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Abstract. In this paper we study the property of asymptotic direction for ran-
dom walks in random i.i.d. environments (RWRE). We prove that if the set of
directions where the walk is transient is non empty and open, the walk admits
an asymptotic direction. The main tool to obtain this result is the construction
of a renewal structure with cones. We also prove that RWRE admits at most two
opposite asymptotic directions.

Resumé: Dans cet article, nous étudions la propriété de direction asymptotique
pour les marches aléatoires en mileu aléatoire i.i.d. (RWRE). Nous prouvons que si
l’ensemble des directions dans lesquelles la marche est transiente est un ouvert non
vide, la marche admet une direction asymptotique. La construction d’une structure
de renouvellement avec cônes est le principal outil pour la preuve de ce résultat.
Nous montrons aussi qu’une RWRE admet au plus 2 directions asymptotiques
opposées.

1. Introduction and results

In this paper, we give a characterization of random walks in random i.i.d environ-
ments having an asymptotic direction. We first describe the model that we will use.
Fix a dimension d > 1 (but think more particularly of the case where d > 2 because
this work becomes obvious when d = 1). Let P+ denote the (2d − 1) dimensional

simplex, P+ = {x ∈ [0, 1]2d,
∑2d

i=1 xi = 1}. An environment ω in Z
d is an element of

Ω := PZd

+ . For any environment ω, Px,ω denotes the Markov chain with state space
Z

d and transition given by

Px,ω(X0 = x) = 1 and

Px,ω(Xn+1 = z + e|Xn = z) = ωz(e) (z ∈ Z
d, e ∈ Z

d s.t. |e| = 1, n > 0)

where | · | denotes the Euclidean norm in Z
d.

For any law µ on P+, we define a random environment ω in Z
d, random variable

on Ω with law P := µ⊗Zd

. For any x in Z
d and any fixed ω, the law Px,ω is called

quenched law. The annealed law Px is defined on Ω × (Zd)N by the semi-product

Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”).
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Px := P×Px,ω. In this article, the law µ will verify the assumption of strict ellipticity

∀e ∈ Z
d s.t. |e| = 1, P − a.s. µ(ω0(e) > 0) = 1

which is weaker than the usual uniform ellipticity (see remark 1). Sd−1 denotes the
unit circle for the Euclidean norm. For any ℓ in R

d, we define the set Aℓ of transient
trajectories in direction ℓ

Aℓ = { lim
n→+∞

Xn · ℓ = +∞}

and for any ν in Sd−1, Bν is defined as the set of trajectories having ν for asymptotic
direction

Bν = { lim
n→+∞

Xn

|Xn|
= ν}

This model is well studied in the one dimensional case where many sharp proper-
ties of the walk are known. However in higher dimensions the behavior of the walk is
much less well-understood. One of the oldest question was asked by Kalikow in [3]:
does P0(Aℓ) follow a 0 − 1 law? In the same article he found a weaker but very
useful 0 − 1 law for P0(Aℓ ∪ A−ℓ) which was explicitly stated in [7]. Zerner answers
positively to Kalikow’s question in [11], but only in the case d = 2. In higher dimen-
sions, this is still an unanswered question and this is one of the main obstacle to
solve another fundamental question: the derivation of a law of large numbers. Many
recent articles are concerned with this topic. Generalizing [4] to higher dimensions,
Sznitman and Zerner construct in [7] a renewal structure in order to derive a law of
large numbers under a strong drift condition (Kalikow’s condition). Zerner proves in
[10] that the walk satisfies a law of large numbers without assuming any conditions,
but only for dimension 2. For higher dimensions, Sznitman improves on sufficient
conditions to obtain a law of large numbers([5] and [6]). In this paper, we describe
the class of walks having a unique asymptotic direction under the annealed law (the-
orem 1). This means that the walk is transient and escapes to infinity in a direction
which has a deterministic almost surely direction. In fact, if the walk admits an
asymptotic direction, it also follows a law of large numbers (see remark 2) but in
the non-ballistic case the asymptotic direction gives an interesting information of
the behavior of the walk which is not contained in the law of large numbers. The
main difficulty to obtain an asymptotic direction for a transient walk is to control
the fluctuations of the walk in the hyperplane transverse to transience direction.
One way to control those fluctuations is to introduce the following assumption.

Assumption. ℓ in R
d
∗ verifies assumption (H) if there exists a neighborhood V of ℓ

such that
∀ℓ′ ∈ V, P0(Aℓ′) = 1 (H)

When (H) holds, we will note V the neighborhood given by the assumption.
The main purpose of this article is to prove the following theorem.

Theorem 1. The following three statements are equivalent

i) There exists a non empty open set O of R
d such that

∀ℓ ∈ O, P0 (Aℓ) = 1
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ii) ∃ν ∈ Sd−1 s.t.

P0 − a.s.,
Xn

|Xn|
→ ν

iii) ∃ν ∈ R
d
∗ s.t. ∀ ℓ ∈ R

d

ℓ · ν > 0 =⇒ P0 (Aℓ) = 1

Using arguments similar to those applied in the proof of theorem 1, we also show

Proposition 1. If ν and ν ′ are two distinct vectors in Sd−1 such that P0(Bν)P0(Bν′) > 0
then ν ′ = −ν

An obvious consequence of this proposition is the following corollary.

Corollary 1. Under P0, there is at most two asymptotic directions, in this case
these two potential directions are opposite each other.

The proofs will be given in the second part of this paper. We finish this section
with some notations which will be useful in the proofs. Denote by θn the time shift
(n natural number is the argument) and by tx the spatial shift (x in Z

d is the
argument). For any fixed ℓ in R

d
∗, we let Tu be the hiting time of the open half-space

{x, x · ℓ > u}:
Tu = inf{n > 0, Xn · ℓ > u}

and Dℓ the return time of the walk behind the starting point:

Dℓ = inf{n > 0, Xn · ℓ 6 X0 · ℓ}

Notice that these two definitions are quite different from those used in [7].
We complete ℓ into an orthogonal basis (e2, . . . , ed), such that for every i in J2, dK, |ei| = 1 .
For all i ∈ J2, dK we define the following two vectors:

ℓ′i (α) = ℓ + αei and ℓ′−i (α) = ℓ − αei

For all positive real α we can define the convex cone C (α) by

C (α) =

d
⋂

i=2

{x, x · ℓ′i (α) > 0 and x · ℓ′−i (α) > 0}

We also define the exit time Dℓ
α of the cone C (α)

Dℓ
α = inf{n > 0, Xn /∈ C (α)}

2. Proofs

Proof of theorem 1. The first step of the proof is the following lemma, where it is
proved that under (H) the walk has a positive probability never to exit a cone C(α)
for α small enough.

Lemma 1. Let ℓ be a vector in R
d satisfying (H) then, for any choice of an orthog-

onal basis (ℓ, e2, . . . , ed) with |ei| = 1 for any i in J2, dK,
there exist some α0 > 0 such that,

∀α 6 α0 P0

(

Dℓ
α = ∞

)

> 0 (1)
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Proof. Fix a basis satisfying the assumption of the lemma. We will first show that

P0

(

·|Dℓ = ∞
)

− a.s., ∃α1 random s.t. Dℓ
α1

= ∞ (2)

Since V is an open set, there exist some α2 > 0 such that for every i ∈ J2, dK:

ℓ′i (α2) ∈ V and ℓ′−i (α2) ∈ V

For these (2d − 2) directions, we use the renewal structure described in section 1 of
[7]. The choice of the parameter a in this structure has no importance and can be
done arbitrarily. Remember that, for any fixed direction ℓ, the first renewal time τ ℓ

of [7] is the first time the walk reaches a new record in direction ℓ, and later never
backtracks.

Remark 1. In [7], as in further references, uniform ellipticity is assumed. When we
quote these articles, we have verified that this stronger assumption is not necessary
or can be relaxed as in [11].

Using (H) we obtain that for each i ∈ J2, dK,

P0

(

Aℓ′i(α2)

)

= P0

(

Aℓ′
−i(α2)

)

= 1

From proposition 1.2 in [7]:

τ ℓ′2(α2) ∨ · · · ∨ τ ℓ′
d
(α2) ∨ τ ℓ′

−2(α2) ∨ · · · ∨ τ ℓ′
−d

(α2) < ∞ P0 − a.s.

Using a proof very close from proposition 1.2 in [7] (see also theorem 3 in [3]) we
obtain P0

(

Dℓ = ∞
)

> 0 and so:

τ ℓ′2(α) ∧ · · · ∧ τ ℓ′
d
(α) ∧ τ ℓ′

−2(α) ∧ · · · ∧ τ ℓ′
−d

(α) < ∞ P0

(

·|Dℓ = ∞
)

− a.s. (3)

We now define the following variables:

N = inf{n0 > 1, ∀n > n0, Xn ∈ C (α2)} (inf ∅ = +∞)

C = inf
1 6 n 6 N

Xn · ℓ

M = sup
1 6 n 6 N

d
∑

i=2

|Xn · ei|
2

From (3), it is clear that:

P0

(

·|Dℓ = ∞
)

− a.s., N < ∞,

C > 0 and M < ∞

We now define α1 = C√
M

∧ α2 (notice that α1 is random), using Cauchy-Schwarz

inequality for n 6 N and the definition of N and C(α) for n > N , we obtain:

∀i ∈ J2, dK, ∀n > 0, Xn · ℓ′i (α1) = Xn · ℓ + α1 (Xn · ei) > 0

which ends the proof of (2).
It is clear that

α < α′ implies C (α′) ⊂ C (α)



ASYMPTOTIC DIRECTION FOR RANDOM WALKS IN RANDOM ENVIRONMENTS 5

and so

lim
α→0

P0

(

{Dℓ
α = ∞}

)

= P0

(

⋃

α>0

{Dℓ
α = ∞}

)

From (2), we have
⋃

α>0

{Dℓ
α = ∞}

P0−a.s.
= {Dℓ = ∞}

Since P0

(

Dℓ = ∞
)

> 0, this concludes the proof of lemma 1. �

We will now construct a renewal structure in the same spirit as in [7] or [1]. The
idea is to define a time where the walk reaches a new record in the direction ℓ and
never goes out of a cone (also oriented in direction ℓ) after. In [7], the walk moves
from one slab to the next one, here, as in [1] or [2], the walk will move from one
cone to the next one.
From lemma 1, we know that we can choose α small enough so that

P0

(

Dℓ
α

)

> 0

We define now the two stopping time sequences (Sk)k > 0and (Rk)k > 1, and the se-
quence of successive maxima (Mk)k > 0

S0 = 0, R0 = Dℓ
α, M0 = sup{ℓ · Xn, 0 6 n 6 R0}

And for all k > 0:

Sk = TMk
, Rk = Dℓ

α ◦ θSk+1
+ Sk+1, Mk+1 = sup{ℓ.Xn, 0 6 n 6 Rk+1}

K = inf{k > 0, Sk < ∞, Rk = ∞}

On the set K < ∞, we also define:

τ1 = SK

The random time τ1 is called the first cone renewal time, and will not be confused
with τ ℓ introduced above. Under assumption (H),

S0 6 R0 < S1 6 R1 < · · · < Sn 6 Rn < · · · 6 ∞ (4)

Proposition 2.

P0 − a.s. K < ∞

Proof. For all k > 1,

P0(Rk < ∞) = E[E0,ω[Sk < ∞, Dα ◦ θXSk,ω
< ∞]]

=
∑

x∈Zd

E[E0,ω[Sk < ∞, XSk
= x, Dα ◦ θXSk,ω

< ∞]]

Using Markov property we obtain,
∑

x∈Zd

E [E0,ω[Sk < ∞, XSk
= x]Ex,ω[Dα < ∞]]
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For every x in Z
d, the variables E0,ω[Sk < ∞, XSk

= x] and Ex,ω[Dℓ
α < ∞] are

respectively σ{ω (y, .) , ℓ · y < ℓ · x} and σ{ω (y, .) , y ∈ tx ◦ C (α)} measurable. As
this two σ-fields are independent,

P0(Rk < ∞) =
∑

x∈Zd

E0[Sk < ∞, XSk
= x]Ex[Dα < ∞]]

= P0(Sk < ∞)P0(Dα < ∞)

= P0(Rk−1 < ∞)P0(Dα < ∞)

By induction, we obtain,

P0(Rk < ∞) = P0(Dα < ∞)k+1

In view of (4), this concludes the proof. �

We now define a sequence of renewal time (τk)k > 1 by the following recursive
relation:

τk+1 = τ1 (X.) + τk (Xτ1+. − Xτ1) (5)

Using proposition (2), we have:

∀k > 0, τk < ∞

Proposition 3.

((Xτ1∧·) , τ1) ,
((

X(τ1+·)∧τ2 − Xτ1

)

, τ2 − τ1

)

, . . . ,
((

X(τk+·)∧τk+1
− Xτk

)

, τk+1 − τk

)

are

independent variables and for k > 1,
((

X(τk+·)∧τk+1
− Xτk

)

, τk+1 − τk

)

are distributed

like ((Xτ1∧·) , τ1) under P0

(

·|Dℓ
α = ∞

)

The proof is similar to those of corollary 1.5 in [7] and will not be repeated here.

For the classical renewal structure, Zerner proved that E0[Xτ1 .ℓ] is finite and com-
putes its value. We provide here the same result but for a renewal structure with
cones.
Fix a direction ℓ with integer coordinates (a1, . . . , ad) such that their greatest com-
mon divisor, gcd (a1, . . . , ad) = 1. Assume that (H) is satisfied for ℓ. Complete ℓ
in an orthogonal basis (ℓ, e2, . . . , ed) such that for every i in J2, dK, |ei| = 1 . By
lemma 1, we can choose α small enough so that P0

(

Dℓ
α

)

> 0 and construct the
associated renewal structure that is described above.

Lemma 2.

E0[Xτ1 · ℓ|D
ℓ
α = ∞] =

1

P0 (Dℓ
α = ∞)

Proof. This proof follows an unpublished argument of M. Zerner but can be found
in lemma 3.2.5 p265 of [9]. Since gcd (a1, . . . , ad) = 1, we have {x · ℓ, x ∈ Z} = Z.
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For all i > 0,

P0 ({∃k > 1, Xτk
· ℓ = i}) =

∑

x/ℓ.x=i

E
[

E0,ω

[

{XTi
= y, Dℓ

α ◦ θTi
= ∞}

]]

=
∑

x/ℓ.x=i

E
[

E0,ω [XTi
= x] Ex,ω

[

Dℓ
α = ∞

]]

(6)

= P0

(

Dℓ
α = ∞

)

(7)

We used the strong Markov property in (6).
In (7), we notice that E0,ω (XTi

= x) is σ{ω (y, ·) , ℓ · y < ℓ · x} measurable and
Ex,ω

(

Dℓ
α = ∞

)

is σ{ω (y, ·) , y ∈ ty ◦C (α)} measurable and that those two σ-fields
are independent. We will now compute the same value in another way.

lim
i→∞

P0({∃k > 1, Xτk
· ℓ = i}) = lim

i→∞
P0 ({∃k > 2, Xτk

· ℓ = i})

= lim
i→∞

∑

n > 1

P0 ({∃k > 2, (Xτk
− Xτ1) · ℓ = i − n, Xτ1 · ℓ = n})

= lim
i→∞

∑

n > 1

P0 ({∃k > 2, (Xτk
− Xτ1) · ℓ = i − n}) P0 (Xτ1 · ℓ = n)

Notice also that the first equality is true because P0 (Xτ1 · ℓ > i) → 0 (i → ∞). Using
now the renewal theorem (corollary 10.2 p76 in [8]) we obtain

lim
i→∞

P0 ({∃k > 2, (Xτk
− Xτ1) · ℓ = i − n}) =

1

E0[(Xτ2 − Xτ1) · ℓ]

The dominated convergence theorem leads to

lim
i→∞

P0 ({∃k > 1, Xτk
· ℓ = i}) =

1

E0[(Xτ2 − Xτ1) · ℓ]

Comparing this result with (7), we easily obtain lemma 2. �

We have now all the tools to prove theorem 1. We will first use the two lemmas
to prove that i) implies ii).
We choose ℓ with rational coordinates in the open set O. It is clear that ℓ satisfies
assumption (H). Actually, we can also assume, without loss of generality, that ℓ has
integer coordinates and that their greatest common divisor is 1. Indeed, there is λ
rational such that λℓ has integer coordinates with greatest common divisor equal to
1, and of course, λℓ also satisfies (H).

We complete ℓ into an orthogonal basis (e2, . . . , ed), such that for every i in
J2, dK, |ei| = 1 . Using lemma 1, we choose α small enough so that P0

(

Dℓ
α = ∞

)

> 0.
We can now use the renewal structure with cones and we have from lemma 2 that:

E0

[

Xτ1 · ℓ|D
ℓ
α = ∞

]

=
1

P0 (Dℓ
α = ∞)

< ∞

From the definition of the cone renewal structure,

∃ c(α) ∈ R
+s.t. P0(·|D

ℓ
α = ∞) − a.s., |Xτ1 | 6 c(α) Xτ1 · ℓ
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and so using lemma 2,
E0

[

|Xτ1||D
ℓ
α = ∞

]

< ∞ (8)

We can now apply the law of large numbers, and obtain

Xτk

k

P0−a.s.
−→ E0

[

Xτ1 |D
ℓ
α = ∞

]

As |E0

[

Xτ1 |D
ℓ
α = ∞

]

| > 0,

Xτk

|Xτk
|

P0−a.s.
−→

E0

[

Xτ1 |D
ℓ
α = ∞

]

|E0 [Xτ1 |D
ℓ
α = ∞] |

(def)
= ν (9)

To complete the proof, we have to control the behavior of the walk between the
renewal times. For each natural n, we introduce the index k (n) such that,

τk(n) 6 n < τk(n)+1

Recall that if (Zn) is an i.i.d. sequence of variables with finite expectation, the appli-
cation of the strong law of large numbers to (Zn+1 − Zn)n shows that Zn

n
converges

almost surely to 0. We apply this remark to the sequence (sup
n

|Xn∧τk+1
−Xτk

|)k and

obtain:
sup

n
|Xn∧τk+1

− Xτk
|

k

P0−a.s.
−→ 0 (k → ∞) (10)

Using equation (9) and (10), we study the convergence in ii),

Xn

|Xn|
=

Xn − Xτk(n)

|Xn|
+

Xτk(n)

k (n)

k (n)

|Xn|
(11)

By proposition 2 and (5),

P0 − as k (n) → ∞ (n → ∞)

As |Xn| > k (n), (10) leads to:

Xn − Xτk(n)

|Xn|
P0−a.s.
−→ 0 (12)

To control the second term in (11), we simply write

|Xτk(n)
|

k (n)
6

|Xn|

k (n)
6

|Xτk(n)
|

k (n)
+

|Xn − Xτk(n)
|

k (n)

Using (9) and (10), we obtain,

|Xn|

k (n)

P0−a.s.
−→ |E0

[

Xτ1 · ℓ|D
ℓ
α = ∞

]

|

We finally obtain the desired convergence :

Xn

|Xn|
P0−a.s.
−→ ν =

E0

[

Xτ1 |D
ℓ
α = ∞

]

|E0 [Xτ1 |D
ℓ
α = ∞] |

The end of the proof of theorem 1 is easy: it is obvious that iii) implies i) and so we
just have to show that ii) implies iii).
Let ℓ be a direction such that ℓ.ν > 0. It is known since [7] (lemma 1.1) that
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P0 (Aℓ ∪ A−ℓ) follows a 0− 1 law under assumption of strict uniform ellipticity, but
we use here proposition 3 in [11] where the same result is proved under the weaker
assumption of strict ellipticity.
If P0 (Aℓ ∪ A−ℓ) = 0, it is known that the walk under P0 oscillates,

lim sup
n→∞

Xn · ℓ = − lim inf
n→∞

Xn · ℓ = +∞ P0 − a.s.

This is not possible in view of ii) and so P0 (Aℓ ∪ A−ℓ) = 1.
But because of ii), P0 (A−ℓ) = 0, and we can conclude

P0 (Aℓ) = 1

�

Remark 2. From the proof of theorem 1, we know that if a walk has an asymptotic
direction, we can construct a renewal structure with cones and E[Xτ1 ] is finite. We
can then easily derive a law of large numbers, namely

Xn

n

+∞
−→

E[|Xτ1 ||D
ℓ
α = ∞]

E[τ1|Dℓ
α = ∞]

P0 − a.s.

However this limit can be null (if and only if E[τ1|D
ℓ
α = ∞] = +∞ ) and, in this

case, the asymptotic direction is an interesting information about the walk behavior.

Remark 3. The class of walks admitting an asymptotic direction is exactly the class
of transient walks (in a direction ℓ) such that E[|Xτℓ||Dℓ = ∞] < ∞. For one of
the inclusion just notice that τ1 is also one of the hyperplane renewal time. For the
other one, use the end of the proof of i) implies ii) in theorem 1 (from (8)) with τ ℓ

instead of τ1.

Remark 4. It is not easy to check i) (or (H)). However we can find in previous
papers some examples of walks admitting an asymptotic direction and then satisfying
i). Of course all criteria assuring a ballistic law of large numbers work like Kalikow’s
condition in [3] or more recently condition (T ′) of Sznitman in [6]. The condition
(T )γ in [6] also works and it is not proved that it implies a law of large numbers.
More generally, the previous remark gives criteria to describe exhaustively the class
of walks admitting an asymptotic direction.

Proof of Proposition 1. Suppose that the proposition is false and call ν and ν ′ two
vectors of Sd−1 non opposite such that P0(Bν)P0(Bν′) > 0, then we will show that

∃ν0 s.t. P0(Bν0 |Bν ∪ Bν′) = 1 (13)

what establishes, of course, a contradiction.

Remark 5. If ν ∈ Sd−1 is such that P0(Bν) > 0 then,

∀ℓ ∈ R
d s.t. ℓ · ν > 0 P0(Aℓ|Bν) = 1 (14)

Indeed, it is clear from 0 − 1 law that P0(Aℓ ∪ A−ℓ) = 1 (just notice that the walk
does not oscillate along direction ℓ on Bν, set with positive probability). But as
Bν ⊂ {∃N s.t. ∀n > N, Xn · ℓ > 0}, it is clear that P0 almost surely, Bν ⊂ Aℓ.
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E = {x, x · ν > 0} ∩ {x, x · ν ′ > 0} is a non empty open set and from (14),

∀ℓ ∈ E, P0(Aℓ|Bν ∪ Bν′) = 1 (15)

Fix a vector ℓ0 in E, it is obvious that there exists a neighborhood V of ℓ0 such that,

∀ℓ ∈ V, P0(Aℓ|Bν ∪ Bν′) = 1

This last equation reminds the assumption (H) and the proof of (13) will be adapted
from that of theorem 1. Before beginning, notice that if P0(Bν∪Bν′) = 1, we can eas-
ily conclude using theorem 1, but the proof is not that obvious if P0(Bν ∪ Bν′) < 1.

The first step is to show that for α small enough P0(D
ℓ0
α ) > 0. We will use a proof

very close from those of lemma 1 replacing the probability P0 by P0(·|Bν ∪Bν′). We
have to prove that

P0(D
ℓ0 = ∞|Bν ∪ Bν′) > 0 (16)

Suppose that P0(D
ℓ0 = ∞, Bν ∪ Bν′) = 0. Using invariance translation, it is clear

that for any x in Z
d, Px(D

ℓ0 = ∞, Bν ∪ Bν′) = 0 which means

∀x ∈ Z
d, P − as, Px,ω(Dℓ0 = ∞, Bν ∪ Bν′) = 0

and we obtain

P − as, ∀x ∈ Z
d, Px,ω(Dℓ0 = ∞, Bν ∪ Bν′) = 0

We note (Dℓ0)n the n-th backtrack time of the walk, defined by the following recur-
sive relation

(Dℓ0)1 = Dℓ0

(Dℓ0)n = Dℓ0 ◦ θ(Dℓ0 )n−1 ∀n > 2

P − as, for any n > 1,

P0,ω

(

(Dℓ0)n < ∞, (Dℓ0)n+1 = ∞, Bν ∪ Bν′

)

=
∑

x∈Zd

P0,ω

(

(Dℓ0)n < ∞, X(Dℓ0)n = x
)

Px,ω

(

Dℓ0 = ∞, Bν ∪ Bν′

)

(17)

= 0

We obtain (17) writing that for any x in Z
d and natural m

{(Dℓ0)n = m, X(Dℓ0 )n = x} ∩ {Bν ∪ Bν′} (18)

= {(Dℓ0)n = m, X(Dℓ0 )n = x} ∩ { lim
n>m

Xn − x

|Xn − x|
= +∞}

Here is the only difference with the proof of (1.16) in proposition 1.2 in [7]. Remember
that

P0,ω(Dℓ0 = ∞, Bν ∪ Bν′) = 0

and notice that as Bν ∪ Bν′ ⊂ Aℓ0,

P0,ω(Bν ∪ Bν′ , (Dℓ0)k < ∞, ∀k > 1) = 0

We obtain
P − as, P0,ω(Bν ∪ Bν′) = 0
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P0(Bν ∪ Bν′) = 0 contradicts the assumption and this concludes the proof of (16).
Following the proof of lemma 1 with P0(·|Bν ∪ Bν′) instead of P0, we obtain

∃ α0 s.t. ∀α 6 α0, P0(D
ℓ0
α ) > 0

The second step is to show that on Aℓ0 (this is much easier that on Bν ∪ Bν′),
the walk admits a unique asymptotic direction. We define the same renewal struc-
ture with cones as in the proof of theorem 1. It is easy to adapt the results in [7]
from proposition 1.2 to corollary 1.5, we obtain the same results but with variables
and random times associated to the renewal structure with cones and not with hy-
perplanes. We also adopt the same notation, Q0 to denote the probability measure
P0(·|Aℓ0). We can then adapt lemma 2 and obtain

Lemma 3.

EQ0 [Xτ1 · ℓ|D
ℓ
α = ∞] =

1

P0 (Dℓ
α = ∞)

The end of the proof now follows exactly that of theorem 1 except that Q0 replaces
P0. We obtain the existence of ν0 satisfying (13). �
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