step. Joining the two cases yields:

∀λ > 0,∀T ≤ T0, IA(T, λ) ≥ Cεe
−(1+ε)(2

√
Aλ+A/T ) .

With (11) and (12), this proves: for T0 > 0, B >
√

2A and A′ > A, there is a
C ′′ > 0 such that: for all T ≤ T0, (10) holds with C ′ replaced by C ′′. Now with

C ′ = C ′′eA′/T0 , (10) holds for all T , which completes the proof of the lemma. �
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iv. For negative s, since L2(M) is continuously embedded in Hs(M), (1) implies
(5) with As = A by density. Let s > 0 from now on. Since et∆ is an analytic
semigroup, it satisfies the smoothing property: Ss := supt>0‖tset∆‖L(L2;Hs) < ∞.
Let K(T ) and Ks(T ) denote the optimal costs K and Ks in (1) and (5). For all
ε ∈ (0, 1) and T , Ks(T ) ≤ Ss(εT )−sK((1− ε)T ). Since ε is arbitrarily small, for all
As > A, there is a C ′

s such that: for any T0, if K(T ) ≤ CeA/T holds for all T ≤ T0

then Ks(T ) ≤ C ′
se

As/T holds for all T ≤ T0. Therefore, with Cs = C ′
se

As/T0 : if (1)
holds for all T ≤ T0, then (5) holds for all T .

Converse. The last statement of theorem 1 results from the following lemma.

Lemma 8. For all A > Ã, there is a C > 0 such that:

∀T,∀u0,

∫

M

|eT∆u0|2dx ≤ CeA/T

∫ T

0

∫

M

e−Ã/t|et∆u0|2dxdt .

Proof. Let ε ∈ (0, 1). Bounding
∫ T

0
from below by

∫ T

(1−ε)T
yields:

∀u0,

∫ T

0

∫

M

e−Ã/t|et∆u0|2dxdt ≥ (1 − ε)Te−Ã/((1−ε)T )

∫

M

|eT∆u0|2dx ,

since t 7→ e−A/t does not decrease and t 7→ ‖et∆u0‖L2(M) does not increase. Since
ε is arbitrarily small, this completes the proof of the lemma. �
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