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Universality and quantum effects in one-component critical fluids
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Non-universal scale transformations of the physical fields are extended to pure quantum fluids
and used to calculate susceptibility, specific heat and the order parameter along the critical isochore
of He3 near its liquid-vapor critical point. Within the so-called preasymptotic domain, where the
Wegner expansion restricted to the first term of confluent corrections to scaling is expected valid, the
results show agreement with the experimental measurements and recent predictions, either based
on the minimal-substraction renormalization and the massive renormalization schemes within the
Φ4

d=3 (n = 1)-model, or based on the crossover parametric equation of state for Ising-like systems.

PACS numbers: 64.60.-i, 05.70.Jk, 64.70.Fx

1. INTRODUCTION

It is well known that the thermodynamic quantities
of real pure fluids close to their gas-liquid critical point
(CP) follow the asymptotic power-law behavior predicted
for the 3D Ising-like universality class in the asymptotic
critical domain where κ ≪ Λ0 [1]. The distance to the
critical point is here measured by the parameter κ, re-
lated to the inverse correlation length ξ−1. ξ character-
izes the spatial extent of the diverging fluctuations of the
local density which is related to the order parameter den-
sity of the gas-liquid transition. Λ0 is a (nonuniversal)
finite wave-number characterizing a discrete microscopic
structure of a fluid with spacing Λ−1

0 . So that the crit-
ical thermophysical behavior of the fluid properties oc-
curs when ξΛ0 ≫ 1. Asymptotically close to the critical
point, this microscopic parameter Λ0 which characterizes
each pure fluid, becomes unimportant when the thermo-
dynamic properties become singular. It means that all
the pure fluids in their asymptotic critical domain obey
to the two-scale universality associated to hyperscaling.
Their properties can then be described by the same re-
duced equation of state (e.o.s.) and the same correla-
tion functions, using only two dimensionless parameters
which are two fluid-dependent parameters, in conformity
with the two-scale-factor universality of the 3D Ising-like
universality class.

However, it is also now well established that away
from this asymptotic critical region, the properties of real
pure fluids can deviate from hyperscaling. This deviation
can take origin on crossover phenomenon which reflects
a competition between universality and nonuniversality
when ξΛ0 ' 1. This crossover problem has been investi-
gated in considerable details, mainly in the classical-to-
critical crossover framework of field theory [2]. The re-
sulting field theoretical crossover functions describe the
crossover behavior of the φ4

d=3 (n = 1) model in the uni-
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versality class O (n = 1) in three dimensions (n = 1 is
the dimension of the order parameter density for the crit-
ical transition, and d = 3 is the space dimension of the
sytem). A better understanding of non-universal behav-
ior linked to finite values (although large) of the corre-
lation length is then accounted for by a restricted sum-
mation of the Wegner expansion [3], which introduces
one additional system-dependent parameter to charac-
terize the preasymptotic domain [4, 5] [as discussed in
[5] the singular power laws expressed at the first-order
of the Wegner expansion are expected to be valid within
the preasymptotic domain]. Moreover, the values of the
adjustable parameters can then be dependent on the ap-
proximations needed by each particular renormalization
scheme. As a practical result, the microscopic length, the
crossover parameter, as well as the two asymptotic scale
factors, enter in a larger set of adjustable parameters, in-
cluding obviously a extended set of measurable critical
point coordinates. Therefore the exact nature of the two
asymptotic scale factors for the fluid physical fields, still
remains an implicit open question. This is still the ob-
ject of a debating situation [6], due to the fact that fluid
variables have no definite critical scaling dimensionality
at finite distance to the critical point.

The asymptotic existence of such two scale factors
proper to the one-component fluid subclass, were initially
postulated in [7, 8] on a phenomenological basis support-
ing the asymptotic results of the massive renormalization
scheme [4, 5, 9, 10] of the field theory framework. It was
hypothetized that the complete information to estimate
asymptotic singular fluid behaviors is provided by the
experimental critical point location, i.e. by a minimal
parameter set, noted Qmin

c,ap̄
[11], composed of four (gen-

eralized) critical coordinates (the subscript c refers to a
property defined at the critical point, while the subscript
p̄ refers to a property normalized per particle). This min-
imal set defines the critical point location on the equilib-
rium phase surface of equation Φ(p, vp̄, T ) = 0, where p

is the pressure, vp̄ = V
N

is the volume per particle, and T
is the temperature (N is the total number of particles oc-
cupying a total volume V ). The generalized coordinates
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are composed by three usual critical point coordinates
and one preferred direction of the tangent plane to the
phase surface. Using xenon as a standard critical fluid
[7, 8, 10], it was then proposed to perform adequate scale
dilatations of the two relevant physical variables for each
one-component fluid. Applying such a scale dilatation
method, we were able to “renormalize” (i.e. rescale) the
physical singular behavior of any one-component fluid
on the corresponding “master” (i.e. unique) singular be-
havior, where master (i.e. constant amplitudes) features
with respect to the one-component fluid subclass are con-
form to universal features with respect to the complete
3D Ising like universality class.

Specifically, this initial substantiation of master scal-
ing is based on the explicit choice of the same met-
ric factor for thermodynamics and correlations. That
permits an unambiguous definition of the microscopic
length Λ−1

0 proportional to a critical length scale factor

αc =
(

kBTc

pc

) 1
d

made from an appropriate combination

of the critical temperature Tc and pressure pc coordi-
nates [kB is the Boltzmann constant and d = 3]. From
well-known shorted-range of the Lennard-Jones (LJ) like
molecular interactions in one-component fluids [12], char-
acterized by the equilibrium position rLJ

e between two in-
teracting particles, we have Λ−1

0 = αc
∼= 2rLJ

e [7], ignor-
ing then the possible contribution of quantum effects on
Λ−1

0 . In this paper, using the recent experimental mea-
surements near the critical point of 3He [13, 14], we ex-
tend this scale dilatation method (SDM) to the quantum
fluid case. This extension is based on a phenomenologi-
cal modification of the non-quantum renormalized criti-
cal behavior, which is only valid at the critical tempera-
ture. Since experimental values of the minimum critical
set already contain their actual contribution of quantum
effects, we expect that remaining part of quantum effects
only affect the microscopic length (Λ0)

−1
, in such a rel-

ative way that
(
Λ0Λ

∗
qe

)−1
= αc [see below our Eq. (14)].

The adjustable dimensionless parameter Λ∗
qe is here in-

troduced in order to maintain the master features ob-
served for the one-component fluid subclass. Therefore,
in addition to the minimal set of four critical param-
eters, the renormalized variables need to use only one
supplementary well-defined dimensionless parameter Λ∗

qe,
whose value is, either fluid-independent (Λ∗

qe = 1) in the
absence of quantum effects, or quantum-fluid-dependent
(Λ∗

qe > 1) in the presence of quantum effects, without vi-
olating the asymptotic universal features of the 3D Ising-
like universality class.

The paper is organized as follows. In section 2 we recall
the basic elements of the scale dilatation method and we
introduce its extension to account for quantum effects on
the microscopic length scale. In section 3 we consider
the fitting results [14] obtained by Zhong et al for 3He to
discuss our estimated value of the adjustable parameter
Λ∗

qe

(
3He

)
= 1.11009. Before to conclude, the section 4

gives a brief comparison with three crossover modelling
of 3He critical properties.

2. SCALE DILATATION OF THE FLUID

PHYSICAL VARIABLES

2.1. The minimal set Qmin
c,ap̄

of four scale factors

As recalled in our introduction, the basic idea [7, 8]
of the scale dilatation method relies on a simple ther-
modynamic assertion concerning the thermodynamic in-
formation provided by the critical point location on the
fluid phase surface of equation Φ(p, vp̄, T ) = 0 [11]. The
minimum of information needed to predict singular ther-
modynamic behavior of a pure fluid is given by:

(1) the three critical coordinates Tc, pc, and vp,c of the
liquid-vapor critical point;

(2) the two preferred directions which define the po-
sition of the tangent plane to the phase surface at the
critical point (both needed in order to characterize the
linearized asymptotic approach towards the critical point
along two well-defined thermodynamic paths). One di-

rection is common to all pure fluids (since
(

∂p
∂vp̄

)

T=Tc

=
(

∂T
∂vp̄

)

p=pc

= 0), and only the second direction,

γ
′

c =

(
∂p

∂T

)

vp̄=vp̄,c

=

(
dpsat

dT

)

T=Tc

(1)

is characteristic of each pure fluid. psat is the saturation
pressure in the non homegeneous domain. We note

Qmin
c,ap̄

=
{
Tc, pc, vp,c, γ

′

c

}
(2)

this minimal set made of four critical parameters.
From thermodynamic principles, this topological infor-

mation concerns all the incipient equilibrium states very
close to the unstable single critical point.

From these four coordinates we can calculate unequiv-
ocally the following four fluid characteristic parameters,

(βc)
−1

= kBTc ∼ [energy] (3)

αc =

(
kBTc

pc

) 1
d

∼ [length] (4)

Zc =
pcmp̄

ρckBTc

(5)

Yc =

(
γ

′

c

Tc

Pc

)
− 1 (6)

where ρc =
(

N
V

)
c
mp̄ is the critical density of the system

made of particles of known individual mass mp̄. (βc)
−1

of
Eq. (3) fixes the energy unit at the macroscopic scale. αc

of Eq. (4) fixes the length unit at the macroscopic scale.
The two Eqs. (3,4) are sufficient to make dimensionless
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all the thermodynamic and correlation functions of pure
fluids [7, 8]. Zc of Eq. (5) is the critical compression
factor. We then introduce the useful compression factor

Z =
−J(T,V,µp̄)

kBT
as the dimensionless opposite form of the

total Grand potential J (T, V, µp̄) = −p (T, µp̄) × V , ex-
pressed in terms of its three natural intensive variables
T , V , and µp̄ [For the total system, µp̄ is the chemical
potential per particle, i.e. the intensive variable conju-
gated to N , independent to p and T , respectively, which
are the two other independent intensive variables, con-
jugated to V and S, respectively]. From the experimen-
tal phase surface of equation Φ (p, vp̄, T ) = 0 it is easy
to construct another practical phase surface of equation
Φ (Z, ρ, T ) = 0. In such a representation of the fluid equi-
librium states, the characteristics numbers Zc of Eq. (5)
and YcZc made of the product between Eqs. (5) and (6),
read as follows

Zc = −

[(
∂Z

∂ρ

)

̟

]

CP

= −

[(
∂Z

∂ρ

)

LV E

]

CP

(7)

YcZc =

[(
∂Z

∂T

)

ρ

]

CP

(8)

where all the derivatives refer to their values for the criti-
cal point coordinates, while ̟ means any isocline at con-
stant (critical ) value of one intensive variable ̟ among
T , p, or µp̄, and LV E means the liquid vapor equilib-
rium line. Therefore, the two caracteristic numbers Zc

and YcZc are the two “preferred” critical directions [15]
at the critical point of the phase surface, for the critical
isotherm path and the critical isochore path, respectively.

From basic modeling of a binary effective interaction
characterized by a minimum energy well depth εLJ

m at the
pair equilibrium position rLJ

m between two particles, we

obtain, (βc)
−1 ∼= εLJ

m and αc
∼= 2 rLJ

m , where εLJ
m and rLJ

m

are the respective natural units for energy and length,
at the microscopic scale. Here the subscript LJ stands
for a short-ranged Lennard-Jones-like potential [12]. It
follows that αc measures the mean extension range of
the attractive dispersion forces and

vc,I = (αc)
d

(9)

is the critical volume of the microscopic critical inter-
action cell. In such a configuration, the inverse of the
critical compression factor takes clear physical meaning
since

1

Zc

=
vc,I

vp,c

= n∗
c,I (10)

is the number of fluid particles filling the interaction cell
at criticality, i.e. for T = Tc, n = nc, and Λ0ξ = ∞
[vp,c = ( V

N
)PC is the critical volume per particle, and n

(nc) is the (critical) number density]. From that result,
to formulate dimensionless thermodynamics in terms of
normalization per particle (subscript p), or in terms of

normalization per critical intercation cell (subscript I),
appears easy. As an immediate consequence, from Eqs.
(10) and (8), 1

Zc
and Yc are two characteristics numbers

of the critical interaction cell.
The next step consists to postulate that the two num-

bers {Zc; Yc}, defined by the two Eqs. (5) and (6), are
the remaining pair of dimensionless characteristic param-
eters at the scale of the critical interaction volume, what-
ever the selected one-component fluid. In addition, it is
admitted that Zc is the characteristic factor of the scal-
ing at the critical point and along the critical isotherm,
while Yc is the characteristic factor of the scaling along
the critical isochore. Rewriting Eq. (2) as

Qmin
c,ap̄

=
{
(βc)

−1
, αc, Zc, Yc

}

CIC
(11)

we can expect that the complete information is made
from four scale factors which characterize the critical in-
tercation cell (subscript CIC). Then, as initially pro-
posed in [7, 8], the master singular behavior of the corre-
lation functions at exact criticality and along the critical
isochore permits one to link unequivocally their associ-
ated asymptotic amplitudes D̂ and ξ+

0 [16], to Zc and Yc,
respectively, providing simultaneously the hyperscaling
[8].

2.2. Quantum effects on the scale dilatation of

physical fluid variables

The scheme given in [8] also requires that the inverse
microscopic wave number Λ−1

0 is proportional to the char-
acteristic length scale αc. Now, owing to the short ranged
molecular interaction in light pure fluids [17], the influ-
ence of quantum mechanical effects changes appreciably
the shape of the Lennard-Jones-like potential, slightly
increasing the range of this interparticle potential [12].
This qualitative evidence was demonstrated by introduc-
ing an effective potential, which is then a temperature-
dependent quantity [18, 19, 20]. The quantum effects
increase as temperature decreases. However, due to the
formal analogy with the FT renormalization scheme, our
rescaling is basically defined for the critical asymptotic
domain, i.e. only when T ∼= Tc. Moreover, since the use
of the actual critical parameter already includes quan-
tum effects, the remaining additional quantum effect, for
T ∼= Tc, acts only through the relative modification of the
microscopic length at Tc. In the absence of theoretical
support to do this modification, we propose to normalize
its contribution with respect to the microscopic inverse
wave number defined for non-quantum fluids.

This contribution is expected low and then limited to a
small additive departure from unity. This additive value,
noted λc, can then include the two main phenomenolog-
ical characteristics of quantum particles :

i) their low mass and size, accounted for using propor-

tionality to the ratio
ΛT,c

αc
between the critical thermal
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wavelength,

ΛT,c =
hP

(2πmp̄kBTc)
1
2

(where hP is the Planck constant), and our microscopic
critical range αc of the interaction;

ii) their statistics (like bosons, fermions, etc.), ac-
counted for by introducing a supplementary free param-
eter, noted λq,f .

So that, we characterize the quantum corrections by
the following non-dimensional factor

Λ∗
qe = 1 + λc (12)

with

λc = λq,f

ΛT,c

αc

(13)

λc ≥ 0 is then the measure of the relative modification of
the shape and range of molecular interaction due to the
quantum effects.

Since the quantum effects increase slightly the range of
the molecular interaction, we postulate that the corrected
microscopic wave number now reads

Λ0Λ
∗
qe =

1

αc

(14)

(in a non-quantum fluid, our previous relation was Λ0 =
1

αc
, implicitely). We expect that the rescaled quantum-

fluid correlation length ℓ∗qf presents the master diver-
gence previously defined for all the non-quantum one-
component fluids [8, 21]. Then,

ℓ∗qf = Λ0ξ =
(
Λ∗

qe

)−1
ξ∗ (15)

with

ξ∗ =
ξ

αc

(16)

Similarly, any rescaled singular thermodynamic property
of the quantum-fluid can be formulated from dimensional
analysis, in order to account for its proper Λ∗

qe contribu-
tion within vc,I , which maintains valid the previous mas-
ter hypotheses made for the non-quantum fluid subclass.

Therefore, thanks to the formal analogy between the
scale dilatation method [8] and the basic hypotheses of
the renormalization group approach [22, 23], all the above
quantum corrections are intrinsically accounted for ac-
cording our renormalization scheme, provided that the
transformations (dilatations) of the two relevant physi-
cal fields are made throughout the following analytical
relations

T ∗
qf ≡ T ∗ = Yc∆τ∗ (17)

H∗
qf =

(
Λ∗

qe

)2
H∗ =

(
Λ∗

qe

)2
(Zc)

− d
2 ∆h∗ (18)

Consequently, the dilatation of the physical order param-
eter density reads as follow

M∗
qf = Λ∗

qeM
∗ = Λ∗

qe (Zc)
d
2 ∆m∗ (19)

In Eqs. (17) to (19),

∆τ
∗ = kBβc (T − Tc) (20)

∆h
∗ = βc (µp − µp,c) (21)

while,

∆m∗ = (n − nc) (αc)
d

(22)

µp,c is the critical chemical potential per particle. Ob-
viously, in Eqs. (17) to (19), T ∗, H∗ and M∗ are the
renormalized variables already defined for non-quantum
fluids [8, 21].

2.3. Master and physical singular behavior

Because such transformations of the physical fields in
the FT framework have a range of validity including
(at least) the first correction-to-scaling [24], our rescaled
thermodynamic and correlation functions should conform
to the two-term (leading and first-confluent) asymptotic
description of singularities within the preasymptotic do-
main. For example when T ∗ goes to zero along the criti-
cal isochore, the critical behavior of any rescaled singular
property P∗

qf reads

P∗
qf = Z±

P |T ∗|−x
[
1 + Z1,±

P |T ∗|∆ + O
(
|T ∗|2∆

)]
(23)

where x and ∆ are the associated universal critical ex-
ponents [25]. The subscript + is for the homogenous
domain T ∗ > 0 (i.e. T > Tc), and the subscript − is
for the non-homogeneous domain T ∗ < 0 (i.e. T < Tc).
The leading amplitudes Z±

P , and the first confluent am-

plitudes Z1,±
P , are master (constant) numbers for all pure

fluids. Their respective values are obtained using xenon
as a standard critical fluid [21], and accounting as closely
as possible for up-to-date estimates [24, 25] of universal
asymptotic critical quantities (exponents and amplitudes
combinations).

When the generalized critical parameters of a pure
fluid are known, there is an immediate practical inter-
est to reverse the use of the scale dilatation method. In
fact, the basic advantage of this method is its ability
to calculate all the amplitudes appearing in the singular
divergences expressed at first-order of the Wegner expan-
sion in ∆τ∗. For ∆τ∗ → 0±, the critical behavior of the
physical property P of the selected pure fluid is repre-
sented by the two-term equation

P = P±
0 |∆τ∗|−x

[
1 + P±

1 |∆τ∗|∆ + O
(
|∆τ∗|2∆

)]
(24)
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where P±
0 and P±

1 are the leading and the first confluent
amplitudes. All the values of P±

0 and P±
1 can then be

estimated when the basic set of critical parameters is
known for a selected pure fluid, using each unequivocal
relation linking the physical quantity to its renormalized
one (see Section 3 below, and the Table I, columns 6 and
7).

3. THE HELIUM 3 CASE

3.1. Notations

The scale dilation method is now applied to the de-
scription of the isothermal susceptibility, specific heat,
and coexisting density measurements [14] along the crit-
ical isochore of 3He. We complete these measurements
by the estimation of the correlation length inferred from
the two-scale-factor universality. Let us introduce the
corresponding notations for:

i) the master singular behaviors

ℓ∗qf = Z±
ℓ (T ∗)−ν

[
1 + Z1,±

ℓ (T ∗)∆
]

(25)

χ∗
qf = Z±

χ (T ∗)−γ
[
1 + Z1,±

χ (T ∗)∆
]

(26)

·C∗
qf = Z±

C (T ∗)−α
[
1 + Z1,±

C (T ∗)∆
]
+ (27)

M∗
qf = ZM (T ∗)β

[
1 + Z1

M (T ∗)∆
]

(28)

The universal values of the critical exponents ν, γ, α,
and β, estimated by Guida et al [25] are given in column
2 of Table 1. ∆ = 0.502 (±0.004) [25] is the lowest value
of the confluent exponent. The master (i.e. constant)
values of the leading (Z+

ℓ , Z+
χ , Z+

C , and ZM) and con-

fluent amplitudes (Z1,+
ℓ , Z1,+

χ , Z1,+
C , and Z1

M) are given
in columns 3 and 4 (respectively), of Table 1. The mas-
ter correlation length ℓ∗qf of Eq. (23) provides a direct
comparison from the size of the critical fluctuations to
the range of molecular interaction, in order to control
that the basic condition ℓ∗qf ≫ 1 for critical phenomena
understanding is valid. That provides also a criteria to
define the master extension of the preasymptotic domain
for the one-component fluid subclass [21].

ii) the physical singular behaviors

ξ = ξ±0 |∆τ∗|−ν
[
1 + a±

ξ |∆τ∗|∆
]

(29)

χ∗
ρ = Γ± |∆τ∗|−γ

[
1 + a±

χ |∆τ∗|∆
]

(30)

∆c∗V,ρ =
A±

α
|∆τ∗|−α

[
1 + αa±

χ |∆τ∗|∆
]

+ B∗
cr (31)

∆ρ̃LV = B |∆τ∗|β
[
1 + am |∆τ∗|∆

]
(32)

ξ of Eq. (29) is the correlation length, i.e. the actual size
of the critical fluctuations of the order parameter density.
The Eqs. (30) to (32) are written with usefull variables
of fluid related critical phenomena [26], which needs a
complementary analysis made in the next subsection, to
precise the normalization of the thermodynamics and the
role of the energy and length scale units given by Eqs.
(3) and (4), respectively.

3.2. Thermodynamic properties

3.2.1. The isothermal susceptibility

Considering a mass unit of the fluid as in the standard
thermodynamic presentation of specific properties, the

susceptibility χρ =
(

∂ρ
∂µρ

)

T
= ρ

(
∂ρ
∂p

)

T
∼
[
kg2 J−1 m−3

]

is expressed in units of
ρ2

c

pc
, while the subscript ρ recalls for

the thermodynamic normalization per mass unit. There-

fore, in Eq. (30), χ∗
ρ = χ pc

ρ2
c

= κT

(
ρ
ρc

)2

pc = (ρ̃)
2
κ∗

T ,

with κT = 1
ρ

(
∂ρ
∂p

)

T
and κ∗

T = pcκT . µρ =
µp

mp
is

the chemical potential per mass unit, dual from the
(mass) density ρ. κT is the isothermal compressibility.
ρ̃ = ρ

ρc
is the practical dimensionless form of the den-

sity, which differs by a factor Zc from the dimensionless

form ρ∗ = ρ
(αc)

d

mp
obtained with our length unit αc [7, 8].

We note that the above susceptibility χρ also differs from

the susceptibility χp̄ =
(

∂n
∂µp̄

)

T
= n

(
∂n
∂p

)

T
∼
[
J m3

]−1

where the subscript p̄ recalls for the thermodynamic
normalization per particle. Expressing χp̄ in coherent

[i.e. using Eqs. (3) and (4)] units of βc

(αc)d , we obtain

χ∗
p̄ =

(
1

Zc

)2

χ∗
ρ = (n∗

c)
2
κ∗

T [using n∗ = n (αc)
d
]. How-

ever, pressure (∼
[

energy
volume

]
) appears appropriately ex-

pressed in units of pc = (βc)
−1

(αc)d , within the both (practical

and coherent) dimensionless formulations.

3.2.2. The heat capacity at constant volume

The total heat capacity at constant volume CV ∼[
J K−1

]
of the fluid mass M is divided by the total fluid

volume V to have a unit of ρcV,ρ, where cV,ρ = CV

M
∼[

J kg−1 K−1
]

is the specific heat at constant volume.
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P
∗
qf x Z

±

P
Z

1,±
P

P P±

0 P±

1

ℓ
∗,+
qf ν = 0.6304 ± 0.0013 Z

+

ℓ = 0.570365 Z
1,+
ℓ = 0.37685 ξ ξ+

0 = αcΛqe (Yc)
−ν

Z
+

ℓ a+

ℓ = Z
1,+
ℓ (Yc)

∆

χ
∗,+
qf γ = 1.2397 ± 0.0013 Zχ = 0.119 Z

1,+
χ = 0.555 χ∗

Γ+ =
(
Λ∗

qe

)d−2
(Zc)

−1 (Yc)
−γ

Z
+
χ a+

χ = Z
1,+
χ (Yc)

∆

C
∗,+
qf α = 0.1088 ± 0.0039 Z

+
C

= 0.105656 Z
1,+
C

= .52310 ∆c∗V
A+

α
=
(
Λ∗

qe

)−d
(Yc)

2−α
Z

+
C

a+
C = Z

1,+
C

(Yc)
∆

M
∗
qf −β = −0.3258 ± 0.0014 ZM = 0.468 Z

1
M = 0.4995 ∆ρ∗

LV B =
(
Λ∗

qe

)−1
(Zc)

−
1
2 (Yc)

β
ZM aM = Z

1
M (Yc)

∆

Table I: Parameters for the master critical behavior of the correlation length, the susceptibility, the specific heat and the
liquid-gas coexisting density along the critical isochore of pure fluid. Exponent values on column 2, amplitude ratios values,
and ∆ = 0.502 ± 0.004, are from [24, 25].

The dimensionless specific heat c∗V,ρ is then obtained ex-

pressing the total heat capacity in units of pcV
Tc

, so that

c∗V,ρ = ρcV
Tc

pc
. Therefore, in Eq. (31), the singular spe-

cific heat ∆c∗V,ρ (∆τ∗) is such that the total specific heat

c∗V,ρ (T ∗) as a function of T ∗ = T
Tc

reads as follows

c∗V,ρ (T ∗) = ∆c∗V,ρ (∆τ∗) + C∗
B,ρ (T ∗) (33)

In Eq. (31), B∗
cr is a critical constant while, in Eq. (33),

C∗
B,ρ (T ∗) is the regular background reflecting the analyt-

ical part of the free energy. In our coherent formulation
of the particle properties, the heat capacity per particle
cV,p̄ = CV

N
∼
[
J K−1

]
have the (universal) kB dimension.

As a matter of fact, the heat capacity per particle is the
unique measurable thermodynamic property which can
be made dimensionless only using the Boltzmann factor
kB, i.e. without reference to αc and (βc)

−1
. Therefore,

when the singular heat capacity at constant volume, nor-
malized per particle, obeys the asymptotic power law

∆cV,p̄ =
A±

0,p̄

α
|∆τ∗|−α

[
1 + O

{
|∆τ∗|∆

}]
(34)

along the critical isochore, one (+ or −) among the two

dimensionless amplitudes
A

±

0,p̄

kB
is mandatorily a charac-

teristic fluid-particle-dependent number (the two ampli-

tudes being related by the universal ratio
A

+
0,p̄

A
−

0,p̄

≅ 0.537

for d = 3 [25]). However, hyperscaling features impose
that the same length scale is used in thermodynamic and
correlation functions. For example, in the case of an
“uncompressible” 3D Ising-system of the lattice spacing
aIsing , the singular part of the heat capacity normal-

ized by kB can be expressed in unit of (aIsing)
d

[27] [the
extensive nature of the total number of particle is then
implicitely accounted for in a crystallized solid system
since the total volume is proportional to the cell lattice
volume containing a fixed number of particles]. Similarly,
in the case of the compressible one-component fluid, that
needs to express normalized heat capacity per particle in

unit of (αc)
d

(ignoring in this simple dimensional analy-
sis the quantum effects on the microscopic wavelength).
The number of particles within the critical interaction
cell being 1

Zc
, we thus define the singular part of the

heat capacity for the volume of the critical interaction

cell as follows

∆c∗V,I =
1

Zc

∆c∗V,p̄ (35)

whith ∆c∗V,p̄ =
∆cV,p̄

kB
. Accordingly, 1

Zc
takes equivalent

microscopic nature of the coordination number in the lat-
tice description of the three dimensional Ising systems,
while αc takes equivalent microscopic nature of the lat-
tice spacing aIsing. Now, for comparison with the nota-
tions used in fluid-related critical phenomena where all
the thermodynamic potentials are divided by the total
fluid volume, we also introduce the heat capacity at con-
stant volume, for a fluid in a container of unit volume,

∆cV =1 =
∆cV,p̄

vp̄,c
(labelled here with the subscript V = 1).

Expressed in our above unit length scale [Eq. (4)], the
associated dimensionless form reads

∆c∗V =1 =
∆cV,p̄

kB

×
1

vp̄,c (αc)
d

=
∆cV =1

kB

×
1

(αc)
d

(36)

Obviously, ∆c∗V =1 is identical to

i) the previous dimensionless form ∆c∗V,ρ = ∆CV

V
× Tc

pc

of the total singular heat capacity ∆CV = N∆cV,p̄ of
the constant total fluid volume V , filled with N (fixed)
particles and,

ii) the our dimensionless form ∆c∗V,I = ∆c∗V,p̄ × 1
Zc

of
the singular heat capacity of the microscopic interacting
volume vc,I [Eq. (9)], filled with 1

Zc
(fixed) particles. In

this latter situation, we have an explicit comprehension
of the extensive nature of the two independent variables
V and N for compressible fluids. Specially, we note here
the importance of the thermodynamic normalization for
better understanding of the scaling nature of the critical
amplitudes, such as in Eq. (31) for example. Considering
the hyperscaling law 2−α = dν, throughout the universal
quantity made by the product

(∆τ∗)2 ×
∆c∗V,ρ

(αc)
d
× ξd = universal quantity

and rewriting this product such as

(∆τ∗)2 ×
1

Zc

×
(
∆c∗V,p̄

)
×

(
ξ

αc

)d

=
(
R±

ξ

)d

[with R+
ξ ≅ 0.2696 and R−

ξ ≅ 0.169, for d = 3 [25]],
we can easily demonstrate that the universal amplitude



7

combination

(
R±

ξ

)d

= 1
Zc

(
A

±

0,p̄

kB

)(
ξ
±

0

αc

)d

(37)

contains the two independent extensive features (volume
and number of particles) of the fluid system at the scale
of the critical interaction cell. In such a situation, the di-
mensioned leading amplitudes A±

0,p̄ (associated to a par-

ticle property), and ξ±0 (associated to the microscopic
wavelength), have a well-understood physical meaning
with respect to the universal features of the universality
class. As an essential consequence, the universal feature
of any singular free energy must then be expressed in
terms of the unique remaining energy scale (βc)

−1. We
will return below (see §.3.3) on this important remark to
account for quantum effects in the master singular be-
havior of the one-component fluid subclass.

3.2.3. The (dual) densities and chemical potentials

We finally consider the non homogeneous domain be-
low Tc, where the practical dimensionless form of the
symmetrized order parameter density [see eq. (32)] is
defined by

∆ρ̃LV (|∆τ∗|) =
∆ρLV (|∆τ∗|)

2ρc

=
ρL − ρV

2ρc

(38)

ρL (ρV ) is the liquid (vapor) density of one coexisting
phase. Such a dimensionless form occurs from the use-
full variable ρ̃ = ρ

ρc
(see above), leading to consider the

quantity

∆ρ̃ =
ρ − ρc

ρc

= ρ̃ − 1 (39)

as a practical order parameter density, and the quantity

∆µ̃ρ =
µρ − µρ,c

µρ,c

= µ̃ρ − 1 (40)

as a practical ordering field. µρ,c =
µp̄

mp̄
is the specific

chemical potential at the critical point. µ̃ρ =
µρ

µρ,c
is

the practical dimensionless form of the chemical poten-
tial, which differs by a factor (βcµp̄,c)

−1
from our dimen-

sionless form µ∗
p̄ = βcµ

∗
p̄ obtained with our energy unit

(βc)
−1. From comparison between the two definitions of

the order parameter density by Eq. (22) and (39), we
obtain

∆ρ̃ = Zc∆m∗

∆ρ̃LV = Zc∆m∗
LV

(41)

where

∆m∗
LV = (nL − nV ) (αc)

d
(42)

The main conclusive remark to note using these dual
variables ∆ρ̃ and ∆µ̃ρ, of respective Eqs. (39) and
(40), concerns the implicit addition of a new length

scale factor α̃c =
(

mp̄

ρc

) 1
d

and a new energy scale factor
(
β̃c

)−1

= mp̄µρ,c. As a consequence, the nonuniversal

nature of each leading amplitude is a complex combina-
tion of the interrelated dimensionned scale factors and
of the two scale factors associated to universal scaling in
fluids.

3.3. Two-scale-factor universality and quantum

effects

In addition to Eqs. (25) to (32), we now introduce:
i) the renormalized singular free energy density

A∗
qf

(
T ∗,M∗

qf

)
which, along the isocline M∗

qf = 0,

asymptotically behaves as

A∗
qf (T ∗) = Z±

A (T ∗)2−α
[
1 + O

{
(T ∗)∆

}]
(43)

with respect to the master thermal field T ∗ going
to zero. Correspondingly, the thermodynamics defini-
tions of the renormalized properties of present interest

are H∗
qf

(
T ∗,M∗

qf

)
=
(

∂A∗
qf

∂M∗
qf

)

T ∗

, χ∗
qf

(
T ∗,M∗

qf

)
=

(
∂M∗

qf

∂H∗
qf

)

T ∗

,
·C∗

qf(T ∗,M∗
qf)

T ∗ = −
(

∂2A∗
qf

∂T ∗2

)

M∗
qf

=0
, [with

Z±
A =

Z±

C

α(1−α)(2−α) ];

ii) the singular part ∆aρ (T, ρ) =
∆Aρ

V
of the Helmholtz

free energy density, where temperature T and (practical)

density ρ =
Nmp̄

V
are the two selected variables to de-

scribe a fluid maintained in a container of constant total
volume V . In our case where order parameter density
is related to the (natural) number density n = N

V
, we

note ∆a (T, n) = ∆A
V

this singular part of the Helmholtz
free energy density. Due to the appropriate dimension-
less form of the pressure mentionned above, both the

usefull dimensionless form ∆a∗
ρ (∆τ∗, ∆ρ̃) =

∆Aρ

V
× 1

pc

and the natural dimensionless form ∆a∗ (∆τ∗, ∆m∗) =

βc∆A × (αc)
d

V
are identical, except the use of two dis-

tinct reduced forms ∆ρ̃ and ∆m∗ of the order parmeter
density. Along the critical isochore ∆ρ̃ = ∆m∗ = 0, the
singular part of the free energy behaves as

∆a∗
ρ (∆τ∗) ≡ ∆a∗ (∆τ∗)

= A′± |∆τ∗|2−α
[
1 + O

{
|∆τ∗|∆

}] (44)

The basic thermodynamic definitions of the physi-

cal properties are: ∆µ̃ρ (∆τ∗, ∆ρ̃) =
(

∂∆a∗
ρ

∂∆ρ̃

)
∆τ∗

,

or ∆µ∗
p̄ (∆τ∗, ∆m∗) =

(
∂∆a∗

∂∆m∗

)
∆τ∗

; χ∗
ρ (∆τ∗, ∆ρ̃) =

(
∂∆ρ̃

∂∆µ̃ρ

)

∆τ∗
, or χ∗

p̄ (∆τ∗, ∆m∗) =
(

∂∆a∗

∂∆µ∗
p̄

)

∆τ∗
; and
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∆c∗V,ρ(∆τ∗,∆ρ̃)

T∗ =
(

∂2∆ãρ

∂(T∗)2

)
∆ρ̃

, or
∆c∗V (∆τ∗,∆m∗)

T∗ =
(

∂2∆a∗

∂(T∗)2

)
∆ρ̃

;

It is thus easy to obtain the relations reported in the
columns 6 and 7 of Table I, using the above basic ther-
modynamic definitions of the renormalized and physical
variables. That also provides a comprehensive under-
standing of the quantum effect correction to master sin-
gular behavior.

As a matter of fact, following the argument first pro-
posed by Widom [28], the renormalized energy associated
with the spontaneous density fluctuations that extend
over a distance ℓ∗qf must be of the order (βc)

−1
, leading to

a renormalized free energy density of order
[
βc (αc)

d
]−1

.

Along the critical isochore, this energy will be associated

to A∗
qf (T ∗) of Eq. (43). The product A∗

qf (T ∗)×
(
ℓ∗qf

)d

being a universal quantity, the relative quantum correc-
tion to the renormalized singular free energy reads

A∗
qf (T ∗) =

(
Λ∗

qe

)d
A∗ (T ∗) (45)

due to the Eq. (15) for ℓ∗qf . A∗ (T ∗) must be the
renormalized singular free energy already defined for non-
quantum fluids such as

A∗ = βc (αc)
d
×

∆A

V
(46)

Therefore, from the comparison between the leading
terms of the renormalized and the physical second deriva-
tives of the singular free energy densities with respect to
their associated thermal fields, we obtain

A± =
1

Zc

A±
0,p̄

kB

=
(
Λ∗

qe

)−d
(Yc)

2−α
Z±

C (47)

In addition to the explicit Yc and Λ∗
qe dependences of

the leading dimensionless amplitude A±, the above Eqs.
(47), also show the role of the particle number 1

Zc
such as

the multiplicative factor to the leading particle amplitude
A±

0,p̄ ∼ [kB]. That provides understanding of the master

(i.e. unique) singular behaviors of the one-component
fluid subclass in terms of the master (i.e. constant) prop-
erties of the critical interaction cell of any one-component
fluid. Similarly, from the comparison between the lead-
ing terms of the renormalized and the physical correlation
lengths, we obtain

ξ±0 = αcΛ
∗
qe (Yc)

−ν
Z±

ξ (48)

In Eqs. (47) and (48), A±
0,p̄ ∼ [kB ] and ξ±0 ∼ [length]

have the appropriate Qmin
c and Λ∗

qe dependences to sat-
isfy the universal amplitude combination of Eq. (37).
These two equations (47) and (48), or more generally, all
the relations given in the column 6 of Table I, also demon-
strate that the estimation of the adjustable parameter
λq,f , introduced throughout the Eqs. (12) and (13), is

unequivocally made from the leading power law behav-
ior of any property, when Qmin

c is known. That provides
a very sensitive test of the above phenomenological ap-
proach to account for quantum effects, provided that the
same length scale αc and the same energy scale (βc)

−1

are used for thermodynamic and correlation functions at
T ∼= Tc. In such a coherent thermodynamic normaliza-
tion, the relative quantum modification [proportional to(
Λ∗

qe

)d
] of the energy within the critical interaction cell

is correlated to the relative quantum modification of the
microscopic wave number [proportional to Λ∗

qe]. We thus
provide the microscopic quantum mechanical modifica-
tion which complement the Widom’s [28] and Staufer et
al’s [29] macroscopic argument, when it is expected that
the free energy associated to fluctuations of size ξ were
solely responsible for the singular contribution of ther-
modynamic potentials and correlation functions.

3.4. 3He results

For the fermionic quantum fluid 3He, the Qmin
c set

is composed of the following critical coordinates Tc =
3.315546 K, pc = 1.14724 105 Pa, ρc = 41.45 kg m−3,
and γ

′

c = 1.1759 105 Pa K−1 [14]. Using Eqs. (4) to

(6), the values of the four scale factors are (βc)
−1

=
4.5776 10−23J , αc = 7.362 10−10m, Yc = 2.39837, Zc =
0.301284. By χ2-optimization only using the susceptibil-
ity data above and below Tc in the range |∆τ∗| < 5 10−3,

with Γ+

Γ+ =
Z+

χ

Z−
χ

= 4.79 [25], the adjustable parameter λq,f

takes the numerical value λq,3He = 0.146423, leading to
Λ∗

qe = 1.11009. For the specific case of the heat capacity,
the additional critical (B∗

cr) and background (C∗
B) terms

are treated as one single adjustable constant (B∗
cr +C∗

B).
The main results are illustrated in Fig. 1 where the

comparison is made to the recent published experimen-
tal data (black points in Fig. 1) of Zhong et al [14].
In order to simplify the comparison, the same corre-
sponding scaled data by the asymptotic power law term
(∆τ∗)−x

were used for susceptibility and heat capacity
above Tc, and for coexisting liquid vapor densities below
Tc, which improves the sensitivity of the relative repre-
sentation from the asymptotic amplitude values. Obvi-
ously, that provides a simultaneous significative test of
the quantum effect contribution since, among the four
leading amplitudes Γ+, A+, Γ−, and B, only one is read-
ily sufficient to define the unequivocal Λ∗

qe-dependence.
Moreover, to illustrate the first confluent term contribu-
tion associated to the scale dilatation method, the full
(red) lines and the dot-dashed (blue) lines in Fig. 1 cor-
respond to the respective first-order Wegner expansions
obtained from Table I, and from the Zhong et al [14]
initial fit, using the minimal substraction renormaliza-
tion (labelled MSR) scheme (see also the corresponding
numerical values of the amplitudes listed in Table II).
For the three selected properties, the predicted singular
behavior fits well the experimental results and matches
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Figure 1: Asymptotic two-term predictions compared to the 3He measurements (black points). The solid (red) lines are the
actual predictions by the dilated scale method (see Eq. (24) and column 4 of Table II). The dot-dashed (blue) lines are the
two-term prediction obtained from the best fit by the MSR Φ4

d=3(1)-model [14] (Eq. (24); column 2 of Table II). The dashed
(green) lines are the two-term prediction obtained from CPM model [36] (Eq. (24); column 3 of Table II). (a) Susceptibility
measurements for T > Tc (corresponding to upper part of Fig. 1 in [14]). (b) Specific heat measurements for T > Tc, where
the small difference in the additional constant term CB +Bcr is accounted in the vertical scale (see also the lower part of Fig. 3
in [14]).(c) Susceptibility measurements for T < Tc (see also the lower part of Fig. 1 in [14]). (d) Liquid-gas coexisting density
measurements (see also Fig. 4 in [14]).

Amplitude MSR [14] MSR [30] MR6[30] MR7[30] CPM [36] CPM [30] This work

ξ+
0

(
◦

A

)
2.71 ± 0.02 2.68 ± 0.04 2.68541

a+

ξ 0.732 ± 0.007 0.58474

Γ+ 0.150 ± 0.007 0.147 ± 0.001 0.146 ± 0.001 0.148 ± 0.001 0.150 ± 0.002 0.153 ± 0.001 0.148247

Γ− 0.0303 ± 0.0015 0.0299 ± 0.0003 0.0308 ± 0.0001 0.0310 ± 0.0001 0.0310 ± 0.0002 0.030953

a+
χ 0.98 ± 0.08 1.10 ± 0.01 1.13 ± 0.01 1.17 ± 0.01 0.941 ± 0.007 0.81 ± 0.01 0.860931

a−
χ 4.29 ± 0.34 4.83 ± 0.05 3.58 ± 0.05 5.30 ± 0.07 4.17 ± 0.07 4.01366

A+

α
3.73 ± 0.45 3.76 ± 0.05 3.72 ± 0.01 3.84 ± 0.02 3.548 ± 0.031 3.63 ± 0.02 3.71132

A−

α
6.97 ± 0.83 7.03 ± 0.10 6.883 ± 0.026 7.149 ± 0.027 6.823 ± 0.01 6.935 ± 0.04 6.90948

αa+
C 1.2 ± 0.1 0.99 ± 0.01 1.13 ± 0.01 1.07 ± 0.01 0.712 ± 0.006 0.61 ± 0.01 0.810892

αa−

C 1.1 ± 0.1 0.92 ± 0.01 1.17 ± 0.01 0.83 ± 0.01 0.593 ± 0.012 0.74 ± 0.01 0.59712

Bcr + CB −1.65 ± 0.85 −1.67 ± 0.13 −1.64 ± 0.04 −1.81 ± 0.04 −0.96 ± 1.0 −1.23 ± 0.05 −1.40

B 1.020 ± 0.006 1.021 ± 0.003 1.008 ± 0.004 1.039 ± 0.004 1.0047 1.028 ± 0.004 1.02134

a−

M 0.91 ± 0.02 0.91 ± 0.01 1.001 ± 0.023 0.218 ± 0.003 0.8441 0.73 ± 0.01 0.77484

Table II: Calculated values for critical amplitudes of 3He with Tc = 3.315546 K, pc = 1.14724 105 Pa, ρc = 41.45 kg m−3,

γ
′

c = 1.1759 105 PaK−1, and λq,3He = 0.146423 (see text). Using Eqs. (4), (6) and the definition of Λ∗
qe from Eqs. (12) to

(14), the values of the (five) characteristics parameters for 3He are (βc)
−1 = 4.5776 10−23J , αc = 7.362 10−10m, Yc = 2.39837,

Zc = 0.301284, and Λ∗
qe = 1.11009.
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the theoretical predictions of the minimal-substraction
renormalization scheme.

More generally, as shown in Table II, the two-term
asymptotical results obtained with the scale dilatation
method are in good agreement with the two-term para-
metric modeling recently obtained by Zhong and Bar-
matz [30], based on three different theoretical models.
Two of these models are issued from the two main field-
thoretical renormalization schemes that treat classical-
to-critical crossover phenomena, namely the minimal-
substraction renormalization scheme of Dombs and co-
workers [31, 32, 33, 34, 35], and the massive renormal-
ization scheme of Bagnuls and Bervillier [4, 5, 9, 24], only
applied to the primary critical path corresponding to the
homogeneous and non homogeneous domain along the
critical isochore. The third model, namely the crossover
parametric model, proposed by Agayan and coworkers
[36, 37], is a complete parametric equation of state is-
sued from a phenomenological crossover transformation
of a classical Landau expansion of the singular free en-
ergy [38, 39, 40]. Although it is phenomenological, this
crossover Landau model was successfully applied to sev-
eral one-component fluids. A previous comparison of the
results obtained by the crossover Landau model and the
scale dilatation method was already made in the case of
seven non-quantum fluids. In Table II are reported,

i) colums 2 and 3 labelled MSR, the results obtained
by Zhong et al [14] and Zhong and Barmatz [30] from the
minimal-substraction renormalization scheme;

ii) colums 4 and 5 labelled MR6 and MR7, the results
obtained by Zhong and Barmatz [30] from the massive
renormalization scheme in the sixth- [5, 9] and seventh-
loop [24] series;

iii) colums 6 and 7 labelled CPM , the results obtained
by Agayan et al [36] and Zhong and Barmatz [30] from
the crossover parametric model;

iv) column 8, the results obtained in this work applying
the scale dilatation method.

The excellent agreement between the amplitude values
permits to discuss now the introduction of the adjustable
parameters in the modeling, and to explain why only two
ajustable parameters in the models are significant with
respect to the fit quality, as concluded by Zhong and
Barmatz [30].

4. 3He CRITICAL MODELLING

4.1. The two renormalization schemes along the

critical isochore

As clearly mentionned in the Appendix D of the refer-
ence [14], the three free parameters of the MSR-model
originate from the undetermined integration constants
zφ, za, and zµ, associated to the flow equations of their

respective Zφ (u), Zr (u), and Zu (u) [Zφ (u)]
−2

field the-
oretical functions (here we have adopted the Zhong et al
notation for za and zµ, adding zφ as being the undeter-

mined integration constant to solve Eq. (7) of reference
[14]). These integration constants are system dependent
and can be obtained by fitting experimental data to the
theory. However, considering uniquely the critical iso-
chore, the given set composed by the explicit adjustable
parameters (such as {u, µ, a} in the MSR model case
[13, 14]) or calculated parameters (such as the leading
amplitudes and t0 in the MSR model case [13, 14]) result
in complicated scaled forms of combinations between zφ,
za, and zµ. Specifically, to account correctly for the zφ

system dependence needs to use several properties. The
susceptibility fitting results reported in Figure 2 of Ref.
[14], where only two (µ and t0) among the three scaled
parameters (µ, a and t0) have the expected power law
dependence on 1 − u

u∗ near the fixed point (u = u∗),
should be also due to a non-representative test of one
asymptotical scaled form. A preliminary comparison of
the functional forms of the leading amplitudes obtained
from the MSR model and the scale dilatation method for
the case of the non-quantum fluid subclass, suggests for
example that the true independent scaled factors of each
physical system are then such as

za

(zµ)
ζ∗

r

∝ Yc (49)

and

zφ

(zµ)
ζ∗

φ

∝ Zc (50)

In Eqs. (49) and (50), ζ∗r = ζr (u∗) = 1 − 1
ν

and
ζ∗φ = ζφ (u∗) = −η are the respective values of the field

theoretical functions at the Ising fixed point u = u∗ (see
Zhong et al’s [14] notations). This suggestion should be
usefull for a possible rescaling of the leading amplitudes
which gives better evidence for the two asymptotical pa-
rameters which are readily independent in the modeling
form the minimal-substraction renormalization scheme.

The two-term master asymptotical behavior obtained
from the scale dilatation method can be described [41]
by the massive renormalization scheme of Bagnuls and
Bervillier, thanks to its formal analogy to the basic ana-
lytical hypotheses of the renormalization [22, 23]. Using a
similar approach which introduces one common (i.e. P ∗-
independent) crossover parameter ϑ3He, and adjustable
prefactors P

±
0,3He

for each dimensionless property P ∗, we

obtain the following values L
+
0,3He

= 1.2925 , X
+
0,3He

=

1.818, C
+
0,3He

= 2.1503, and M
±
0,3He

= 1.0894, for the

leading prefactors of the correlation length, the suscep-
tibility, the heat capacity and the coexistence curve, re-
spectively. These four leading parameters are interre-

lated by the following combinations L
+
0,3He

(
C

+
0,3He

) 1
d

=

1 and
X

+

0,3He(
M

±

0,3He

)2

(
L

+
0,3He

)−d

= 1, so that only two of

them are independent, by virtue of the two scale factor
universality. The estimated value of the crossover param-
eter is ϑ3He = 0.0113. The mean crossover functions [42]
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will be used in a future work to implement the master
estimation of their free parameters from the four scale
factors defined by Qmin

c .

4.2. The crossover parametric model of the e.o.s.

The crossover parametric model is issued from the
crossover Landau model (CLM) of the e.o.s. based on
a phenomenological transformation of a classical Landau
expansion of the singular free energy of the fluid as a func-
tion of the local order parameter density. In such a mod-
eling, the simplest crossover description involves three
free parameters, made of the two coupling constants a0

and u0 and one gradient prefactor c0 (see for example [36]
for notations). After transformation of variables and co-
efficients, the three initial system-dependent coefficients
a0, u0, and c0, are replaced by two dimensionless asymp-
totic scaling parameters (noted ct and cρ in the general
CLM approach) and one dimensionless crossover parame-
ter (noted g). However, from the field theory framework,
any description of a 3D Ising like system with “finite” cut-
off, needs to maintain the appropriate interdependence
between the nonuniversal parameters, specially the mi-
croscopic wavelength Λ0 ∼ [length]

−1
and the coupling

constant u0 ∼ [length]. Introducing then a common ar-
bitrary length scale unit permits to replace the product
u0Λ0 by the product uΛ of the corresponding dimension-
less wavelength Λ and coupling constant u. The conve-
nient normalization ū = u

u∗ , where u∗ corresponds to the
universal value at the non Gaussian fixed point, leads
to an arbitrary choice for the dimensionless microscopic
wavelength Λ and the dimensionless coupling parameter
ū, provided that ūΛ remains finite in order to account
for theoretical infinite cutoff approximation, Λ → ∞ and
ū → 0. In this infinite-cutoff limit where g is related to
the Ginzburg number [40], the crossover behavior is then
universal by rescaling the thermal field like variable using

a single crossover parameter (such as g = (ūΛ)2

ct
= ∆τ∗

X ,
or such as the crossover temperature tX = ct∆τ∗

X , equiv-
alently [40]), However, at the general symmetrical fourth-
order (with only two independent coupling quantities a0

and u0) of the phenomenological transformation of the
classical Landau expansion of the singular free energy,
the crossover behavior is governed by the two dimension-
less parameters g and ū. In such a situation all the di-
mensionless quantities are canonical constants, provided
one have defined a microscopic characteristic length scale
for each fluid. That provides implicit connection between
Λ and ū, or equivalently between Λ and, for example ct,

when the explicit g = (ūΛ)2

ct
dependence is accounted for,

as mentionned above. As a consequence, the only way to
monitor the asymptotic critical behavior of the crossover
Landau model is to change ū, or equivalently ct. We
recall that, in a previous analysis of the corresponding
results for the case of seven non-quantum fluids [21], we

have shown that

ct (ūΛ) = Yc × ft (ūΛ) (51)

and

cρ (ūΛ) = (Zc)
1
2 × fρ (ūΛ) (52)

are unequivocally well-related to our scale factors Yc and
Zc, respectively. In Eqs. (51) and (52), ft (ūΛ) and
fρ (ūΛ)are two appropriate universal power laws of the
product ūΛ, uniquely. In the following, we will also pro-
vide one possible estimation of the coupling constants
a0 (g) and u0 (g) from Yc and Zc, now using the system-
dependent coefficients of the crossover parametric model.

The three-parameter crossover parametric model con-
tains two asymptotic scaling parameters, noted l0 and
m0, and again the crossover parameter g. A comparison
between definitions of asymptotic amplitudes Γ+ and B
leads to the following relations,

l0 =
3.38317

ZX

ZM
3.28613

(
Λ∗

qe

)−2
(Zc)

1
2 (Yc)

β+γ
(53)

and

m0 =
ZM

3.28613

(
Λ∗

qe

)−1
(Zc)

− 1
2 (Yc)

β
(54)

(see our Table I and Table III of Ref. [36] for details).
Our direct estimation of the two free values l0 = 7.0929
and m0 = 0.3108 from Eqs. (53) and (54), are in
close-agreement with the values l0 = 6.89 ± 0.12 and
m0 = 0.306 ± 0.01, deduced from the fitting procedure
of Agayan et al (see Ref. [36]), and with the values
l0 = 6.902±0.012 and m0 = 0.3128±0.0004, recently ob-
tained by Zhong and Barmatz [30] in their recent compar-
ison of theoretical models of crossover behavior. More-
over, as previously mentionned, from the identification of
the leading amplitudes given in Table I of Ref. [36], cal-
culated using, either the crossover Landau model, or the
crossover parametric model, it is now easy to show that
the two coupling constants a0 and u0 are related to Yc

and Zc (and Λ∗
qe, obviously), by the following relations

a0 (g) =
(
Λ∗

qe

)−1
Zc (Yc)

γ
fa0

(g) (55)

and

u0 (g) = Λ∗
qe (Zc)

2
(Yc)

2β−γ
fu0

(g) (56)

In Eqs. (55) and (56), fa0
(g) and fu0

(g) are two appro-
priate universal power laws of the crossover parameter
g.

The first confluent amplitude for the susceptibility ob-
tained from the crossover parametric model reads Γ+

1 =
g+

χ g−∆s (1 − ū), with g+
χ = 0.590, ∆s = 0.51, and

g = (ūΛ)2

ct
(see Table III of Ref. [36]). The identifica-

tion with our corresponding amplitude a+
χ = Z1,+

χ (Yc)
∆

(Table 1), gives

g+
χ

(
ūΛ

(ct)
1
2

)−2∆s

(1 − ū) = Z1,+
χ (Yc)

∆ (57)
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demonstrating unequivocal relation between g
1
2 = ūΛ

(ct)
1
2

and Yc. However, the rescaled coupling constant ū re-
mains dependent, on the one hand, to the correlation
between the three adjustable dimensionless parameters
ct, ū, and Λ of the model, and on another hand, to the
master value Z1,+

χ = 0.555 initially estimated from the
analysis of the isothermal compressibility data of xenon.
That implies the implicit introduction of one characteris-
tic microscopic length which must take a unique “thermo-
dynamic” definition [by Eq. (4)], whatever the selected
one-component fluid. In that “normalized” situation, our
present value a+

χ = 0.861 for 3He, results in good agree-

ment with for example the values Γ+
1 = 0.941 ± 0.007

[36] and Γ+
1 = 0.81± 0.01 [30] obtained from data fitting

with the crossover parametric model (see below for more
details on the uncertainty associated to the Γ+

1 determi-
nation). Accounting for the arbitrary relation Λ

(ct)
1
2

= π

adopted by the authors of Ref. [36], our calculated value

ū = 0.18075 from Eq. (57), yields to g
1
2 = 0.5678, which

compares favourably to g
1
2 = 0.528±0.003 obtained from

the data fitting performed by Agayan et al [36]. Account-
ing for the arbitrary relation Λ

(ct)
1
2

= π√
6

adopted by the

authors of Ref. [30], with Λ fixed at unity (yielding to

g
1
2 = u∗ = 0.472), our calculated value ū = 0.35187 from

(57) (yielding to g
1
2 = 0.4513), compares favourably to

ū = 0.368±0.004 obtained from the Zhong et al [30] data
fitting. The ∼ 10 % residual difference between these two
estimations of the fluid-dependent parameters, reflects
the small differences between theoretical values of uni-
versal exponents and amplitude combinations, added to
the uncertainty in the direct estimation of the confluent
amplitude, the latter one being greater than 10% (for ex-
ample, using “equivalent” crossover Landau modeling of
the same 3He experimental data, the resulting values are
Γ+

1 = 0.946± 0.006 and Γ+
1 = 1.000 ± 0.028 in Ref. [37],

Γ+
1 = 0.941± 0.007 in Ref. [36], and Γ+

1 = 0.81± 0.01 in
Ref. [30], while using the minimal-substraction renormal-
ization scheme, the resulting values are Γ+

1 = 1.01± 0.08
in Ref. [13], Γ+

1 = 0.98 ± 0.08 or Γ+
1 = 1.13 ± 0.01 in

Ref. [14], and Γ+
1 = 1.10 ± 0.01 in Ref. [30], leading

to the practical “mean” value Γ+
1 = 0.97 ± 0.16) (see

also Table II). Nevertheless, this agreement confirms our
previous analyses [10, 21] of the confluent correction to
scaling for the one-component fluid subclass satisfying
to the classical-to-critical crossover description along the

ideal RG trajectory [43, 44].

5. CONCLUSIONS

The present study in terms of the dilated physical
fields for quantum fluids adds only one well-defined ad-
justable parameter, which accounts for microscopic quan-
tum effects only asymptotically close to the critical point
(T ∼= Tc). The adjustable parameter is introduced in
a phenomenological manner which maintains universal
feature of the singular free energy in a appropriate mi-
croscopique volume. Since our selected standard fluid is
xenon, we provide here a complementary new light to
the recent discussions [13, 45] about the definitions of
the crossover temperature tX [related to the crossover
parameter g, (or the Ginzburg number), as mentionned
in §.4.2]. As an essential new consequence, we note that
tX ∝ 1

Yc
along the critical isochore, for T > Tc. There-

fore, our two-term asymptotic hyperscaling seems also
compatible with (at least) the first-order contribution to
the critical crossover. However this observed supplemen-
tary constraint is not a necessity from the field theory
framework [24]. Consequently, our next work [46] is to
provide thermodynamic fundaments for the asymptotic
master behavior of thermodynamic and correlation func-
tions which was inferred from the above minimal infor-
mation. In addition to the derivation of such thermody-
namic fundaments, we also propose a convenient mean
form [41, 42] of the max and min forms for each com-
plete crossover function recently derived by Bagnuls and
Bervillier [24]. Such means functions can be appropri-
ately modified to account for the results obtained by the
scale dilatation method [41], extending thus the analy-
sis of the crossover behavior of the one-component fluids
outside their Ising-like preasymptotic domain.
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