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TRANSVERSELY PROJECTIVE FOLIATIONS ON SURFACES:

EXISTENCE OF NORMAL FORMS AND PRESCIPTION OF

THE MONODROMY

FRANK LORAY1 AND JORGE VITÓRIO PEREIRA2

Abstract. We introduce a notion of normal form for transversely projective
structures of singular foliations on complex manifolds. Our first main result
says that this normal form exists and is unique when ambient space is two-
dimensional. From this result one obtains a natural way to produce invariants
for transversely projective foliations on surfaces. Our second main result says
that on projective surfaces one can construct singular transversely projective
foliations with prescribed monodromy.

1. Introduction and Statement of Results

1.1. Singular Transversely Projective Foliations. Classically a smooth holo-
morphic transversely projective foliation on a complex manifold M is a codimension
one smooth holomorphic foliation locally induced by holomorphic submersions on
P1

C
and with transitions functions in PSL(2, C). Among a number of equivalent

definitions that can be found in the literature, we are particularly fund of the fol-
lowing one: F is a transversely projective foliation of a complex manifold M
if there exists

(1) π : P → M a P1-bundle over M ;
(2) H a codimension one foliation of P transversal to the fibration π;
(3) σ : M → P a holomorphic section transverse to H;

such that F = σ∗H. The datum P = (π : P → M,H, σ : M → P ) is the
transversely projective structure of F . A nice property of this definition is
that the isomorphism class of the P1-bundle P is an invariant canonically attached
to the foliation F , whenever F has a leaf with non-trivial holonomy, cf. [8, page
177, Ex. 3.24.i].

In the holomorphic category the existence of smooth holomorphic foliations im-
poses strong restrictions on the complex manifold. For instance there exists a com-
plete classification of smooth holomorphic foliation on compact complex surfaces,
cf. [3] and references there within. An interesting corollary of this classification
is that a rational surface carries a holomorphic foliation if, and only if, it is a
Hirzebruch surface and the foliation is a rational fibration.

On the other hand the so called Riccati foliations on compact complex surfaces
S , i.e., the foliations which are transversal to a generic fiber of a rational fibration,
are examples of foliations which are transversely projective when restricted to the
open set of S where the transversality of F with the rational fibration holds.

Key words and phrases. Foliation, Transverse Structure, Birational Geometry.
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2 F. LORAY AND J.V. PEREIRA

The problem of defining a good notion of singular transversely projective foliation
on compact complex manifolds naturally emerges. A first idea would be to consider
singular holomorphic foliations which are transversely projective on Zariski open
subsets. Although natural, the experience shows that such concept is not very
manageable: it is too permissive. With an eye on applications one is lead to impose
some kind of regularity at infinity. A natural regularity condition was proposed
by Scárdua in [15]. Loosely speaking, it is imposed that the transversely projective

structure is induced by a global meromorphic triple of 1-forms. The naturality of
such definition has been confirmed by the recent works of Casale on the extension
of Singer’s Theorem [4] and of Malgrange on Non-Linear Differential Galois Theory
[10, 5].

At this work we will adopt a variant of the above mentioned definition which
maintains the geometric flavor of the definition of a smooth transversely projec-
tive foliation given at the beginning of the introduction. For us, F is a singular

transversely projective foliation if there exists

(1) π : P → M a P1-bundle over M ;
(2) H a codimension one singular holomorphic foliation of P transverse to the

generic fiber of π;
(3) σ : M 99K P a meromorphic section generically transverse to H;

such that F = σ∗H. Like in the regular case we will call the datum P = (π : P →
M,H, σ : M 99K P ) a singular transversely projective structure of F .

A first remark is that unlike in the regular case the isomorphism class of P is
not determined by F even when we suppose that F is not singular transversely

affine. In general the P1-bundle P is unique just up to bimeromorphic bundle
transformations. Thus the invariant that we obtain is the bimeromorphism class of
P . When M is projective this invariant is rather dull: any two P1-bundles over M
are bimeromorphic.

To remedy this lack of unicity what we need is a

1.2. Normal form for a singular transversely projective structure. To a
singular transversely projective structure P = (π : P → M,H, σ) we associate the
following objects on M :

• the branch locus, denoted by Branch(P), is the analytic subset of M
formed by the points p ∈ M such that σ(p) is tangent to H;

• the indeterminacy locus, denoted by Ind(P), is the analytic subset of
M corresponding to the indeterminacy locus of σ;

• the polar divisor, denoted by (P)∞, is the divisor on M defined by the
direct image under π of the tangency divisor of H and the one-dimensional
foliation induced by the fibers of π.

Two transversely projective structures P = (π : P → M,H, σ) and P ′ = (π :
P ′ → M,H′, σ′) are said to be bimeromorphically equivalent if there exists a
bimeromorphism φ : P 99K P ′ such that φ∗H′ = H and the diagram

P
φ //_______

π

  A
AA

AA
AA

A P ′

π′

~~||
||

||
||

M
σ

UU

O
A

1

σ′

II

n
|

�

commutes.
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We will say that a singular transversely projective structure P is in normal

form when cod Branch(P) ≤ 2 and the divisor (P ′)∞ − (P)∞ is effective, i.e.
(P ′)∞− (P)∞ ≥ 0, for every projective structure P ′ bimeromorphic to P satisfying
cod Branch(P ′) ≤ 2.

Theorem 1. Let F be a singular transversely projective foliation on a complex

surface S. Every transversely projective structure P of F is bimeromorphically

equivalent to a transversely projective structure in normal form. Moreover this

normal form is unique up to P1-bundle isomorphisms.

We do not know if a normal form always exists on higher dimensional complex
manifolds. Although when a normal forms exists our prove of Theorem 1 shows
that it is unique.

From the unicity of the normal we can systematically produce invariants for
singular transversely projective foliations on complex surfaces. For singular trans-
versely projective foliations on the projective plane we define the

1.3. Eccentricity of a Singular Transversely Projective Structure. Let P =
(π : P 99K P2,H, σ : P2

99K P ) be a singular transversely projective structure in
normal form of a foliation F of the projective plane P2. We define the eccentricity

of P , denoted by ecc(P), as follows: if L ⊂ P2 is a generic line and P |L is the
restriction of the P1-bundle P to L then we set ecc(P) as minus the self-intersection

in P |L of σ(L).
It turns out that the eccentricity of P can be easily computed once we know the

degree of the polar divisor. More precisely we have the

Proposition 1. Let F be a foliation on P2 and P a singular transversely projective

structure for F in normal form. Then

ecc(P) = deg(P)∞ − (deg(F) + 2) .

We do not know if it is possible to give upper bounds for ecc(P) just in function
of the degree of F . A positive result on this direction would be relevant for what
is nowadays called the Poincaré Problem.

The next result shows that ecc(P) captures dynamical information about F in
some special cases.

Proposition 2. Let F be a quasi-minimal singular transversely projective foliation

of P2 and P be a transversely projective structure for F in normal form. If the

monodromy representation of P is not minimal then

ecc(P) > 0 .

An immediate corollary is that transversely projective structures in normal form
of Hilbert modular foliations on P2 have positive eccentricity. This follows from
Proposition 2 and the well-known facts that these foliations are transversely projec-
tive, quasi-minimal and with monodromy contained in PSL(2, R), cf. [11, Theorem
1].

1.4. The Monodromy Representation. A very important invariant of a pro-
jective structure P = (π : P → M,H, σ : M 99K P ), is the monodromy repre-

sentation. It is the representation of π1(M \ |(P)∞|) into PSL(2, C) obtained by
lifting paths on M \ |(P)∞| to the leaves of H.
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Given a hypersurface H ⊂ M and a representation ρ : π1(M \ H) → PSL(2, C),
one might ask if there exists a foliation F of M with transversely projective struc-
ture P whose monodromy is ρ.

We will show in §5.1 that the answer is in general no: there are local obstructions
to solve the realization problem.

On the other hand if the ambient is two-dimensional and the representation ρ
lifts to a representation ρ̃ : π1(M \ H) → SL(2, C) then we have the

Theorem 2. Let S be a projective surface and H a reduced hypersurface on S. If

ρ : π1(S \ H) → PSL(2, C)

is a homomorphism which lifts to a homomorphism ρ̃ : π1(S \ H) → SL(2, C) then

there exists a singular transversely projective foliation F with a singular transversely

projective structure in normal form P such that

(1) H − (P)∞ ≥ 0;
(2) ρ is the monodromy representation of P;

(3) If ρ is not solvable then F admits a unique singular transversely projective

structure in normal form.

We point out that the result (and the proof here presented) holds for higher
dimensional projective manifolds if one supposes that H is a normal crossing divisor,
cf. §5.2 for details.

2. Generalities

2.1. A local description of H. Let ∆n ⊂ Cn be a polydisc and π : P → ∆n

be a P1-bundle. Since the polydisc is a Stein contractible space we can suppose
that P is the projectivization of the trivial rank 2 vector bundle over ∆n and write
π(x, [z1 : z2]) = x. If H is a codimension one foliation of P generically transversal
to the fibers of π then π∗H is induced by a 1-form Ω that can be written as

Ω = z1dz2 − z2dz1 + αz2
1 + βz1 · z2 + γz2

2 ,

where α, β and γ are meromorphic 1-forms on ∆n. The integrability condition
Ω ∧ dΩ = 0 translates into the relations

(1)





dα = α ∧ β
dβ = 2α ∧ γ
dγ = β ∧ γ

The divisor of poles of Ω corresponds to the fibers of π that are tangent to H,
i.e., if C denotes the 1-dimension foliation induced by the fibration π then

(Ω)∞ = tang(H, C) .

Associated to Ω we have an integrable differential sl(2, C)-system on the trivial
rank 2 vector bundle over ∆n defined by

dZ = A · Z where A =

(
−β

2 −γ

α β
2

)
and Z =

(
z1

z2

)

The matrix A can be thought as a meromorphic differential 1-form on ∆n taking
values in the Lie algebra sl(2, C) and satisfying the integrability condition dA+A∧
A = 0. Darboux’s Theorem (see [8], III, 2.8, iv, p.230) asserts that on any simply
connected open subset U ⊂ ∆n \ (Ω)∞ there exists a holomorphic map

Φ : U → SL(2, C) such that A = Φ∗M
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where M is the Maurer-Cartan 1-form on SL(2, C). Moreover, the map Φ is unique
up to a left composition with an element in SL(2, C). For every v ∈ C2 the sections

ϕv : U → U × C2

x 7→ (x, Φ(x) · v)

are solutions of the differential system above. It follows that the application

φ : U × P1 → U × P1

(x, [z1, z2]) 7→ (x, [Φ(x)(z1, z2)]) ,

conjugates the foliation H|U with the one induced by the submersion U ×P1 → P1.
We have just described H over the points outside (Ω)∞. Now we turn our

attention to

2.2. The behaviour of H over a generic point of (Ω)∞. Let W be an analytic
subset of the support of (Ω)∞. We will set S(W ) as

S(W ) = π−1(W ) ∩ sing(H) .

We will start by analyzing H over the irreducible components H of (Ω)∞ for
which π−1(H) is H-invariant.

Lemma 2.1. Let H be an irreducible component of the support of (Ω)∞ and

V = {p ∈ H such that π−1(p) ( sing(H) and H is smooth at p}.
If π−1(H) is H-invariant then for every p ∈ V there exists a neighborhood U of p,
a map ϕ : (U, H ∩ U) → (C, 0) and a Riccati foliation R on (C, 0) × P1 such that

H = ϕ∗R.

In particular π|S(V ) : S(V ) → V is an étale covering of V of degree 1 or 2.

Proof. Since cod sing(H) ≤ 2 then V is a dense open subset of H .
Let p ∈ V and F ∈ O∆n,p be a local equation around for the poles of Ω. Since

p ∈ V at least one of the holomorphic 1-forms Fα, Fβ, Fγ is non-zero at p. After
applying a change of coordinates of the form

(x, [z1 : z2]) 7→ (x, [a11z1 + a12z2 : a21z1 + a22z2])

where (
a11 a12

a21 a22

)
∈ GL(2, C),

we can assume that Fα, Fβ and Fγ are non-zero at p.
From the relation dα = α ∧ β we promptly see that the holomorphic 1-form Fα

besides being non-singular is also integrable. It follows from Frobenius integrability
Theorem and the H-invariance of H that there exist a local system of coordinates
(x, y2, . . . , yn) : U → Cn where p is the origin of Cn, F = xn for a suitable n ∈ N

and Fα = h0dx for some h0 ∈ O∗
∆n,p.

Again from the relation dα = α ∧ β and the fact that Fβ(p) = (xnβ)(p) 6= 0 it
follows that there exists h1 ∈ O∗

∆n,p such that

β = −dh0

h0
+ h1

dx

xn
.

After performing the holomorphic change of variables

(x, [z1 : z2]) 7→ (x, [h0z1 : z2 + (1/2)h1z1])



6 F. LORAY AND J.V. PEREIRA

we can suppose that (α, β) = ( dx
xn , 0).

The conditions dβ = 2α ∧ γ and dγ = β ∧ γ imply that γ depends only on x:
γ = b(x) dx

xn , with b holomorphic. Note that on this new coordinate system we can
no longer suppose that Fγ(p) = xnγ(p) 6= 0.

Thus on this new coordinate system

Ω = z1dz2 − z2dz1 + z2
1

dx

xn
+ z2

2b(x)
dx

xn
.

It follows that on π−1(q), q ∈ V , we have one or two singularities of H: one when
b(0) = 0 and two otherwise. �

A word about the terminology: Further on when we refer to the transverse

type of an irreducible curve of singularities we will be making reference to the type
of singularity of the associated Riccati equation given by the above proposition.

Let us now analyze H over the irreducible components H of (Ω)∞ for which
π−1(H) is not H-invariant. In the notation of lemma 2.1 we have the

Lemma 2.2. If π−1(H) is not H-invariant then π|S(V ) : S(V ) → V admits an

unique holomorphic section.

Proof. Let p ∈ V be an arbitrary point. Without loss of generality we can assume
that Fα, Fβ and Fγ are non-zero at p and that H is not invariant by the foliation
induced by α, cf. proof of lemma 2.1.

Assume also that kerα(p) is transverse to H . Thus there exists a suitable local
coordinate system (x, y, y3, . . . , yn) : U → Cn where p is the origin, F = xn for
some n ∈ N and Fα = h0dy for some h0 ∈ O∗

∆n,p.

The condition dα = α ∧ β implies that β = ndx
x

+ h1 · α with h1 meromorphic
at p. Since Fβ = xnβ is holomorphic and does not vanish at p the same holds for
h1, i.e., h1 ∈ O∗

∆n,p. Thus if we apply the holomorphic change of coordinates

((x, y, y3, . . . , yn), [z1 : z2] 7→ ((x, y, y3, . . . , yn), [z1 : h0 · z2 + h1 · z1])

we have dβ = 0.
Combining 0 = dβ = 2α ∧ γ with dγ = β ∧ γ we deduce that γ = xnh3(y)α for

some meromorphic function h3. Since γ has poles contained in H = {x = 0}, h3 is
in fact holomorphic and consequently H is induced by the 1-form

(2) xn(z1dz2 − z2dz1) + (dy)z2
1 + (xnh3(y)dy)z2

2 .

It is now clear that the singular set of H is given by {x = 0}∩{z1 = 0}. Thus there
exists an open subset V0 ⊂ V for which S(V0) is isomorphic to V0. Since S(V ) does
not contain fibers of π|S(V ) this is sufficient to prove the lemma. �

Remark 2.3. These irreducible components of (Ω)∞ are a kind of fake or apparent

singular set for the transversely projective structures. More precisely, after the
fibred birational change of coordinates

((x, y, y3, . . . , yn), [z1 : z2] 7→ ((x, y, y3, . . . , yn), [z1 : xnz2])

the foliation induced by (2) is completely transversal to the fibres of the P1-fibration
and has a product structure as in the case H is H-invariant.
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2.3. Elementary Transformations. Still in the local setup, let H be a smooth
and irreducible component of the support of (Ω)∞ and let S ⊂ π−1(H) be a holo-
morphic section of the restriction of the P1-bundle over M . An elementary trans-

formation elmS : ∆n×P1
99K ∆n×P1 with center in S can be described as follows:

first we blow-up S on M and then we contract the strict transform of π−1(H). If
F = 0 is a reduced equation of H and S is the intersection of H × P1 with the
hypersurface z2 = 0 then elmS can be explicitly written as

elmS : ∆n × P1
99K ∆n × P1

(x, [z1 : z2]) 7→ (x, [F (x)z1 : z2])

modulo P1-bundle isomorphisms on the source and the target.
We are interested in describing the foliation (elmS)∗H = (elm−1

S )∗H. More
specifically we want to understand how the divisors tang(H, C) and tang(e∗H, C)
are related, where C denotes the one dimension foliation induced by the fibers to
∆n × P1 → ∆n. We point out that the analysis we will now carry on can be found
in the case n = 1 in [3, pages 53–56]. The arguments that we will use are essentially
the same. We decided to include them here thinking on readers’ convenience.

Let k be the order of (Ω)∞ along H . Since elm−1
S (x, [z1 : z2]) = (x, [z1 : F (x)z2])

it follows that

(elm−1
S )∗Ω = F (z1dz2 − z2dz1) + αz2

1 + F

(
β +

dF

F

)
z1 · z2 + F 2γz2

2 .

Thus the foliation (elmS)∗H is induced by the meromorphic 1-form

Ω̃ = (z1dz2 − z2dz1) +
α

F
z2
1 +

(
β +

dF

F

)
z1 · z2 + Fγz2

2

In order to describe (Ω)∞ we will consider three mutually exclusive cases:

(1) S is not contained in π−1(H) ∩ sing(H): This equivalent to say that F kα
is not identically zero when restricted to H . Therefore

(Ω̃)∞ = (Ω)∞ + H .

(2) S ⊂ π−1(H) ∩ sing(H) but S is not equal to π−1(H) ∩ sing(H): This cor-

responds to (F kα)|H ≡ 0 while (F kβ)|H 6≡ 0. If k ≥ 2 then it follows
that

(Ω̃)∞ = (Ω)∞ .

When k = 1 we have two possible behaviors

(Ω̃)∞ =

{
(Ω)∞ − H when β + dF

F
is holomorphic.

(Ω)∞ otherwise .

(3) S is equal to π−1(H) ∩ sing(H): Here (F kα)|H ≡ (F kβ)|H ≡ 0 while (F kγ)|H 6≡
0.When k = 1 it follows that

(Ω̃)∞ = (Ω)∞ .

When k ≥ 2, if we set k′ as the smallest positive integer for which (F k′

α)|H ≡
(F k′+1β)|H ≡ 0 then

(Ω̃)∞ = (Ω)∞ − (k − k′)H.
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In the global setup the picture is essentially the same, i.e., if π : P → M is
a P1-bundle over M , H is a smooth hypersurface on M and s : M → P |H is a
holomorphic section then we build up a new P1-bundle by blowing up the image of
s in P and contracting the strict transform π−1(H). The local analysis just made
can be applied, as it is, on the global setup.

In the case P is the projectivization of a rank 2 holomorphic vector bundle
over a complex manifold M then the elementary transformations just described are
projectivizations of the so called elementary modifications, see [7, pages 41–42].

3. Existence and Unicity of the Normal Form

3.1. Existence of a Normal Form I: A Particular Case. Let P = (π : P →
S,H, σ : S 99K P ) be a transversely projective structure for a foliation F on a
complex surface S. We will now prove the existence of a normal form for P under
the additional assumptions that the irreducible components of the support of (Ω)∞
and the codimension one irreducible components of Branch(P) are smooth.

Let H be an irreducible component of (P)∞ of multiplicity k(H) and, as in §2.2,
let S(H) be given by S(H) = π−1(H) ∩ sing(H) . Thus ( see lemmata 2.1 and 2.2
) S(H) is an analytic subset of π−1(H) formed by a finite union of fibers together
with a one or two-valued holomorphic section s of P |H . Note that to assure that s
is in fact holomorphic, and not just meromorphic, we have used that H is a curve,
i.e., we have used that S is a surface.

If s is two-valued and k(H) > 1 then the elementary transformation centered in
any of the branches of s (we are, of course, restring to a simply-connected open set
where s does not ramifies) will not change the order of poles of Ω), i.e., the order
of poles is already minimal. This follows from the fact that the transverse type of
s is reduced, it is in fact (cf. [3, page 54]) a saddle-node.

If s is two-valued and k(H) = 1 then s does not ramifies. In fact, if the quotient of
eigenvalues along one of the branches of s is λ then, by Camacho-Sad index theorem,
the other branch will have quotient of eigenvalues equal to −λ. Thus ramification
of s leads to absurdity λ 6= 0 and λ = −λ. If the quotient of eigenvalues of the
branches of s are not integers then we are in a minimal situation. On the contrary if
the quotient of eigenvalues of one of the branches of s, say s+, is a positive integer,
say λ+, then by an elementary transformation centered at s+ we will obtain two
new sections of singularities one of them with transverse type λ+ − 1. After λ+

successive elementary transformations we will arrive at a transversely projective
structure, still denoted by P , where H does not belong to the support of (P)∞
(linearizable transverse type) or s is one-valued(Poincaré-Dulac transverse type).

If s is one-valued, k(H) = 1 and H is H-invariant then an elementary transfor-
mation centered in s will either transform H to a foliation with k(H) = 1 but now
with s two-valued. It changes the transverse type from saddle-node (with weak
separatrix in the direction of the fibration) to Poincaré-Dulac. The important fact
is that it does not changes k(H).

If s is one-valued, k(H) > 1 and H is H-invariant then we have two possibilities.
The first is when the transverse type is degenerated. An elementary transformation
centered in s will drop the multiplicity of H on (P)∞. The second possibility is
when the transverse type is nilpotent. On this last case the multiplicity is stable
by elementary transformations, cf. [3, page 55-56].
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If s is one-valued and H is not H-invariant then an elementary transformation
centered in s will decrease k(H) by one, compare with remark 2.3. Of course if
k(H) reaches zero then the resulting foliation is smooth over a generic point of H .

In resume after applying a finite number of elementary transformations we arrive
at a projective structure, still denoted by P , for which (P)∞ has minimal multiplic-
ity in the same bimeromorphic equivalence class. Note also that no codimension
one components have been added to |(P)∞| ∪ Branch(P) along the process.

Of course there are distinct biholomorphic equivalence class of projective struc-
ture with the same property. To rigidify we have to consider Branch(P).

Let now H be an irreducible codimension one component of Branch(P). First
suppose that H is contained in the support of (P)∞. The restriction of σ to π−1(H)
determines s a natural candidate for center of an elementary transformation. As
before, keep the same notation from the projective structure obtained after applying
the elementary transformation centered in s. Two things can happen: (1) σ|H ⊂
sing(H); or (2) σ|H 6⊂ sing(H). In case (2) we are done. In case (1) we are in a
situation no different from the one that we started with. If we iterate the process
and keep falling in case (1) we deduce that σ follows the infinitely near singularities
of H|H and therefore must be an H-invariant hypersurface. Of course this is not
the case since in the definition of a transversely projective structure we demand
that σ is generically transverse to H.

It remains to consider the case H is not contained in the support of (P)∞. The
elementary transformation centered on s, the restriction of σ to π−1(H), yields a
projective structure for which we have added H with multiplicity one in (P)∞. So
we have reduced to the case just analyzed: H is contained in the support of (P)∞.

In resume we have proved the

Proposition 3.1. Let P = (π : P → S,H, σ : S 99K P ) be a transversely projective

structure for a foliation F on a complex surface S. Suppose that the irreducible

components of the support of (Ω)∞ and the codimension one irreducible components

of Branch(P) are smooth. Then there exists P ′ a transversely projective structure

in normal form bimeromorphically equivalent to P.

Before dealing with the unicity of the normal form we will prove the

3.2. Existence of a Normal Form II: The General Case. To prove the ex-
istence of a normal form for a general transversely projective structure P = (π :
P → S,H, σ : S 99K P ) for a foliation F we proceed as follows.

We start by taking an embedded resolution of the support of (P)∞ and of the
codimension one components of Branch(P), i.e., we take a bimeromorphic mor-

phism r : S̃ → S such that r∗|(P)∞| is a divisor with smooth irreducible compo-
nents and the codimension one components of r∗(Branch(P)) are also smooth. We

will now work with P̃ = r∗P a transversely projective structure for F̃ = r∗F .

Proposition 3.1 implies that there exists a transversely projective structure P̃ ′ in

normal form bimeromorphic to P̃. If U = S̃ \ D, where D denotes the exceptional

divisor of r, then P ′ = (r|U )∗(P̃ ′|U ) is a transversely projective structure in normal
form for F defined on the complement of a finite number of points. It follows
from Hartog’s extension Theorem that to extend P ′ it is sufficient to extend the
P1-bundle P’. To conclude we have just to apply the following
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Lemma 3.2. Let π̃ : P̃ → S̃ be a P1-bundle over a compact complex surface S̃

and let r : S̃ → S be a bimeromorphic morphism with exceptional divisor D. Then

there exists a P1-bundle π : P → S and a map φ : P̃ → P such that φ|
π̃−1(S̃\D) is

a P1-bundle isomorphism.

Proof. Let Ũ be a sufficiently small neighborhood of the support of D. We can

assume that U = r(Ũ ) is a Stein subset of S. Outside Ũ there is no problem at all:

the map r is an biholomorphism when restricted to S̃ \ Ũ .

Suppose first that there exists a rank 2 vector bundle Ẽ over Ũ such that P̃ |Ũ =

P(Ẽ). If Ẽ denotes the sheaf of sections of Ẽ, U = r(Ũ ) and p = r(E) then Grauert’s

direct image Theorem assures that φ∗Ẽ is a coherent OV -sheaf. Moreover φ∗Ẽ is
locally free when restricted to U \ {p}. If E∨∨ = Hom(Hom(r∗E ,OV ),OV ) then
E∨∨ is a reflexive sheaf. Since we are in dimension two E∨∨ is in fact locally free,
cf. [7, Proposition 25, page 45]. Thus E∨∨ is the sheaf of sections of some rank two
vector bundle E. This is sufficient to prove the lemma under the assumption that

P̃ |Ũ = P(Ẽ). Now we will show that this is always the case.

The obstruction to a P1-bundle over Ũ be the projectivization of a rank two
vector bundles lies in H2(Ũ ,O∗

Ũ
), cf. [1, page 190]. It follows from the exponential

sequence that H3(Ũ , Z) = H2(Ũ ,OŨ ) = 0 implies that H2(Ũ ,O∗
Ũ

) = 0. But Ũ has

the same type of homotopy of a tree of rational curves. Thus H3(Ũ , Z) = 0. On

the other hand, by [1, Theorem 9.1.(iii), pages 91–92], H2(Ũ ,OŨ ) = H2(U,OU ) and
this latter group is zero since we have taken U Stein. Consequently we have that
H2(Ũ ,O∗

Ũ
) = 0 and every P1-bundle over Ũ is the projectivization of a rank two

vector bundle over Ũ . �

The examples below show that the lemma 3.2 is no longer true in dimension
greater than two.

Example 3.3. Let f : C3 → C be the function f(x, y, z) = x2 + y2 + z2 and
consider F the codimension one foliation induced by the levels of f . If TF denotes
the tangent sheaf of F then TF is a rank 2 locally free subsheaf of TC3 outside
the origin of C3 since at these points f is a local submersion. Nevertheless, at the
origin of C3, TF is not locally free, i.e., we cannot write

df = iXiY dx ∧ dy ∧ dz ,

with X and Y germs of holomorphic vector fields at zero. To see this one has
just to observe that, for arbitrary germs of holomorphic vector fields X and Y ,
the zero set of iXiY dx ∧ dy ∧ dz is either empty or has codimension smaller then

two. If π : (C̃3, D) → (C3, 0) denotes the blow-up of the origin of C3 then, as the

reader can check, the tangent sheaf of F̃ = π∗F is locally free everywhere. Now the

restriction of π to C̃3 \ |D| induces an isomorphism of the P1-bundles P(T F̃|
C̃3\|D|

)

and P(TF|C3\{0}). Althought the P1-bundle P(TF|C3\{0}) does not extends to a

P1-bundle over C3. �

A more geometric version of the previous example has been communicated to us
by C. Araújo. It has appeared several times in the literature, cf. [2] and references
therein. We reproduce it here for the reader’s convenience.
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Example 3.4. Let p be a point in P3 and V be the variety of 2-planes in P3

containing p. Consider the variety X ⊂ P3 × V defined as

X = {(p, Π) ∈ P3 × V | p ∈ Π}.
Consider the natural projection ρ : X → P3. If q 6= p, the fiber over q is the P1

of planes containing p and q. The fiber over p is naturally identified with V , thus

isomorphic to P2. If π : P̃3 → P3 is the blow-up of p then we have the following
diagram

P̃3 ⊠P3 X

��

// X

ρ

��
P̃3

π
// P3

The reader can check that the fibered product P̃3 ⊠P3 X is a P1-bundle over P̃3 and
we are in a situation analogous to the previous example. �

To finish the proof of Theorem 1 we have to establish the

3.3. Unicity of the Normal Form. Let P = (π : P → S,H, σ : S 99K P ) and
P ′ = (π : P ′ → S,H′, σ : S 99K P ′) be two transversely projective structures in
normal for the same foliation F and in the same bimeromorphic equivalence class.
Let φ : P 99K P ′ be a fibered bimeromorphism. We want to show that φ is in fact
biholomorphic.

Since both P and P ′ are in normal form we have that (P)∞ = (P ′)∞. Thus for
every p ∈ S \ |(P)∞| there exists a neighboorhood U of p such that H|π−1(U) and
H′|π′−1(U) are smooth foliations transverse to the fibers of π and π′, respectively. If

φ is not holomorphic when restricted to π−1(U) then it most contract some fibers of
π. This would imply the existence of singular points for H′|π′−1(U) and consequently
contradict our assumptions. Thus φ is holomorphic over every p ∈ S \ |(P)∞|.

Suppose now that p ∈ |(P)∞| is a generic point and that Σp is germ of curve
at p transverse to |(P)∞|. The restriction of φ to π−1(Σ) (denoted by φΣ) induces
a bimeromorphism of P1-bundles over Σ. Since Σ has dimension one this bimero-
morphism can be written as a composition of elementary transformations. Since p
is generic on the fiber π−1(p) we have two of three distinguished points: one or two
singularities of H and one point from the section σ. But φΣ must send these points
to the corresponding over the fiber π′−1(p). This clearly implies that φΣ is holo-
morphic. From the product structure of H in a neighborhood of p, cf. lemma 2.1
and remark 2.3 after lemma 2.2, it follows that φ is holomorphic in a neighborhood
of π−1(p).

At this point we have already shown that there exists Z, a codimension two
subset of S, such that φ|π−1(S\Z) is holomorphic.

Let now p ∈ Z and U be a neighborhood of p where both P and P ′ are trivial
P1-bundles. Thus after restricting and taking trivializations of both P and P ′ we
have that φ|π−1(U) can be written as

φ|π−1(U)(x, [y1 : y2]) = (x, [a(x)y1 + b(x)y2 : c(x)y1 + d(x)y2]) ,

where a, b, c, d are germs of holomorphic functions. But then the points x ∈ U
where φ is not biholomorphic are determined by the equation (ad − bd)(x) = 0.
Since (ad − bd)(x) is distinct from zero outside the codimension two set Z it is
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distinct from zero everywhere. Therefore we conclude that φ is fact biholomorphic
and in this way conclude the prove of the unicity of the normal form. This also
concludes the proof of Theorem 1. �

Remark 3.5. To prove the unicity we have not used that S is a surface. Therefore
as long as a normal form exists it is unique no matter the dimension of the ambient
manifold.

4. Eccentricity of a Singular Transversely Projective Structure

4.1. Foliations on the Projective Plane and on P1-bundles. The degree of
a foliation F on P2 is defined as the number of tangencies of F with a general line
L on P2. When F has degree d it is defined through a global holomorphic section
of TP2 ⊗OP2(d − 1), see [3, pages 27–28].

If π : S → B is a P1-bundle over a projective curve B, C is the foliation tangent
to the fibers of π and R is a Riccati foliation on S then R is defined by a global
holomorphic section of TS ⊗ π∗(T∗B)⊗OS(tang(R, C)) [3, page 57]. If C ⊂ S is a
reduced curve not R-invariant then [3, proposition 2,page 23]

deg (π∗(TB) ⊗OS(−tang(R, C)) |C = C2 − tang(R, C) .

With these ingredients at hand we are able to obtain

4.2. A formula for the Eccentricity: Proof of Proposition 1. Let L ⊂ P2

be a generic line and let PL be the restriction of the P1-bundle π : P → P2 to L.
On PL we have G, a Riccati foliation induced by the restriction of H, and a curve
C corresponding to σ(L). Notice that

TG = (π|L)∗OP1(2) ⊗OP1(−(P)∞) .

We also point out that the tangencies between G and C are in direct correspondence
with the tangencies between F and L. Thus

TG · C = C · C − tang(G, C)

= −ecc(P) − deg(F) .

Combining this with the expression for TG above we obtain that

2 − deg((P)∞) = −ecc(P) − deg(F) ,

and the proposition follows. �

4.3. Some Examples. Before proceeding let’s see some examples of transversely
projective foliations on P2 and compute theirs eccentricities using proposition 1.

Example 4.1. [Hilbert Modular Foliations on the Projective Plane] In [11] some
Hilbert Modular Foliations on the Projective Plane are described. For instance
in Theorem 4 of loc. cit. a pair of foliations H2 and H3 of degrees 2 and 4 is
presented. Both foliations admit transversely projective structures with reduced
polar divisor whose support consists of a rational quintic and a line, cf. [6, 11].
For H2 the eccentricity is equal to 2 = 6 − (2 + 2) while for H3 it is equal to
1 = 6− (3+2). Similarly if one consider the pair of foliations H5 and H9 presented
in Theorem 2 of loc. cit. then H5 has eccentricity 8 = 15 − (5 + 2) and H9 has
eccentricity 4 = 15 − (9 + 2). Since H5 is birationally equivalent to H9 and H2

is birationally equivalent to H3 these examples show that the eccentricity is not a
birational invariant of transversely projective foliations.
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Example 4.2. [Riccati Foliations on P2] Let p ∈ P2 be a point and let F be a
degree d foliation for which the singular point p has l(p) = d. We recall that l(p) is

defined as follows: if π : (P̃2, E) → (P2, p) is the blow-up of p and ω is a local 1-form
with codimension two singular set defining F then l(p) is the vanishing order of
π∗ω along the exceptional divisor E.

When l(p) = d it follows from [3, page 28 example 3] that Tπ∗F ·L = 0, where L
is the strict transform of a line passing through p. From the discussion in [3, page
50–51] it follows that π∗F is a Riccati foliation.

For a generic degree d foliation F satisfying l(p) = d we will have d+1 invariant
lines passing through p and no other invariant algebraic curves. Since F is Riccati
it will have a transversely projective structure with exceptional divisor supported
on the d+1 F -invariant lines. For generic F the exceptional divisor will be reduced
and with support equal to the union of these lines. In this case we will have that
the eccentricity is minus one.

Example 4.3. [Brunella’s Very Special Foliation] The very special foliation admits
a birational model on P2 where it is induced by the homogeneous 1-form (cf. [12])

(3) ω = (−y2z − xz2 + 2xyz)dx + (3xyz − 3x2z)dy + (x2z − 2xy2 + x2y)dz .

It has three invariant curves. The lines {x = 0} and {z = 0} and the rational cubic
{x2z +xz2−3xyz+y3 = 0}. Notice that the rational cubic has a node at [1 : 1 : 1].
Moreover

dω =

(
dx

x
+

dz

z
+

2

3

d(x2z + xz2 − 3xyz + y3)

x2z + xz2 − 3xyz + y3

)
∧ ω .

It can be verified that F has a projective structure in normal form with the polar
divisor reduced and with support equal to the three F -invariant curves. Thus the
eccentricity of this projective structure is one.

4.4. Proof of Proposition 2. Let F be a quasi-minimal singular transversely
projective foliation of P2 with transverse structure P = (π : P → M,H, σ : M 99K

P ) in normal form. If the monodromy of H is non-solvable and not minimal then
there exists a non-algebraic proper closed set M of P formed by a union of leaves
and singularities of H.

If L ⊂ P2 is a generic line then ecc(P) = −C2 where C = σ(L). If ecc(P) ≤ 0,
i.e., C2 ≥ 0 then every leaf of G, the restriction of H to π−1(L) must intersects
M∩π−1(L). In the case C2 > 0 this follows from [13, Corollary 8.2]. When C2 = 0
we have that π−1(L) = P1 × P1 and every non algebraic leave must intersect every
fiber of the horizontal fibration(otherwise the restriction of the second projection
to it would be constant).

Therefore for L generic enough σ∗M is a non-algebraic proper closed subset of
P2 invariant under F . Thus F is not quasi-minimal. This contradiction implies the
result. �

5. The Monodromy Representation

5.1. A Local Obstruction. Let H = {x1 ·x2 = 0} be the union of the coordinate
axis in C2 and ρ : π1(C

2 \ H) → PSL(2, C) a representation.

Proposition 5.1. If ρ is the monodromy representation of a transversely projective

structure P defined in U , a neighborhood of 0 ∈ C2, then ρ lifts to SL(2, C).
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Proof. We can suppose without loss of generality that U is a polydisc and that P is
normal form. Over U every P1-bundle is trivial therefore H induces an integrable
differential sl(2, C)-system on the trivial rank 2 vector bundle over U , cf. §2. Clearly
ρ lifts to the monodromy of the sl(2, C)-system and the proposition follows. �

A word of warning: it is not true that the monodromy of a transversely projective
structure P always lift to SL(2, C). For instance we have smooth Riccati equations
over elliptic curves with monodromy group conjugated to the abelian group

G =< (z1 : z2) 7→ (z2 : z1); (z1 : z2) 7→ (−z1 : z2) > .

5.2. Prescribing the monodromy: Proof of Theorem 2. First we will assume
that H is an hypersurface with smooth irreducible components and with at most
normal crossings singularities. Instead of working with the projective surface S we
will work with a projective manifold M of arbitrary dimension n.

Construction of the P1-bundle and of the foliation. If ρ : π1(M \ H) →
SL(2; C) is a representation then it follows from Deligne’s work on Riemann-Hilbert
problem [9] that there exists E, a rank 2 vector bundle over M , and a meromorphic
flat connection

∇ : E → E ⊗ Ω1
M (log H)

with monodromy representation given by ρ. From the C-linearity of ∇ we see that
its solutions induce H, a codimension one foliation of P(E). If πP(E) : P(E) → M

denotes the natural projection then over π−1
P(E)(M \H) the restriction of H is nothing

more than suspension of [ρ] : π1(M \ H) → PSL(2, C) as defined in [6, Example
2.8].

Let U be a sufficiently small open set of M and choose a trivialization of E|U =

U ×C2 with coordinates (x, z1, z2) ∈ U ×C×C. Then for every section σ = (σ1, σ2)
of E|U we have that

∇|U (σ) =

(
dσ1

dσ2

)
+ A ·

(
σ1

σ2

)

where

A =

(
α β
γ δ

)

is two by two matrix with α, β, γ, δ ∈ Ω1
M (log H) satisfying the integrability condi-

tion dA + A ∧ A = 0. Thus ∇ = 0 induces the system

dz1 = z1α + z2β

dz2 = z1γ + z2δ .

Thus the solution of the above differential system are contained in the leaves of the
foliation defined over π−1

P(E)(U) by

ΩU = z1dz2 − z2dz1 − z2
2β + z1z2(γ − α) + z2

1δ .

Clearly the foliations defined in this way patch together to give H, a codimension
one foliation on P(E) transverse to fibers of π which are not over H .

Construction of the meromorphic section. The next step in the proof of
Theorem 2 is to assure the existence of a generic meromorphic section of P(E).
This is done in the following
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Lemma 5.2. There exists a meromorphic section

σ : M 99K P(E) ,

with the following properties:

(i) σ is generically transversal to G;

(ii) sing(σ∗Ω) \ (σ∗sing(G) ∪ Ind(σ)) has dimension zero.

Proof. Let L be an ample line bundle over M . By Serre’s Vanishing Theorem we
have that for k ≫ 0 the following properties holds:

(a) E ⊗ Lk is generated by global sections;
(b) for every x ∈ M , E ⊗ Lk ⊗ mx and E ⊗ Lk ⊗ m2

x are also generated by
global sections.

Using a variant of the arguments presented in [14, proposition 5.1] it is possible to
settle that there exists a Zariski open V ⊂ H0(M, E⊗L⊗k) such that for every s ∈ V
the zeros locus of s is non-degenerated, of codimension two, with no irreducible
component contained in the support of H and whose image does not contains any
irreducible component of sing(F). We leave the details to the reader.

Let now U = {Ui}i∈I be a finite covering of M by Zariski open subsets such that
the restrictions of E and of the cotangent bundle of M to each Ui are both trivial
bundles. For each i ∈ I consider

Ψi : Ui \ (Ui ∩ H) × H0(M, E ⊗ L⊗k) → Cn

(x, s) 7→ s∗Ωi(x)

where Ωi is the 1-form over π−1
P(E)(Ui) defining G|Ui

and Ω1
Ui

is implicitly identified

with the trivial rank n vector bundle over Ui. It follows from (a) and (b) that for
every x ∈ M there exists sections in H0(M, E ⊗ L⊗k) with prescribed linear part
at p. Thus if Zi = Ψ−1

i (0) then

dimZi = h0(M, E ⊗ L⊗k).

If ρi : Zi → H0(M, E ⊗ L⊗k) is the natural projection then there exists a Zariski
open set Wi ⊂ H0(M, E ⊗ L⊗k) such that

dimZi ≤ dim ρ−1(s) + h0(M, E ⊗ L⊗k).

Thus dim ρ−1(s) = 0 for every s ∈ Wi.
A section s ∈

(⋂
i∈I Wi

)
∩ V will induce a meromorphic section σ of P(E) with

the required properties. �

Unicity. It remains to prove the unicity in the case that ρ is non-solvable. We will
need the following

Lemma 5.3. Suppose that π : P(E) → M has a meromorphic section σ such that

the foliation F = σ∗H have non unique transversely projective structure. Then the

monodromy representation of H is meta-abelian or there exists an algebraic curve

C, a rational map φ : P(E) 99K C × P1 and Riccati foliation on C × P1 such that

H = φ∗R.

Proof. After applying a fibered birational map we can assume that P(E) = M ×P1

and that σ is the [1 : 0]-section, i.e., if

Ω = z1dz2 − z2dz1 + αz2
1 + βz1 · z2 + γz2

2 ,
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is the one form defining H then F is induced by α.
Since F has at least two non bimeromorphically equivalents projective structures

then it follows from [15, proposition 2.1] (see also [6, lemma 2.20]) that there exists
a rational function ℓ on M such that

dα = −dℓ

2ℓ
∧ α .

Thus, after a suitable change of coordinates we can assume that β = dℓ
ℓ
. From the

relation dβ = 2α ∧ γ we deduce the existence of a rational function f ∈ k(M) such
that γ = fα. Therefore dγ = β ∧ γ implies that

(
df

f
− dl

l

)
∧ α = 0.

If F does not admit a rational first integral then f = ℓ. Consequently, on the new
coordinate system,

Ω = z1dz2 − z2dz1 + αz2
1 +

dℓ

2ℓ
z1 · z2 + ℓαz2

2 .

If Φ(x, [z1 : z2]) = (x, [z1 :
√

ℓz2]) then we get

Φ∗Ω√
ℓ

= z1dz2 − z2dz1 + (z2
1 + z2

2)
α√
ℓ

=⇒ d

(
Φ∗Ω√

ℓ(z2
1 + z2

2)

)
= 0,

meaning that after a ramified covering the foliation H is induced by a closed 1-form.
Thus H has meta-abelian monodromy.

When F admits a rational first integral then it follows from [15, Theorem
4.1.(i)](see also [6, proposition 2.19]) that there exists an algebraic curve C, a
rational map φ : P(E) 99K C × P1 and Riccati foliation on C × P1 such that
H = φ∗R. �

Back to the proof of Theorem 2 we apply lemma 5.2 to produce a section σ :
M 99K P(E) generically transversal to H. If the transversely projective structure
of F = σ∗H is non unique then lemma 5.3 implies that there exists an algebraic
curve C, a rational map φ : P(E) 99K C × P1 and Riccati foliation on C × P1 such
that H = φ∗R. Recall that we are assuming here that ρ is non-solvable.

As we saw in the proof of lemma 5.2 we have a lot of freedom when choosing
σ. In particular we can suppose that φ ◦ σ : M 99K C × P1 is a dominant rational
map. Thus F is the pull-back of Riccati foliation with non-solvable monodromy by
a dominant rational map. The unicity of the transversely projectice structure of F
follows from [15, proposition 2.1].

This is sufficient to conclude the proof of Theorem 2 under the additional as-
sumption on H : normal crossing with smooth ireducible componentes. Notice that
up to this point everything works for projective manifolds of arbitrary dimension.

To conclude we have just to consider the case where H is an arbitrary curve on
a projective surface S. We can proceed as in the proof of Theorem 1, i.e., if we
denote by p : (S̃, H̃ = p∗H) → (S, H) the desingularization of H then there exists

ρ̃ : π1(S̃, H̃) → SL(2, C) such that ρ = p∗ρ̃. Thus we apply the previous arguments

over S̃ and go back to S using lemma 3.2. �
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