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This letter reports experimental and numerical results on particle dynamics in an out-of-
equilibrium granular medium. We observed two distinct types of grain motion: the well known
cage motion , during which a grain is always surrounded by the same neighbors, and low probability
jumps, during which a grain moves significantly more relative to the others. These observations
are similar to the results obtained for other out-of-equilibrium systems (glasses, colloidal systems,
etc.). Although such jumps are extremely rare, by inhibiting them in numerical simulations we
demonstrate that they play a significant role in the relaxation of out-of-equilibrium systems.

PACS numbers: 45.70.-n,81.05

Glasses, colloids, and granular materials are charac-
terized by structural disorder at the mesoscopic scale.
These heterogeneous and metastable systems share a
number of dynamical properties such as aging and slow
relaxation, in which the cage motion of individual grains
plays a significant role. Many experimental and numer-
ical efforts have been made to observe and understand
the out-of-equilibrium behavior exhibited by these sys-
tems , E, E, E, E, E, ﬁ, E] A full understanding of
the macroscopic behaviors of these systems requires de-
tailed observations at the local scale (i.e. at the scale
of a particle). The local dynamics in glasses is numeri-
cally simulated with Lennard-Jones liquids and the mo-
tion of atoms can be correlated to the o and (3 relaxation
regimes [ﬂ] Similar observations are obtained experimen-
tally on colloidal systems using confocal microscopy [E],
granular media in 2D [E], or 3D granular assemblies im-
mersed in index matching fluid [ﬂ] For all theses systems,
the cage effect is clearly identified. Here we present an
extensive experimental and numerical study of particle
motion in 3D granular packing under gentle vertical tap-
ping. Although this system is not thermal (its thermal
energy is irrelevant in comparison with the energy needed
to move a macroscopic grain), it is often presented as an
ideal system to study out-of-equilibrium systems. From
a microscopic point of view, this analogy is based on the
idea that the geometry of the grains plays a major role,
similar to geometrical frustration in thermal glasses. In-
deed, like glasses, a granular assembly can be trapped
in a metastable configuration unless an external pertur-
bation such as shear or vibration is applied. Note that,
unlike thermal energy, mechanical agitation of grains is,
in general, neither stochastic nor isotropic. We expect,
as others have found [@, {, i, B, [£d, [, &], that the re-
sults obtained are valid for any of the above mentioned
out-of-equilibrium systems. Let us recall that when a
dense granular sample is submitted to gentle external me-
chanical perturbations, its packing fraction ® increases
quickly at the beginning, then gradually approaches an

asymptotic value. This slow compaction is similar to the
slow dynamics observed in other out-of-equilibrium sys-

tems [P, [d, 13

The experimental results presented in the first part
of this Letter are obtained with D = 0.6 mm diameter
glass spheres placed in a glass cylinder of diameter
6 mm. This container is placed on a plate connected
to an electromagnetic exciter. The glass spheres are
immersed in index matching oil containing a laser dye.
When imaged from the objective lens through the
bottom of the sample container, beads appear as dark
circles. Sequences of 10* taps are carried out. The only
control parameter is the tapping intensity I' = vn42/9
where ¢ = 9.81 m.s™2 and Ymee is the maximum of
the acceleration monitored by the accelerometer when
the plate goes down [[14]. It should be pointed out
that we only used taps for which the grains took off
from the bottom of the glass cylinder i.e. above the
lift-off threshold. Results from numerical simulations
are shown in the second part of this Letter. In these
simulations, the compaction of 4096 monosize spheres
of radius R under tapping from a low packing state to
a higher one is studied. The container is a box with a
flat 32R x 32R square bottom with periodic boundary
conditions imposed in the horizontal directions, and
a free interface at the top of the packing. A tap is
simulated in two stages. First, the packing is dilated
vertically according to the law (2 — R) — (2 — R)(1+¢),
where € is the dilation parameter. This dilation increases
the free volume and allows for the reorganization of
beads. This linear behavior during a tap is also observed
in our experiments and the parameter € is proportional
to the square of the experimental parameter " [[L5]. The
second stage simulates the gravitational redeposition,
with a nonsequential algorithm [[16] in order to observe
the collective behavior. The model only takes the steric
constraints into account, which are fundamental for the
compaction. While the simulation does not calculate
the stress transmission in the packing, it describes
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FIG. 1: (color online). Experimental observation of a jump,
and distribution of bead displacements obtained by confocal
imaging in an index matching fluid. The two pictures corre-
spond to a horizontal cross section at the same altitude of the
granular sample before and after the 126th tap of intensity
T' = 6. All the beads remain in their original layer except one
bead (pointed by a white arrow) which falls from the upper to
the lower layer. The distribution of bead displacements com-
puted for 10 taps, five before, five after the 126" tap, reveals
the two scales of displacement.

relatively accurately the grain motion during a tap [E],
contrary to other simulations such as the Tetris model
for example, which show slow relaxation and aging, but
whose dynamics have no direct relation with particle
motion. Finally, our simulation results closely matches
the experimental results. The experimental setup and
the numerical simulation are described in detail in
Refs [[Ld, [Iq.

During an experiment in index matching fluid, cage
motion and jumps were observed. The cage motion
is always characterized by the fact that a grain is
always surrounded by the same neighbors. A jump is a
displacement during which a grain moves significantly
more than the mean displacement of a grain. Such
an event observed by confocal microscopy is shown in
Fig. . The horizontal cross sections shown were taken
during the same experiment, at the same height in
the medium for two successive taps (125th and 126th).
On each picture, two different layers of the granular
medium are visible. The beads of the lower layer have a
well-defined black outline and a bright central part, and
the beads belonging to the upper layer are black. The
vertical position of a bead is determined by measuring
its apparent radius in the picture. Since the beads
move only a small fraction of a bead diameter between
taps, it is possible to track their positions from frame
to frame. A rare occurrence of jump is indicated by an
arrow in . This bead, during a tap, has fallen from the
upper visible layer to the lower one by a displacement
larger than all the others. The amplitude of this jump
between the two layers is 0.388 D compared to the mean
displacement in a layer, which is 0.00216 D, as shown in
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FIG. 2: (color online). The histogram of displacements in a
horizontal direction (éz) for our 3D experiment (I' = 6) and
for our corresponding numerical simulation (¢ = 0.05). The
lines correspond to Gaussian fits. We observe deviations from
the fits in the tails of the distributions.

the distribution of bead displacement reported in Fig. EI

The study of the grain motion during our simulation
confirms that the displacement of the beads exhibits
two different scales. The smaller scale corresponds to
the cage motion during which a grain explores the trap
created by its neighbors. Previous results [ﬂ, ﬂ] demon-
strate the non-Gaussian character of the displacement
distribution obtained in a 2D experiment and glass
media, respectively. Such non-Gaussian behavior is also
observed in our experimental and numerical systems.
Figure E shows the histogram of displacements in the
x direction and the corresponding Gaussian fits. Devi-
ations from the fits can be observed in the tails of the
distributions. Note that the deviation is more important
for the numerical simulations. The characteristics of
the cage motion change during the simulation, because
of the evolution of the packing fraction. Indeed, the
average magnitude of this displacement decreases with
the decrease of the void space in the medium. The larger
scale corresponds to a jump: a very low probability
event during which a bead enlarges its trap and thus,
escapes from it. Figure E shows the trajectory of a bead
which is subject to a ”jump” during the 100 first taps
in the simulation. The initial drift in position is due to
the increase of the packing fraction and, consequently
to the decrease of the sample height. At the 46th tap,
the bead displacement is 0.48D, although the average
displacement (apart from the jump) is 0.0038D. We
found that the jumps always yield a large displacement
in the direction of gravity, as they are correlated to
the compaction mechanism and correspond to the fall
of a bead in a hole located under it. Note that the
magnitudes of the cage motion and of the jumps are
both of the same order in simulations and experiments.
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FIG. 3: Trajectory of a bead, exhibiting one ”jump”, during
the 100 first taps. The position of the bead center is plotted
after each tap during a simulation of linear dilation parameter
e = 0.05. Between the 46" and the 47" tap, a jump is visible
corresponding to a large displacement. The units are in bead
diameter.
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FIG. 4: (color online). Evolution of the packing fraction with
and without jumps for the same dilation parameter ¢ = 0.05.
For the latter case, the increase of the packing fraction is
slower at the beginning, as the number of inhibited events is
greater at the beginning. Interestingly the packing fraction
reached by the sample after a long time is lower without jumps
than with jumps.

The simulation, thus, correctly represents both the local
and global behaviors of the granular material. The
jumps are extremely rare events, and therefore difficult
to observe experimentally. In a simulation of 10 000 taps
for N = 4096 beads, only about 100 jumps occurred,
mainly at the beginning of the simulation, when the
packing fraction is still far from the steady state value.
Indeed a jump is possible only if the hole is large enough.
To understand the importance of the jumps, they are
inhibited in the simulation, and the evolutions with nor-
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FIG. 5: (color online). Evolution of (Ar?) with t for sim-
ulations with jumps and with inhibited jumps, but for the
same dilation parameter € = 0.05. The random walk created
correctly describes the behavior without jumps but fails to
reproduce the behavior observed with jumps.

mal jumps and with inhibited jumps are compared. To
avoid jumps, the following test is added to the algorithm:
If the vertical displacement of a bead is negative, i.e., if
the bead moves down, and if its displacement d; is larger
than twice the mean displacement of beads in the layer
(d), this displacement is not accepted with probability
1. Instead, the probability of acceptance follows an
exponentially decreasing function exp(—(d; — 2(d))/J).
The brackets () denote the average over a layer, and ¢ is
calculated such that the probability is 1076 when d; = R
(the radius of a bead). Note that we checked with a
molecular dynamics simulation that prohibiting jumps
does not lead to mechanically unstable packings. The
evolution of the packing fraction during the simulation
with jumps and with strongly inhibited jumps is shown
in Fig. H This graph reveals that, without significant
jumps, the increase of packing fraction during the initial
evolution is slower. This seems to make sense as some
large displacements do not occur in this case. But,
surprisingly, the packing obtained after a large number
of taps is less dense without jumps than with jumps. In
terms of energy landscape, this can be interpreted as two
states that are separated by high potential barriers that
cannot be circumnavigated by many slow events, and
we can conclude that the energy landscape exploration
is completely different without jumps. Although jumps
are extremely rare events, they play a significant role in
the evolution of the media. As we have noted earlier,
the number of these events decreases as the system com-
pacts, and the great majority of jumps happens during
the first 250 taps. So the initial behavior determines
the subsequent evolution. Somewhat similar to the
well known memory effects reported first in Ref [E], the
medium never completely forgets its initial evolution.
To have better insight into the effect of jumps, we study

— — —
the evolution of (Ar?(t)) = ((r(t) — r(0))?), where r(t)
is the grain position at time (i.e. number of taps) t,



with and without jumps. The brackets () denote the
average over the grains. The results are reported in
Fig. E for a dilation parameter € = 0.05. In the two cases
a subdiffusive behavior is found. Note that it is not
possible to compare directly the two evolutions, since
the packing fractions are not the same with jumps or
with inhibited jumps. A modified random walk model
that mimics the cage motion can, nevertheless, shed new
light on the diffusive properties without jumps, where
cage motion is the only allowed displacement. Two main
characteristics were introduced in this model. First, an
increase in packing fraction (thus decrease in cage size)
results in decreased mean grain displacements. Second,
the high anticorrelation of the motion inside a cage:
Since the cage is a closed space the probability to have
at time ¢ a step in the opposite direction of the step at
time t — 1 is higher than the probability to have these
two steps in the same direction. A 3D random walk is
then generated for 4096 walkers. The step magnitude
is chosen to fit the decrease of the void in the sample

di = a(®(t)~' — 1)1/3. The fitting parameter « is
adjusted to have the same mean displacement in the
numerical simulation and in the random walk. Finally,
the direction of the step is chosen as follows: The
azimuthal angle 6(t) is chosen uniformly between 0 and
27 and the polar angle is given by p(t) = 17— @(t—1)+n
, where 7 is a Gaussian noise of average zero and of
variance m(Ppaz — D)/ (Pmaz — Po). The values g and
D4 are, respectively, the initial value of the packing
fraction (¢t = 0) and the packing fraction obtained at the
end of the simulation (averaged between ¢t = 9900 and
t = 10000.) This decrease of the variance mimics the
increase of anticorrelation with the increase in packing

— —
fraction ®. We have reported in Fig. f| ((r(t) — r(0))?)
obtained by the random walk model using the fit

parameter « corresponding, respectively, to the data
with jumps and with inhibited jumps. This random

— —
walk describes correctly the evolution of ((r(t) — r(0))?)
without jumps, as expected, but fails to describe the
behavior with jumps. The initial evolution is too slow,
as shown in the inset of Fig. E, and the final evolution
shows correlations which are too weak to describe the
bead motion. The creation of a void large enough to
allow a jump requires not only the motion of the first
neighbors but also the motion of a large cluster [B]
Consequently, although the jumps are low probability
events, they affect the motion of all the beads and thus
the dynamics with jumps corresponds to more complex
mechanisms.

We have studied experimentally and numerically
the bead motion during compaction of a granular
medium. We have demonstrated that extremely rare
”microscopic” events (jumps) have huge consequences
on the "macroscopic” behavior: Simulations show that
compaction is slower, and that the state reached after
many taps is less dense if the jumps are ”inhibited”.
This result is important and surprising because, in an
equilibrium system, such rare events have negligible
effects on its overall evolution. Such results, obtained
for an out-of-equilibrium granular medium, should also
be valid for other out-of-equilibrium systems (glasses,
colloids, etc.) and could be useful for the study of
segregation of granular mixtures under shearing [[LJ].
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