On exponential observability estimates for the heat semigroup in short and infinite time
Résumé
This note concerns the final time observability inequality from an interior region for the heat semigroup, which is equivalent to the null-controllability of the heat equation by a square integrable source supported in this region. It focuses on exponential estimates in short times of the observability cost (which is also the controllability cost). It proves that this final time observability inequality (for small times) implies four variants (an integrated inequality with singular weights, an integrated inequality in infinite times, a sharper inequality and a Sobolev inequality) with roughly the same exponential rate everywhere. A conjecture and open problems about the optimal rate are stated. This note also contains a brief review of recent or to be published papers related to exponential observability estimates (boundary observability, Schrödinger group, anomalous diffusion, thermoelastic plates, plates with square root damping and other elastic systems with structural damping).