
HAL Id: hal-00016037
https://hal.science/hal-00016037v1

Preprint submitted on 16 Dec 2005 (v1), last revised 4 Jan 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental and Transitive Discrete Rotations
Bertrand Nouvel, Éric Rémila

To cite this version:

Bertrand Nouvel, Éric Rémila. Incremental and Transitive Discrete Rotations. 2005. �hal-00016037v1�

https://hal.science/hal-00016037v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

16
03

7,
 v

er
si

on
 1

 -
 1

6
D

ec
 2

00
5

Incremental and Transitive Discrete Rotations

Bertrand Nouvel ∗, Éric Rémila †

UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
46, Allée d’Italie 69364 LYON CEDEX 07 - FRANCE

Abstract

A discrete rotation algorithm can be apprehended as a parametric application fα from Z[i]
to Z[i], whose resulting permutation “looks like” the map induced by an Euclidean rotation. For
this kind of algorithm, to be incremental means to compute successively all the intermediate
rotated copies of an image for angles in-between 0 and a destination angle. The discretized
rotation consists in the composition of an Euclidean rotation with a discretization; the aim of
this article is to describe an algorithm which computes incrementally a discretized rotation. The
suggested method uses only integer arithmetic and does not compute any sine nor any cosine.
More precisely, its design relies on the analysis of the discretized rotation as a step function:
the precise description of the discontinuities turns to be the key ingredient that will make
the resulting procedure optimally fast and exact. A complete description of the incremental
rotation process is provided, also this result may be useful in the specification of a consistent
set of definitions for discrete geometry.

keywords : Discrete Rotations, Discrete Geometry, Computational Geometry.

1 Introduction

The translation of the fundamental concepts of the Euclidean geometry into Zn comprises the field
of discrete geometry. As this theory of geometry is particularly suitable for combinatorial images
and other data manipulated by computers [KR04], it would be interesting to provide a set of efficient
algorithm for this theory that uses only integer-arithmetic; as this was suggested in [Rév91].

Several attempts have been realized by various authors that wished to deliver back some prop-
erties of the Euclidean rotation to the discretized rotations widely used in computer graphics. A
review of various attempts may be found in [And92].

In this paper, we present an algorithm which is incremental : it successively computes all the
rotated images according to the an increasing sequence of angles (starting from 0 to 2π). Notice
that the set of rotated images is finite on a finite picture, this allows practically to compute all the
intermediate rotated images. Moreover, the suggested procedure is sound and accurate: it returns
exactly the same results as the result provided by the discretized for the same angle. The procedure
does not use any sine nor any cosine, thus there is no precision problem due to the floating point
arithmetic. Also, the algorithm is fast : to compute incremental rotations the algorithm computes

∗(<bertrand.nouvel@ens-lyon.fr> – This author is supported by the french television channel TF1)
†(<eric.remila@ens-lyon.fr>)

1

only Ø(m3 − log(m)) operations, instead of Ø(m5) as need the naive algorithm. For incremental
rotations, the complexity of this algorithm if it uses pre-calculated tables, Ø(m3) is optimal: The
algorithm updates only the necessary pixels and only consider the necessary angles. Finally, due
to the fact the algorithm uses configurations that can be stored with very few states on the plane,
we believe it is a good candidate for parallelization.

After a brief review of the motivations, and after the essential preliminary definitions, we proceed
to a characterization of the discontinuities of the rotation process. Indeed, we will explain how to
code the angles where the discontinuities happen. Also, with integer arithmetic only, we will learn to
perform essential operations on the encoded angles. Naturally, a few technical lemmas are required
to set up all this framework properly. Once this has been set, we will analyze the alterations that
occur in the configuration at the discontinuities. Strengthened by previous results, we will then be
ready to build the incremental discretized rotation procedure. The last section will be dedicated
to various extensions and miscellaneous details related to the theory that may lead to a better
understanding of the discretized rotation process.

2 Groundwork

The first sections present the fundamental ideas, definitions and lemmas that matter to fully un-
derstand the algorithm. In this section, we review the motivations and precise some vocabulary.

2.1 Motivations

The history of discrete geometry begins with the common will to give birth to an algorithmic the-
ory of the geometry in the discrete spaces that would be consistent with the Euclidean geometry.
We believe that a unified theory would provide a better understanding of both universe. Discrete
rotations comprise the famous examples that have strengthened the idea that discrete and contin-
uous spaces may be radically different. A review of the differences can be found in the prologue of
[NR05].

More recently, discretized rotations have been an important issue in water-marking community.
Water-marking algorithms that were robust under rotation were sought for by various teams the
community; and it supports many discussions. More generally, the problem of finding algorithms
for classification and recognition of patterns that are robust under discrete rotations is still a not-
trivial issue in the conception of pattern related algorithms. However, there exists now efficient
algorithms for pattern matching under rotation (for instance.. [ABC+04]). The algorithm presented
in this paper should not be compared with these algorithms that mix knowledge issued from pattern
matching and discrete geometry to be efficient. The algorithm was designed to comprise the field
of discrete geometry, and our main problem is to provide a comprehensive and simple definition of
algorithm for the discrete rotation, independantly of any application, and that can be computed
efficiently by the mean of integer - arithmetic only.

The usual discretized rotation algorithm is a bit chaotic when iterated: This is well illustrated
by the following story: It has been implemented a physical simulation of the solar system which
for specific reasons was coded with fixed precision. When the system has been tried, its inventors
were surprised that it first conclusion was to predict a fatal collision in-between the earth and the
sun in less than ten years; naturally there was a “bug”, and it was imputable to composition of
rounding errors during the rotation process. More generally, decades of computer programmers
have known by experience that they should avoid to compose rotations: The accumulation of the
resulting errors may produce an unwelcome result. Some aspects of the dynamical system that is

2

formed by the iterated action of a discretized rotation have already been studied; see [Pog03] for
iteration of π/4-rotations.

2.2 Conventions

We work in the complex plane C, where Z[i] denotes the set of Gaussian integers. Let m be a
positive integer. We denote by Z[i]|m the set of Gaussian integers whose module is at most m;
Z[i]|m = {z ∈ Z[i], |z| ≤ m}. Real and imaginary parts are denoted ℜ(z) and ℑ(z). Let x be a
real number. We recall that the floor function x 7→ ⌊x⌋ is defined as the greatest integer less or
equal to x. The rounding function is defined as : [x] = ⌊x + 0.5⌋; we also define the application
x 7→ {x} by {x} = x − [x]. These applications are extended to complex numbers, by applying
them independently on the real part and on the imaginary part. Let H be set of complex number
that have a semi-integer coordinate, in the general case H denotes the set of discontinuity points
of the operator x 7→ [x] (in other terms H = (Z× (Z + {1

2})) ∪ ((Z + {1
2})× Z)).

Let α denote a angle, i.e. an element of A = R/(2πZ). The Euclidean rotation rα is the
bijective isometry of C: z 7→ zeiα. The discretized rotation [rα] is precisely defined as the successive
application of the Euclidean rotation of angle α and of the discretization operator z 7→ [z]. Thus,

for each z of C, [rα(z)] = [zeiα]. Remark that |[rα(z)]| ≤ |z|+
√

2
2 , and that |[rα(z)]− rα(z)| ≤

√
2

2 .
A configuration is a mapping from Z[i] to Z[i]. Let m be a positive integer. A configuration C

such that for all z ∈ C, limn 7→∞
C([2n z])

2n
− (eiαz) → 0 is called an α-rotation map. Thus, given a

real α, the discrete rotation [rα] is a configuration. A partial configuration of radius m is a mapping
from Z[i]|m to Z[i]. Each configuration induces a partial configuration. In this paper, we work on
on partial configurations (denoted by [rα]|m) induced by discretized rotations. Precisely, we study
the mapping ρm : α 7→ [rα]|m. Since Z[i]|m is finite and |[rα(z)]| ≤ |z|+ 1, the set {ρm(α), α ∈ R}
is finite.

In this paper, we produce an exact incremental rotation algorithm which, given an integer m
successively produces all the values ρm(α) for α ∈ [0, 2π], in the order where they are reached (mov-
ing from 0 to 2π). Informally, it is a ”video” algorithm which exhibits the successive configurations
obtained along the rotation.

3 Hinge Angles

3.1 Definitions

The principal element that have influenced the design of the algorithm is a precise study the function
ρm. We shall prove that ρm is a stair function(piecewise constant function). Thus, a precise study
of its discontinuity steps gives the ability recover the whole function. The discontinuities also
correspond to the only updates of the configuration stored in the algorithm we will describe.

Definition 1 An angle α is a hinge angle if there exists a source point zs in Z[i] such that the
destination point zd = zse

iα has a (proper) semi-integer component (i.e. zd ∈ H) . For each hinge
angle, the source point and the destination point form a generating pair.

On a topological point of view, the hinge angles are the discontinuity points of the map α 7→ [rα].
It is immediate from the definition that an angle is a hinge angle if and only if there exists

integers p, q, k such that 2 q cos(α) + 2 p sin(α) = 2 k + 1.
The value |zs(α)|2 is called the order of α. We can note that if (zs, zd) generates α then (z̄s, z̄d)

generates −α.Note, also that if (zs, zd) generates α then (iQzs, i
Qzd) generates the same angle, for

any Q ∈ {0, 1, 2, 3}. We also define Sα the set of source points of α: Sα = {z ∈ Z[i]|eiαz ∈ H}
3

O

zd

zs

k + 1/2

λ
r

p

q

α

Figure 1: An hinge angle and its generating pair for α = α(9,−4, 7).

3.2 Fundamental Lemmas

The Pythagorean angles, as seen in [NR04] or [Vos93], are such that α = arctan(a/b) where a and
b are issued from a Pythagorean triple (a, b, c) ∈ N3 (such that a2 + b2 = c2). c will be called the
radius of the Pythagorean angle. An angle is Pythagorean if and only if its cosine and sine are
rational.

Lemma 1 Hinge angles and Pythagorean angles form disjoint sets.

Proof: Assume that there exists an angle which is both Pythagorean and hinge. By definition,
as it is a hinge angle, there exists a Gaussian integer zs of Z[i] which is transformed by rotation
in a point of H. We can easily check that: {ℜ(eiαzs)} = {ℜ(zd)} = 1

2 . More exactly, ℜ(zd) =

ℜ(zs) cos(α) − ℑ(zs) sin(α). If α is Pythagorean, cos(α) = a
c

and sin(α) = b
c
, where (a, b, c) is a

primary Pythagorean triple: i.e. belongs to Z and a2 + b2 = c2, gcd(a, b, c) = 1. {ℜ(zd)} can be
written as n

c
where n as an integer, while c is odd. But this is contradicting: {ℜ(zd)} = 1

2
⊓⊔

A corollary of this lemma is that for a hinge angle, at least one of cos(α) and sin(α) is an
irrational quadratic number.

Let p, q, k be a triple of integers, such that p2 + q2 > |k + 1
2 |, we state r2 = p2 + q2, and

λ =
√

r2 − (k + 1
2)2 we define the angle α(p, q, k) by the equality eiα(p,q,k)(p + qi) = r + λ i. Thus

for this angle ((p+ qi), (r + λ i)) forms a generating pair.

Lemma 2 (Coding of Hinge Angles) Let (p, q, k) and (p′, q′, k′) be two distinct generating triples

such that α(p, q, k) = α(p′, q′, k′). Then det

[

p q
p′ q′

]

= 0.

Proof: The proof is straightforward: Let α = α(p, q, k), thus 2p sin(α) + 2q cos(α) = 2k + 1,
and similarly; 2p′ sin(α) + 2q′ cos(α) = 2k′ + 1. Consider these two equations as a linear system

of cos(α) and sin(α). If det(

[

p q
p′ q′

]

) 6= 0 then cos(α) and sin(α) have to be rational, and the

angle have to be Pythagorean. But this would contradict lemma 1. Therefore (p, q) and (p′, q′) are
colinear. ⊓⊔

4

The lemma implies that arg(zs(α)) mod (π/4) and arg(zd(α)) mod (π/4) are uniquely defined
for an angle α. Thus, they are important characteristics of the hinge angle. An immediate corollary
of Lemma 2 is that all generating pairs of α(zs, zd) are necessarily of the form (k zs, k zd) or of the
form (i k zs, i k zd) with k ∈ R.

For a triple (p, q, k) that generates an angle α,(p, q, k) is called primary if it is minimal p2 + q2

among the generating triples of α. Obviously , there exists for each hinge angle a unique primary
generating triple.

Lemma 3 (Primary Generating Triple) Let (p, q, k) be the primary generating triple of an
angle α; the set of generating triples of α is {((2n + 1)p, (2n + 1)q, (2n + 1)k + n), for n ∈ Z}.

Proof: It is evident that if zs = (p + qi) ∈ Sα is the source point issued from the primary
generating triple (p, q, k) then (2n+1)zs ∈ Sα, since {ℜ(2n+ 1)eiαzs} = 1

2 for any n in Z. Also we
can notice that for any n ∈ Z, this is another generating triple ((2n+1) p, (2n+1) q, (2n+1) k+n)
of the same angle. It is also evident that for any n′, n′′ ∈ Z, (2pn′, 2qn′, n′′) cannot be a generating
triple of α since eiα(p + qi) ∈ H implies that eiα(2 pn′ + 2 qn′i) /∈ H. Now, we can notice βp + βqi
with β ∈ R \ Z cannot be a source for arithmetical reasons: β(p + qi) /∈ Z[i]. Now, assume there
exists r

s
∈ Q \Z and k′ ∈ Z such that (r

s
p, r

s
qi, k′) is a generating pair of α, this would implies that

r
s
(p + qi) is a Gaussian integer and thus gcd(p, q) should be divisible by s (as r is not). Moreover

ℜ(eiα(r
s
p + r

s
qi)) = 2k′+1

2 . This can only happen if 2k′ + 1 is also divisible by s. Now p, q, 2k + 1
are all divisible by n, thus the generating pair is not primary, and this contradicts our hypothesis.
Thus, β(p + qi) /∈ Sα for β ∈ R \ Z. Thus, consequently to previous lemma and to these points,
there is no other generating triples for the angle α than the listed ones. ⊓⊔

3.3 Main Properties

From the previous lemmas, we can state the following properties that are useful for the rotation
algorithm.

Proposition 1 Any hinge angle can be uniquely described by its primary generating triple.

This proposition is actually a corollary of Lemma 2 and 3.

Proposition 2 The number of hinge angles of order at most m is lower than 8m3.

This is easily proven by the fact that |p| < m, |q| < m, |k + 1
2 | < m

Upper bounds on the number of possible hinge angles can be found in [ABC+04]. This formula
can be slightly refined by using r2(k) that represents the number of decomposition of an integer
as the sum of two squares. The upper bound on the number of possible hinge angles is then:
#(AH|m) ≤∑m

i=1 r2(i)⌊
√
i− 1

2⌋ ≤ (
∑r

i=1 r2(i)) ⌊
√
m− 1

2⌋ ≤ (2m)3. Finally note that there is twice
more rotation maps in ρm(α) than the number of hinge angles in AH|m.

Proposition 3 The elements of Sα forms 4 rays: Sα = ∪Q∈{0,1,2,3}{(2l + 1)iQ(p+ qi), l ∈ N}

This proposition is another consequence of 3.
5

4 The Algorithm

Schematically, the algorithm is structured in two main parts: During this first period of the al-
gorithm, it starts with the enumeration of all the hinge angles whose order is smaller than the
maximum order of the points of the picture. The angles are not represented by floating point val-
ues but only via their associated triples (three small integer numbers). This encoding of the angles
provides a way to recover all the necessary information required to transform one image into the
next image during the incremental rotation process. This first part of the algorithm, can be seen
as a process similar to the generation of a sine table and, ideally, it could be done once for all.

The second part of the process consists in a loop through the cycle of hinge angles. This loop
applies successively the small transformations that are required to pass from ρm(α) to ρm(α′) (
where α′ is the successive representative angle). Practically, the algorithm stores the map ρm(α),
this allows to know directly the position of the image through the transformation [rα]|m. However,
for variant applications, such rotations in cellular automata, the user should may prefer variant
encoding of the transformation such as rotation configurations (applications from Z[i] to a finite
set) [NR05]. The principle of this algorithm is translatable on these kind of configurations.

4.1 Enumerate and Sort Hinge Angles

To enumerate all hinge angles in AH|m, it sufficient to enumerate all the Gaussian integers whose
module smaller than m (as source point), and to consider all possible semi-integers whose absolute
value is smaller than m. This requires a time of Ø(m3). Some angles will be enumerated twice,
but the duplicates can be identified and removed during the sorting process.

The usual sorting algorithms handle n elements in Ø(n log(n)) operations, if we provide them a
constant time comparison operator. The goal of this section is to explain how to compare two hinge
angle via their generating triple coding. This comparison needs constant time. Using a quicksort on
generated triples, the enumeration and the sorting of the hinge angles can therefore be computed
in Ø(m3log(m)).

Lemma 4 (Integer-Based Comparison) Let α ∈ AH which is associated to the triple (p, q, k)
and α′ ∈ AH which is associated to the triple (p′, q′, k′), it is possible to decide, in constant time,
whether α < α′ using by knowing p, q, k, p′, q′, k′.

Proof(sketch): With the notations previously introduced we have: cos(α) = (p(k + 1
2) +

qλ)/(p2 + q2) and sin(α) = (pλ− q(k + 1
2))/(p2 + q2).

The key-argument is that the numbers used in the expression of cos(α) and sin(α) are all integer,
except λ, but 4λ is a square root of an integer, thus the other equations will simplify.

Thus the signs of cos(α) and sin(α) can be easily computed, reducing to the problem to the
sign of an integer inequality that involves only usual operations. Hence, the “quadrant” of α can
be computed with integer arithmetic-only.

If α and α′ belongs to the same quadrant then we have to compare cos(α) and cos(α′). This
can also be reduced to determining the sign of an integer expression, that can be computed using
only integer arithmetic. ⊓⊔

4.2 Moving from [rα−] to [rα+]

Let α ∈ AH, we now know that exists zs(α) ∈ Z[i] and ℜ(zd(α)) + 1
2 ∈ Z and also ℑ(zd(α)) > 0.

Due to the trigonometric orientation, and to the chosen discretization operator, lim
α′ 7→α,α′<α

[rα′](zs) =
6

[rα](zs) while lim
α′ 7→α,α′>α

[rα](zs) = ([rα](zs)−1). However, we can also notice that lim
α′ 7→α,α′<α

[rα′](−zs) =

([rα](−zs)+ 1) while lim
α′ 7→α,α′>α

[rα′](−zs) = [rα](−zs). These results can be summarized in the fol-

lowing theorem:

Proposition 4 ∀Q ∈ {0, 1, 2, 3}, lim
ǫ 7→0,ǫ>0

[rα+ǫ]
(

(zsi
Q)− [rα−ǫ](zsi

Q)
)

= iQ+2

Let ψz0
denote the application such that if z is in (z0i

Q(2n + 1)), with n,Q ∈ N, then
ψz0

(z, p) = p+ iQ+1 else ψz0
(z, p) = p. Thus, it can now be stated that for any z in Z[i],[rα+](z) =

ψzs
(z, [rα−](z))

4.3 Sketch of the Algorithm

With the previous statements, we now have the necessary elements to understand the fundamental
ideas of the algorithm. This version of the algorithm simply update a discretized rotation map and
call a function that needs to be notified at each update. We will later see a more complex version
which explains how to make rotate incrementally an image without storing any copy of the original.
See Algorithm 1.

Most of the subtilty of the algorithm actually proceeds from the mysteries of the sequence of
hinge angles. (See Section 5.4) In real implementations, small technical details shall be solved:
Naturally, some additional code has to be added to take in account the fact that most programs
store images into rectangular buffers. Also, this version of algorithm actually jumps over the hinge
angles, and it does not compute the ρm(α) for the associated to the hinge angle it self. Of course,
this is easily fixable: Apply ψ on the two first quarters, then call the procedure for notification; the
algorithm has then to terminate the transformation associated to the hinge angle by computed the
next two quarters, and to call once more the notification procedure.

Algorithm 1: incremental rotation via map and notifications(doextproc)
1: AH|m ← list and sort hinge angles(m)
2: ∀p ∈ Z[i], R[p]← p, (zs, zd)← beg(AH|m(zs, zd))
3: while true do
4: (zs, zd)← next spcAH|m(zs, zd)
5: for Q← 0 to 3 do
6: k=0
7: while |(2k + 1)zs| < m do
8: op = R((2k + 1)zsi

Q)
9: np← R((2k + 1)zsi

Q) + iQ

10: R((2k + 1)zsi
Q)← np

11: k ← k + 1
12: end while
13: end for
14: doextproc(R, zs)
15: end while

r denotes the radius of the image, op means old position, np stands for new position, the func-
tion “doextproc” is a parameter function that is called each time the image has been set up in
configuration that corresponds to the image of a discretized rotation.

7

4.4 Application to Rotation of Images

The previous version of the algorithm computes an image of the rotation map, however the dis-
cretized rotation is not intrisically bijective on Z2 and it is not suitable to compute incrementally
rotations of an image without any copy of the original.

It is well-known that a point of the discretized rotation has never more than two antecedents
by discrete rotation. Thus, to create lossless discretized rotation, one natural idea is to store both
antecedents when the function is not injective. This requires one additional layer: hence, an image
in our algorithm shall be an element of Q(Z[i]×{0,1}).

Practically, the code is modified such that: the dataspace on which rotation are computed can
support up to two “colors” for each position of Z[i]. We will use an arbitrary order (the lexical
order or anything fast to compute) to decide which pixel will stand on the layer 1.

The details that have been added allows to compute the 2-layers discretized rotation. See
Algorithm 2.

4.5 Analysis of the Complexity

This last algorithm has really different complexity comparing to the usual algorithm for rotations.
This algorithm is a bit slower than the usual one in the general case, but it is faster when incremental
rotations are needed. Moreover this algorithm is slowed down by the fact for the moment we cannot
assume that there exist a good structure to store the table of hinge angles. While, it is assumed
that each processor uses a sine/cosine table which allows to compute sine and cosine very efficiently.

Space Complexity : The second part of the algorithm uses the amount of memory required to
store a 2 layer image, plus the rotation map. Thus, the algorithms uses about 3K(m2), (where K
is the memory cost to store one color, or one vector (assuming that these two data-types can be
stored with the same number of bytes K)). The traditional algorithm uses about 2K(m2) bytes
of memory. Thus, for this part the space requirements are of the same order Ø(m2) and similar
in terms of multiplicative factors. The first part of the algorithm requires Ø(m3log(m)) bytes of
memory to construct a b-tree of hinge angles in AH|m. This table can be computed once for all.

Time complexity: The list-and-sort procedure for hinge angles requires Ø(m3log(m)) operations.
The time of one iteration of the loop in the second part is intrisically linear in m (the complexity
of the user contributed function, doextproc can of course decrease these performances). Although,
the main loop is called Ø(m3) times and contains another loop, the algorithm also requires only
Ø(m3) operations: we update only m2 pixels and each pixel crosses at most 4m times the dual of
the grid. To compute all ρ(α)|m, for α ∈ [0, 2π[with traditional rotation algorithms would have
needed O(m5) operations.

Algorithm 2: incremental rotation of an image(img1, doextproc)

1: AH|m ← list and sort hinge angles(m)
2: ∀p ∈ Z[i], R[p]← p, L[p]← 1
3: (zs, zd)← beg(AH|m(zs, zd))
4: while true do
5: (zs, zd)← next spcAH|m(zs, zd)
6: for Q← 0 to 3 do
7: k=0
8: while |(2k + 1)zs| < m do
9: p← (2k + 1)zs

10: op← R[p]

11: ol← L[p]
12: np← op+ iQ

13: img2(np)← imgol(op)
14: R[p]← np; L[p]← 2;
15: alone← true;
16: for d← 0 to 3 do
17: if R[p+ id] = op then
18: alone← false; p′ ← p+ id

19: end if
20: end for

8

21: if ¬alone and L[p′] = 2 then
22: L[p′]← 1
23: swap(img1[op], img2[op])
24: end if
25: alone← true;
26: for d← 0 to 3 do
27: if R[p+ id] = np then
28: alone← false; p′ ← p+ id

29: end if
30: end for
31: if ¬ alone then
32: if p′ < p then
33: L[p′]← 1;L[p]← 2

34: else
35: L[p′]← 2;L[p]← 1
36: swap(img1[np], img2[np])
37: end if
38: else
39: L[p]← 1
40: swap(img1[np], img2[np])
41: end if
42: end while
43: end for
44: doextproc(R, zs, img1)
45: end while

The incremental discretized rotation algorithm. The notations are the similar to the one used
for previous algorithm. Additionally, img1 and img2 denotes the two layers of the picture. L is a
part of the configuration that is used to memorize the destination layer of a pixel.

4.6 Open-Source Implementation

We have written an implementation of this algorithm. The C++ code can be downloaded from
http://perso.ens-lyon.fr/bertrand.nouvel/transitive-rotations/. This implementation
relies on similar ideas but is actually slightly different: For historical reasons and other reasons
that specific of the future of the code, it uses two types of configurations. The first kind is ρα|m
and is used to compute images by discrete rotation. While Cα (see [NR05]) is used for some
additional checking.

5 Complement of specifications

5.1 More on Angular Topology of Finite Balls in Z[i]

We denote by IH|m the open intervals of angles delimited by two consecutive hinge angles of
AH|m. For any angle α ∈ A and any m ∈ N either α ∈ AH|m either there exists a unique
I ∈ IH|m such that α ∈ I. We define the function of Qm from A to A, such that for each hinge
angle α ∈ AH|m, Qm(α) is the angle α itself; and for any angle α that belongs to an interval
I =]α0, α1[∈ IH|m, we define Qm(α) as the Pythagorean angle which belongs to I which has the
smallest radius. We define ÂH|m = Qm(A). The set ÂH|m has the following properties: ∀α ∈
A,∃α′ ∈ ÂH|m, such that ρm(α′) = ρm(α) and ∀α1, α2 ∈ ÂH|m, (α1 6= α2)⇒ ρm(α′) 6= ρm(α2).

As ρm can be seen as a bijection from ÂH|m to ρm(A), we define the function φm that associates
to each configuration ρ(α) the unique angle α′ ∈ ÂH|m such that ρ(α) = ρ(α′). Note also that, if
α,α′ ∈ I =]α0, α1[and I ∩ Ar = ∅ then ρm(α) = ρm(α)

The hinge angles also have also more properties which are beyond the scope of this paper, and
whose proof is mostly arithmetical: If α is a hinge angle then kα is a hinge angle for k 6= 0 mod 3
(by recurrence kα is a hinge angle then (k + 3)α is also a hinge angle) , if α is a non flat hinge
angle then its sine and its cosine are rationally dependant, {Zeiα} forms span of 2gcd(x, y) line of
slopes x

y
in (R/Z)[i]...

Note: The set of hinge angle that has been obtained and studied here is dependant of the
discretization that has been used (and of the real center of the rotation).

9

http://perso.ens-lyon.fr/bertrand.nouvel/transitive-rotations/

5.2 Rotations of the Entire Grid Z2

If we consider infinite configurations, then Z[i]Z[i] is in bijection with A. More precisely, for any
α,α′ ∈ A, α = α′, [rα] = [r′α] iff and α = α′. This is trivial since limm7→∞(φm ◦ ρm(α)) − α→ 0, .

Moreover, there exists a convergent process that consists computing gradually each ρm(α) with
m incrementing through time from 1 to ∞. This process is a well defined procedure to describe
discrete rotations.

5.3 ǫ - Quasi- Transitivity

The rotation algorithm specifies which map ψ should be applied to transform one rotation map
[rα−](img) into another [rα+](img) (with respect to the transformations that have previously been
applied). To create a transitive rotation, the α-rotation-map of previously applied transformation
needs to be embedded within the picture as a part of the data manipulated by the algorithm1.

The incremental rotation has been implemented here as an endless process. The procedure
rotates gradually a picture and regularly calls a function to notify the process that the image has
a new layout. The algorithm can be easily modified to stop when it reaches a specified angle.

From any rotation configuration C ∈ ((Z[i])Z[i]|m) it is possible to extract the associated slope
to the configuration, by computing limm→∞ tan(φm(ρm(α))). From the embedded configuration
C = ρ|m(αd0

) then we can restart the algorithm from αd0
= φm(C) and then we can rotate

incrementally to a new angle αd1
. This process can be repeated without any incidence on the

precision: the resulting map will stay a discretized rotation map.

If we decide to denote by JrαK, the application of the previous algorithm from an angle αd0

(computed from the embedded configuration), to an angle αd1
= αd0

+ α. Then, this operation
would be ǫ - quasi transitive, in the following meaning: JrαK ◦ JrβK = Jrα+β+ǫ(α,β)K .

More general rules may be found later to apply rotations knowing the input but with broader
constraints on the admissible type of permutations of Z[i]: We can imagine to allow rotations from
various centers , translations...

5.4 Open Question: Efficient Procedure for Computation of the Successor of
an Hinge Angle

One of the remaining problem of our algorithm is that the only way to compute efficiently the
successor angle is now, up to our knowledge, to construct and use a table of the hinge angles.

However, the question of the structure of hinge angles seems to be linked with some famous
arithmetic and number theory results. Also, the hinge angles can be seen as the subset of the more
general set AS of angles such that α verifies: acos(α) + b sin(α) = c, with a, b, c ∈ {−m, ...,m}

For our algorithm, we are more interested by the structure induced on the generating triples
(p, q, k) than by the values of the angles themselves. Although the equation seems familiar due to
its similarity to formulas for rotations, very few is known about its integer solutions.

6 Conclusions and Perspectives

This algorithm for discretized rotations has the numerous useful properties: Since it is an exact
algorithm, that is valid on any size of datas, it returns the same result as the direct discretized

1Of course, it can also be imaginable to record the angle of which the image has been rotated before, but actually
we think it is more applications will be interested by a configuration that describes the influence of previously applied
transformations on the topology of the space

10

rotation of for the associated angle. However, this algorithm proceeds incrementally, and it will be
useful in all procedures that need to do some checking throughout the rotations. Additionally to
be more exact, this algorithm is faster to compute than incremental rotations that would iterate
the discretized rotation. More precisely it leads to O(n3) updates of pixel instead of O(n5). One
of its other property is to be very accurate in terms of spatial error since the error made on the

position of an image is at most of
√

2
2 (which is optimal). The fact that it does not use any sine

nor any cosine strengthen this accuracy.
This work seems to be extendable to the 3-shears rotations. The main advantage that motivates

the application of similar methods to the 3-shears rotations is that these rotations are natively
bijective. Therefore, the additional layer becomes obsolete; this would simplify the algorithm.
Some refinements on its associated dynamical system associated with hinge angles are certainly
required before to can initiate this study.

Finally, although the hinge angles are sortable using only integer arithmetic, the procedure is
slowed down by the use of large integer numbers. Thus, to speed up the algorithm, as suggested in
Section 5.4, a trend for ongoing research is to find an algorithm to return efficiently the successor
of an hinge angle in AH|m.

References

[ABC+04] A. Amir, A. Butman, M. Crochemore, G. M. Landau, and M. Schaps. Two-dimensional
pattern matching with rotations. Theoretical Computer Sciences, 314:173–187, 2004.

[And92] E. Andrès. Discrete circles, and Discrete rotations. PhD thesis, Université Louis Pasteur,
1992.

[KR04] R. Klette and A. Rosenfeld. Digital Geometry: geometric methods for digital picture
analysis. Morgan Kaufmann Publishers Inc., 2004.

[NR03] B. Nouvel and E. Rémila. On colorations induced by discrete rotations. In Proceedings
of Discrete Geometry for Computer Imagery (DGCI), number 2886 in LNCS, 2003.

[NR04] B. Nouvel and E. Rémila. Characterization of bijective discretized rotations. In Proceed-
ings of the International Workshop on Combinatorial Image Analysis (IWCIA), number
3322 in LNCS, 2004.

[NR05] Bertrand Nouvel and Eric Rémila. Configurations induced by discrete rotations: period-
icity and qu asiperiodicity properties. Discrete Applied Mathematics, 127(2-3):325–343,
2005.

[Pog03] Guillaume Poggiaspalla. Autosimilarité dans les Systémes Isométriques par Morceaux.
PhD thesis, Université d’Aix-Marseille II (Luminy), 2003.

[Rév91] J-P. Réveillès. Géométrie discrète, calcul en nombres entiers, et algorithmique. Do-
cent(Thèse d’État), 1991. Université Louis Pasteur.

[Vos93] K. Voss. Discrete Images, Objects and Functions in Zn. Springer, Berlin, 1993.

11

