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Scaling Behaviors of Colloidal Aggregates under Uniform Pressure

Robert Botet! and Bernard Cabane ¥
¥ Laboratoire de Physique des Solides Bit.510, CNRS / Université Paris-Sud
Centre d’Orsay, F-91405 Orsay, France
and
¥ Laboratoire PMMH, ESPCI, 10 Rue Vauquelin, F-75231 Paris Cedex 05, France
(May 19, 2004)

We present a new theoretical model for compaction of a colloidal sediment under uniaxial mechan-
ical pressure in the continuous 3-dimensional space. The initial system is formed with aggregated
particles dispersed in a fluid, and softly sedimented in a vessel. When a uniform pressure is applied,
it evolves irreversibly through successive creation and destruction of bonds between the particles.
The rules governing the bonds depend on both geometrical constraints and current stresses. Numer-
ical simulations of such systems exhibit three different scenarios, corresponding repectively to the
fragile, elastic and plastic behaviors. In the elastic regime, where most bonds are permanent, the
pressure scales as a power law of the volume fraction of particles, with a numerical exponent equal to
4.4. In the plastic regime, where many bonds are broken and many others created, the pressure also
scales with volume fraction, but the exponent is much lower, equal to 1.7. These scaling behaviors
agree remarkably well with recent experiments realized on compaction of systems with aggregated
silica particles in the cedometer cell. They also can be explained with simple theoretical arguments
using plausible morphology of the resistant paths acting throughout the system. Finally, at very
large applied pressures, all these regimes converge to the random close packing of spheres.

PACS numbers: 83.80.Hj, 05.20.Gg, 05.70.Fh, 05.50.+q

I. INTRODUCTION

This paper deals with the behavior of disordered networks, such as those formed by aggregated colloidal particles,
when they are submitted to a compressive force. From a fundamental point of view, the question of the compression
of a N-body system takes place in a number of physical contexts. A classical example is the problem of gas com-
pression under the uniform pressure. It has been solved for a long time, after considering the gaseous medium as a
disordered ensemble of molecules in thermal equilibrium. For the ideal gas, the resistance to collapse comes from the
kinetic energies of the molecules, and this results in very particular laws for the pressure P versus the gas density ¢.
Importantly, these laws depend on the precise way in which the gas is compressed. For example, Boyle’s law is the
elastic behavior: P ¢ for the isothermal transformation. Control of energy, instead of control of temperature, leads
to different behaviors, as the Poisson’s law: P o« ¢7, with v = 1.3 ~ 1.7 for the reversible adiabatic compression.
Such power-law behaviors, as

P x ¢1+1/n (1)

with the real positive polytropic index n, are common for perfect-gas compression. Deviations to these laws appear
when interactions between molecules arise. The 2-bodies attractive intermolecular forces tend to decrease the real
pressure by a quantity proportional to ¢2. Moreover, the finite volume of the molecules must manifest at the very
large densities, leading to the Van der Waals equation

P +a¢® x ¢/(¢" — ) (2)

for the isothermal case, with ¢* the limit density at the infinite pressure. These considerations are general, and
should hold for any disordered system of particles that interact through central forces. However, in colloidal systems,
particles often interact through non-central forces. This is the case for al colloidal aggregates, in which small particles
are held together by surface forces. Because such forces are non-central, they may cause the aggregates to retain
tenuous or bushy structures, as in the case for fractal aggregates [1]. All colloidal pastes, such as ceramic pastes and
flocculated emulsions, are made of such aggregates that form a network extending throughout the material. It would
be highly desirable to be able to predict, from the knowledge of interparticle forces, the response of such networks to
an applied stress.



In this paper, we propose a study of the quasi-static isothermal mechanical compression of an inhomogeneous
network of colloidal particles. We consider the case where colloidal particles interact through local chemical bonds -
yielding aggregation -, and eventually Van der Waals and screened electrostatic forces. In the chemical engineering
language, this system would be called a paste. Specifically, the colloid aggregates may be placed in a compression
cell, as in a colloidal ultrafiltration experiment where a semi-permeable piston expresses the liquid from a paste.
Quasi-staticity means here that the characteristic compression time is much larger than the relaxation time of the
overall structure. Within this framework, the compressive yield stress is expected to be a material property of the
colloidal system.

Following the ideas for the granular matter packing [2], the forces propagate along particular paths of connected
particles, and these paths are responsible for the relevant mechanical behavior of the whole system through the local
stress distribution. The local mechanisms involved in the irreversible deformation of the system, are then creation,
deformation and breaks of the bonds between the colloidal particles. The bonds originate from the surfaces of the
particles, and therefore produce non-central forces, hence the network resists bending deformations and will not
collapse spontaneously. Therefore, bond-stretching deformations result in the elastic response to applied forces, while
the irreversible events give the plastic response at high deformation of the network. For the latter, bond creations and
breaks are expected to occur mainly following avalanches of complex events involving rupture/reordering/creation,
until mechanical equilibrium is reached. Even if alternative behaviors have been proposed [3,4], the power laws for
the pressure versus volume fraction, are commonly used in this context [5].

In Section II, we present new modelling of the compaction of aggregated solid spheres with creation/annihilation
of harmonic springs representing the total interaction between spheres. In Section III, a simple theoretical model is
described, and the various power laws between pressure and volume fraction, predicted by this model, are drawn.
Discussion of the numerical data and comparison with the theoretical model, are presented in Section IV.

II. NUMERICAL MODEL

The model proposed here, is a variant of the discrete element method [6] - used for granular materials -, in which
each particle is regarded as an individual hard element, and actual microscopic forces result from pair-interactions.
We consider a box of linear dimension L, x L, X L, - finite part of the continuous 3-dimensional space -, and, at
the beginning of each simulation, N spherical particles are dispersed into this box under pre-aggregated forms. The
common radius of the particles is a = 1/2, such that 2a defines the natural unit of length : the values of all lengths
will be defined relatively to 2a.

In the current work, we shall take the values: L, = L, = 11, and the height L, in the range 11 ~ 200. The z-axis
defines the direction of the external pressure forces. The colloidal particles are all inside the region z = 0 and z = H,
with H the sediment height, which is essentially a decreasing function of the pressure. Along the z- and y- directions,
periodic boundary conditions are considered.

The common mass of the particles is set to 1, and each particle is allowed to translate and rotate according to the
laws of classical mechanical.

A. Definition of the pins

At the beginning of each simulation, a series of pins is randomly computed for each particle. A pin is a particular
point of the surface of the sphere, where a bond may be attached. Only one bond can catch a given pin at the same
time. Hereafter, the number n; of such pins per sphere will be fixed to 200, unless duly noticed. This means that it
is not possible to attach more than 200 bonds onto the surface of a sphere (excluded volume effect). The relevance of
the value given to this number is discussed in Section IV.B.

The exact locations of the pins are computed following a Monte-Carlo procedure: a point on the surface of a sphere
is chosen randomly; it is accepted as a pin if the direction joining the center of the sphere to this new point makes
an angle larger than a threshold with any other pins of the same sphere (e.g.: 0.2 rad is a correct threshold to obtain
ny = 200). The algorithm is repeated until the required number of pins is obtained. This insures a statistically
uniform distribution of the pins on the surface. All these pins are fixed in a local frame attached to the particle.
Indeed, during the movement of the particle, this local frame translates and rotates with respect to the global frame
of the box.



B. Initial aggregates

Before applying the pressure, one builds the system by adding N particles in the box. We use the standard
Reaction-Limited Cluster-Cluster Aggregation (RCCA) model [1] to generate randomly aggregates of N, identical
particles. This model is known to describe correctly experimental flocculation of colloidal particles - such as silica [7],
polystyrene [8], or metallic [9], [10] colloids -, in the conditions where aggregation rate is limited by the time it takes
by the clusters to form a bond.

All the results presented below have been obtained with N, = 16, but work is in progress with other values of N,
ranging from 1 to 32, in order to understand the role of eventual pre-aggregation on the compacted structure. The
N =16 RCCA aggregates correspond to an ensemble of fractal aggregates of fractal dimension D; = 2, and radius of
gyration R,/2a = 2.2 [11].

Once an aggregate is generated, it is inserted randomly at top of the box, at a height large enough to avoid
any overlap with previous system particles. Whenever the aggregate is self-overlapping, due to the lateral periodic
boundary conditions, single-bonded particles are removed one by one from this single aggregate until there is no more
self-overlap. The remaining aggregate is then gently settled onto bottom of the box, or onto existing particles, without
deformation of its structure. Overlaps are strictly forbidden at this stage. With the use of this algorithm, one adds
as many particles as wished. Generally, the simulations presented hereafter were made with ~ 500 particles. Within
the box of lateral section 11 x 11, this corresponds to an initial volume fraction for the sediment ¢ ~ 1072,

C. Creation and annihilation of the bonds

e Bonds are generated if the relative distance between two free pins belonging to two different spheres is smaller
than a threshold [, (see Fig.1). Such a bond will link the two spheres by a microscopic massless spring of stiffness k,
and characteristic length [,. The two pins used for the bond cannot be used again, as long as this bond is present.

FIG. 1. Schematic view of two spheres connected by a few springs. Pins are marked as small grey chips on the surface of
each sphere. Two bonds cannot attach to the same pin, and a given bond connect two different spheres. It is clear that such
configuration yields natural resistance to bending : when three or more springs are attached to the surface of two spheres -as
on the figure -, no relative movement of the spheres can be performed without changing the lengths of at least one spring. It
results in bending forces.

The spring parameters k and [, define the energy unit through the relation E, = kl2/2, which is the energy needed
to compress a spring completely. The simulations presented here are done for the particular choice I, = l,. This
means that no energy is gained or lost by creation of a bond.

e According to the forces acting on the particles, these springs can contract or stretch from their equilibrum length
lo. Whenever the length of the spring becomes larger than a threshold l,,44, the bond is destroyed (see Fig.2),
releasing the microscopic disruptive energy Eq = k(lmaz — 10)2 /2 into the fluid. The value of the relative energy
E4/FE, is used to characterize the fragility of the system (not to be confused with the softness of the system, which is
directly connected to the value of k). The fragility parameter ranges from 4.1072 to 10° in the simulations presented
below.

D. Soft core

The spheres are not considered as hard spheres, but overlaps are allowed within a shell of width a/10 according to
prescription discussed in [12]. This results in a repulsive central harmonic force proportional to the overlap length.
The stiffness constant is set equal to 10E,/a?. In fact, the quantitative results did not depend on the precise value of
the numerical coefficient, if it was chosen within the range 1 ~ 30.
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FIG. 2. Sketch of the mechanical potential energy E of a bond versus the separation distance ! between the surfaces of two
spheres facing each other. The bond equilibrium length is ,. For two spheres approaching, a bond creates at the distance [,
(for clarity, the figure is drawn for the case lo > lo, but the simulations presented in the work are for [, = l,). The value E,
of the potential energy for [ = 0 defines the unit of energy in the system. Small negative values of the length [ are possible,
but they correspond to rapidly increasing repulsive forces. For two spheres moving away, the bond is destroyed at the distance
Imaz- The value E,4 of the potential energy at this rupture threshold characterizes fragility of the system.

E. Application of the external pressure

Several experimental situations have been considered (e.g.: system in a gradient of pressure, as in a centrifugation
experiment), but here, we will focus only on the application of a uniform pressure, as in the experiment with a piston
in the cedometer cell. If the current system is entirely inside a column of vertical extension [0, H|, then the external
pressure P induces a pressure force ma?P on any sphere intersecting the slices 0 < z < a or H —a < z < H. The
other spheres inside the system do not feel directly the pressure.

F. Dynamics

Once all the objects of the system and their applied forces have been defined, one has to consider the proper rules
for the individual motions. A particle, say i, is submitted to various forces, the sum of which is noted F; They can
be split into two sets: the central forces (the pressure force and the overlapping forces), and the non-central forces
(forces due to the bonds, which are attached to the surface of the particle). The latter generate moments, the sum of
which is J\Zfi, which tend to rotate the particles. The equations of motion in the frame of the box are:

5 Ldd; - 4, L
Yy
2" Tt 3

where ¥; and &J; denote the current translational and angular velocity of particle ¢, while ¥y and &y are the cor-
responding macroscopic velocities of the fluid at the location of particle . The coefficient A is the proportionality
constant between the drag force on a particle and its relative translational velocity with respect to the fluid in the
Stokes regime.

In principle, one has to deduce the position and orientation of particle ¢ by time integration of ¥; and &;. This
should be done using (e.g.) Verlet algorithm with implicit velocity [13], to compute the new position of the particle
at time t 4 dt, knowing its position at times ¢ and t — d¢, and the local forces F (pressure and spring forces) and
My (drag forces). This would require complete knowledge of the fluid velocity field @y, which is a considerable task.
Instead, we will consider that all velocities appear to be small (quasi-static approximation), therefore neglecting drag
forces and moments. During the time interval §t, small enough for all the forces be considered as constant, one has
for the position 7; and orientation #; of the particle i:

o7 = aF, (3)
560, = BM; (4)



with the coefficients a = (8t)2/2m and 3 = 2a/5a2. In (4), the rotation of angle 66; is around the axis M;/M;.

This approximation is based on the fact that, at equilibrium (and we are interested by the equilibrium state of the
stressed system), all the velocities vanish, fluid velocity included. So, drag forces do not play relevant role close to
equilibrium in the present situation. More quantitatively, expressing A = 67vpra, with v the kinematic viscosity of the
fluid of volumic mass py, and considering fluid velocity of same order of magnitude as particle velocities, quasi-static
condition Av; < F; writes here: vdt/ a? < 1. This means that the characteristic time increment §¢ should be much
smaller than the momentum diffusion time over distance a (typically ~ 107 !s for colloidal particles in the water).
We will not discuss further the definition of time through ¢, but only consider the algorithm (3,4) as a convenient
way to determine the iso-static state {F} = 6, 1\21 = 6}121 ~ of the system, after a small increase of the external
pressure.

G. Algorithm for evolution to a quasi-static equilibrium

The algorithm for time-evolution is as follows: a given geometry and pressure being given, all the forces and
moments are computed according to the foregoing rules detailed in Sections II C, D and E. The equations of motion
(3), (4) are then used successively on all the particles of the system, with the coefficient « chosen in such a way
that the largest translational movement equals a/10. So, to optimize simulation speed, the time is allowed not to
run uniformly. After displacement of all the particles is achieved, the bonds are updated: some of them are broken
apart and other ones appear, according to Section II C rules. The same applies to the particles submitted to the
external pressure, and to the overlaps. Once the whole geometry has been updated for one step time, one performs
the loop again at the given constant pressure. The computer realizes as many loops as needed for the equilibrium be
reasonably reached. To achieve this stop, one checks the displacements of all the particles. When the maximum and
the average value of these displacements are both smaller than a threshold (namely : a/100) for 20 consecutive time
steps, the simulation stops. Mechanical equilibrium is then considered as achieved, and one increases the pressure.
The full algorithm is then used once again.

IIT. ORDER OF MAGNITUDE OF THE VARIOUS PARAMETERS

The correct values of the parameters can be inferred from estimates of the fundamental quantities used in the
model. Assume that the system is a colloidal dispersion, made of nanometric particles. The particle diameter may
be taken as 2a = 6 nm, and the equilibrium length of the spring as [, = 3 nm. The natural pressure unit is
P, = kl,/ma® = E,/ma(l,/2a). To get P, of order 1 bar, one can choose for the energy of a completely compressed
spring: F, ~ 4. 10721J, which corresponds approximately to 1kgT at room temperature. This will be our choice in
the following: the values P/P, will then be understood as effective pressure P expressed in bars, and the values of
E/E, as energy F expressed in kg7 units.

During a simulation, neighboring particles will be linked by several bonds connected to their surfaces. So, the
mechanical response of the system will result from the properties of bundles of springs instead of individual bonds.
Therefore, a quantity of interest is the energy needed to separate two particles linked together by the maximum
number of springs. Putting two spheres into contact, the area of one sphere, at a distance less than [, from the
corresponding area of the other sphere, is wal,. The pins being uniformly distributed over the surface of the sphere,
the number of bonds linking the two spheres is the product of the total number of pins per sphere with [, /4a. For
ns = 200 pins per sphere, and [, = [,, one gets 10 bonds between two spheres in contact. The energy needed to
separate completely the two spheres is then 10E, in this case. It ranges from 0.04 kgT to 10° kpT for the values
of FE,; investigated. Note also that, if two spheres are brought into contact, then released, the bundle of springs is
equivalent to a single harmonic spring with local stiffness K, = knl,/4a at the equilibrium length I, — ,/2. Sketch
of the force applied to the spheres versus the distance [ separating their centers is shown in Fig.3.
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FIG. 3. Sketch of the reduced total force between two spheres initially at contact, versus their separation distance {/2a during
traction from particles in contact. Repulsive forces are counted positive. In this example, the parameters lo/2a = l,/2a = 1/2
and lmaz/2a = 2 have been used. This corresponds to the disruptive parameter Eq/F, = 9. When [ is smaller than
lu = 2a + lmaz — la (noted U on the figure), interaction is elastic and harmonic. The equilibrium length is Ig = I, — lo/2
and equivalent stiffness K,. When separation distance becomes larger than [y, the system becomes unstable with respect to
traction, as irreversible bond breaking occurs. The case exemplified here is typical of l4/2 < lo < lymasz. For the other cases (not
considered in the paper), the 2-spheres system is always repulsive (if [, > lmaz) or always attractive (if I, < lo/2) regardless
the separation distance.

The largest force F,,, that two spheres are able to generate in response to a separating stress, is such that
Fraze/Kolo = \/Eq/E, — 142, for the usual case E4/E, > (14/1,)? (and Fya0/Kolo = Eq4l,/2l, for the fragile case
Eq/E, < (la/15)?). Tt should be compared to the other characteristic force in the system: the pressure force. The
whole structure is then unable to resist to the pressure if Fj,q; < ma?P. This gives an order of magnitude of the
largest pressure Pj;  (disruptive pressure) that the system is able to support:

ng lg Ey 1,
PP, ="t [ [Zd o .
dZS/ o 2 2aq ( EO 210) (5)

For P > Py, the forces generated by the springs cannot balance the typical forces generated by the external pressure.
The structure of the overall system is then expected to be completely destroyed until the hard-sphere repulsion forbids
subsequent collapse.

IV. CHECKS

A number of test simulations have been performed, in order to verify the relevance of the algorithm for modelling
deformation of multi-spheres bodies, with the correct choice of the dummy parameters.

A. Deformation of simple bodies

The algorithm, as stated in Section IT G, could be used with minor changes, to study the elastic response of a
multi-sphere body, connected by permanent bonds. In this case, the bonds are created once for all at the beginning
of the process, and they cannot be created or broken during the rest of the simulation.

A quantitative check was perfomed in this sense, on an ensemble of four particles in contact, arranged in the
regular tetrahedron. The numerical results for its response to the uniform pressure, agree quantitatively well with the
analytical result which is easy to derive because of the symmetry of the problem.

Another, less obvious, test is the response of a column squeezed between two pistons. On Fig.4 are two examples
of a cylindrical column with the triangular basis (i.e., formed initially by regular vertical arrangement of ensembles
of three particles, organized in equilateral triangles). As explained above, the bonds in this numerical experiment,
are permanent and cannot be created or broken during deformation, therefore, the response to external force must
be purely elastic. On the first example (Fig.4a), one sees twisting and buckling of the structure. Twisting appears
first as a response to small compression: triangles of particles rotate with respect to each other in order to decrease
the overall height. When this process is no longer possible - or requires too much mechanical energy -, the system



buckles. On Fig.4b is shown the same column after a central particle was removed. This generates a structural defect,
and the system prefers to fold down. These two behaviors are indeed expected for the elastic response, if the forces

propagate correctly throughout the structure.
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FIG. 4. Two examples of columns with triangular basis. The bonds between neighboring particles are created in the initial
structure, and cannot be destroyed or created during deformation. a) The two left-hand side columns show elastic twisting and
buckling. b) The two right-hand side columns show the folding of the column when a defect (one central particle is missing) is

created in the initial structure.

B. Values of the dummy parameters
Other tests were performed to verify that the quantitative results are robust with respect to those parameters which

are expected to be irrelevant.
An example is given below, on Fig.5, where simulations were realized with systems of N = 256 or 512 particles, and
particles with 200, 300 or 400 pins. The numerical results show the increase of the volume fraction with pressure.
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FIG. 5. Volume fraction versus pressure, for four different cases with the common value E4/E, = 1. Stars are N = 256 and
nt = 200 pins per particle; crosses for N = 256, n, = 300; squares for N = 256, n; = 400; circles for N = 512 and n; = 400 pins
per particle. All the data fall on a single curve, which shows that the number of particles and the number of pins per particle
are so large that they no longer influence noticeably the statistical results. The values for the disruptive pressures P, /P,

given by (5) are 25 for ny = 200 and 50 for n, = 400.
Except from the very initial stage (the initial sediments were different), the regular trend starting at the external



pressure P = 0.1 is similar for the four cases. One can then conclude that the values N = 256 and n; = 200 are large
enough to avoid any spurious dependence of the system size and of the number of possible bonds per particle. In the
following, all numerical simulations were made with N ~ 500, and n; = 200.

An important remark must be made here: we see in Fig.5 that the main global features do not depend on the initial
conditions of the compression. This could be remarked in all the simulations presented below. This point suggests
existence of general scenarios governing the compressive behaviors of such systems. This will be the reason for the
tentative outline chosen throughout this paper: to extract global behavior and propose general scenarios to explain
them.

C. Increment of pressure

At this point, it is useful to make the following remark concerning the exponential increment of pressure. We use
the following prescription: starting from a small value Pj, the pressure is increased multiplying it successively by a
constant factor. In such a way, the increment Alog P is constant. The reason for such a choice, is that the larger is
the pressure, the weaker is the possible compaction of the system. In addition, this exponential scale is well adapted
to detect power law behaviors (like (1) for example). Such a power law is apparent in Fig.5 for pressures in between
0.1 and 2 bars.

The relevance of this choice has been checked using linear, instead of exponental, increase of pressure, with various
pressure steps. The results remain identical regardless the increment, provided it is very much smaller than the
pressure P, needed to collapse completely the system. In the example of Fig.5, one should consider increment of
pressure much smaller than a few P, (here: a few bars, since P, ~ 1 bar). Applying for example P; = 100 bars as
the first pressure, would lead to a very inhomogeneous system, as a consequence of the basic irreversibility of the
process. This process could be relevant in some fast experimental compression for which kinetics is expected to play
an important role, but the time should then be handled very precisely in the numerical model. This is not the aim of
the present paper, mainly devoted to quasi-static transformations.

D. Example
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FIG. 6. Three pictures (projections) of a same system during compaction. The value of E4/E, is here equal to 4, and the
number of particles is N = 500. Volume fractions are respectively 0.06, 0.30 and 0.63 from top to bottom. The dashed lines
visualize the initial and actual planes where external pressure is applied. Periodic boundary conditions are applied on all other
sides. The curves at the right-hand side are the respective density profiles for the three cases. Except for small statistical
fluctuations, the systems are spatially homogeneous.



A sketch of the visual aspect of the particle system (the bonds are not represented), is shown on Fig.6, for three
successive pressures. These are projections onto the x — z plane, so the system appears more dense than it is actually.
One can note that the system remains fairly homogeneous, which is a result well known for the cedometer experiments.

V. THEORETICAL MODEL

We propose here a simple theoretical model able to catch the main behaviors found in our numerical simulations,
which are presented in Section VI. It corresponds to an extreme simplification of the numerical model presented in
Section II, and is discussed in the present paper in order to propose possible analytical forms of the constitutive
equations associated to the various behaviors. This is essentially a variant of a model proposed recently by Potanin
[14]. Tt is also directly inspired by the image of the preferred mechanical paths transmitting the main forces in granular
materials.

A. The system as an ensemble of resistant columns

At the very beginning, the system is made of fractal blobs of typical size £ ~ Ry (see Section II.B.) connected
together in a homogeneous network. Such a structure has clearly be found experimentally in the formation of solid
gel network [15]. When pressure is applied, the system rearranges irreversibly and the initial fractal blobs decrease in
size as a consequence of local reorganization.

For the response to a stress, percolation is the appropriate description, since the mechanical resistance to collapse
originates from a few paths made of bound particles, which span the top to the bottom of the system. These paths
are formed as an assembly of blob backbones. These particular sub-systems will be called the mechanically-resistant
columns (see Fig.7). Since, for the mechanical response, two independent columns in parallel are equivalent to one
with the double stiffness, we shall consider the case where there is only one such resistant column, the actual number
of columns [16] being a numerical factor in the effective stiffness.

FIG. 7. Visualization of the mechanically-resistant columns in a 2-dimensional system made of 8 aggregates of 16 disks. The
aggregates are built one after the other by the general RCCA algorithm [1]. Once an aggregate is completed, it settles from
top to bottom without deforming. There is just one resistant column (made of the grey particles) with loops.

B. Stiff behavior

When the pressure is such that P/P, < 1, the system is approximately elastic, as all relative displacements of
particles remain quite small. For the very small pressures, non-central forces make the system rigid, preventing parts
of the system to buckle [17]. Such a rigidity lasts until the pressure forces are strong enough to buckle the structure.
Formally:

b= ¢, , when P < P, . (6)

In fact, the constraint P < P, is probably not so strict, and should be read as P/P, < A, with the constant A of
order 1. The important point is here that A should be independent on E,4, as bond ruptures are unlike to occur.



C. Elastic behavior

When displacement of individual particles is allowed, but bond breaking is unlikely to occur because of the large
value of the disruptive energy F,, the system is a disordered elastic network. This corresponds to the conditions
1< P/P, < E4/E,.

One could derive the response of the system by arguments based on the presence of resistant columns [18,14].
However, in this regime, the system is not yet markedly compressed, and one can expect structural effects due to the
initial fractal morphology of the individual aggregates. This point is taken into account in the alternative derivation
by Brown and Ball [19] for the homogeneous arrangement of disordered fractal clusters of finite size. This writes for
the overall elastic modulus K, of the system:

K, x ¢(3+®)/=Dy)

In this relation, the exponent x denotes the mass fractal dimension of the backbone of the aggregates of fractal
dimension D¢. This leads to the elastic power-law behavior:

P x ¢B+2)/(3=Dy) , (7)

with the numerical estimate of the exponent: (3 + )/(3 — D) = 4.4 £ 0.3 for the Reaction-Limited Cluster-Cluster
aggregates, in which Dy = 2.1 for the 3-dimensional case. The relation (7) with similar exponent (with a value 4 ~ 5)
was also proposed with slightly different variations [20].

D. Ruptures

At a sufficient high pressure, bonds will start breaking, and the aggregates will no longer respond as an elastic
system. Local rearrangements will cause the fractal structure to vanish rapidly. Since, the volume fraction is now
significantly higher than for the initial structure (say, about twice higher, or more), the initial fractal morphology
has disappeared and one has to deal with a mechanical system equivalent to a single resistant column: the backbone
of the percolation path spanning from the top to the bottom of the overall system. The density e of elastic energy
stored in a column is e = P2/K,., where K, coincides with the elastic modulus of the whole system. This density e
corresponds to the deformation energy per unit volume.

From a mechanical point of view, only the minimal path crossing the backbone from top to bottom is relevant,
since the loops renormalize the local stiffness throughout the path. This minimal path is then a self-avoiding walk.
Two behaviors are possible.

1. Plastic behavior

The first behavior occurs when the elastic energy is distributed uniformly along the resistant column of height H.
Rupture will occur if the applied pressure is larger than the threshold P for which e = w,, with w, the average
energy needed to break up all the bonds linking two neighboring particles of the column [21]. Since w, ~ nEy/a® is
independent on the volume fraction ¢, one deduces the threshold: P, o VK.

The formula derived by Kantor and Webman for the effective stiffness of a disordered column is [18]:

nka

K, = —F5 ;
N, RZ

where n is the average number of springs between two neighboring particles, k is the stiffness of one bond, as
discussed in Section II.C, a the radius of one particle. At the denominator, N, is the number of particles involved in
the minimal chain throughout a percolating system. The scaling N, oc H%i» has been proposed with the numerical
value dpin = 1.4 for the 3-dimensional space [22]. The distance R was argued to follow a simple power-law R o« H*,
with e = 1 for the isotropic chains [14]. This leads to the dependence:

K, x ¢2€+dmm

Therefore, one obtains the scaling relation:
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The proportionality constant depends, in particular, on the value of .

This formula needs an interpretation in terms of the current pressure P. This can be done by the following argument
[3]. After a series of breakages, there is a collection of columns with all possible heights between 1 and H. When
the external pressure reaches the threshold Pj, (¢) corresponding to the actual volume fraction through (8), then
the resistant column of height H breaks into two or more fragments, and the volume fraction ¢ increases by elastic
deformation of the next resistant column. As this process goes on, the system passes successively through a series of
discrete states (P;la(gb), ¢). Between two consecutive states, the system evolves to equilibrium, first elastically then
through plastic deformation. But this transformation is not recorded, since only the equilibriium states ate considered.
If the disordered system is large enough, the states (P, (¢), ¢) are close to each other, and the behavior:

P ¢E+d7nin/2 (9)

is then expected, with the numerical exponent € + dyi, /2 &~ 1.7 in the 3-dimensional space.

2. fragile behavior

The other behavior which involves column break-up, is that where the deformation energy is localized into a small
domain of the resistant chain. Then, the morphology of the column does not matter, except in the vicinity of the
stressed domain. The local breakage equation writes: PJZ"ma3 = W,, defining the pressure threshold P, . Since w, is
independent on the volume fraction ¢, one concludes that this also applies to the pressure threshold. The expected
behavior is quite different than previously: when pressure reaches the critical value P;,., the system undergoes a
series of break-ups as in an avalanche, until the density ¢ becomes large enough to resist through lateral constraints.
This will produce a discontinuity in the curve P versus ¢ at the value P = Pf . Formally:

P x ¢° , at P =PFj,,

E. Complete collapse

The bonds cannot resist to the pressure forces whenever the pressure is larger than the threshold P,  calculated
in (5). Therefore, beyond P, the system should be a compact arrangement of hard spheres. Because of the local
randomness of the springs, one can expect the random close-packing model to be the final structure [23], if the system
is able to overcome arch formation (as occurring in dry granular material). We infer:

¢ = , when P > PJ;. ,

with ¢* ~ 0.64 [24].

VI. NUMERICAL SIMULATIONS

A code was written in Fortran90, and numerical simulations performed on a 2.8 GHz biprocessor Workstation.
Typically, 20-50 CPU hours are needed for complete compaction of a system of 500 particles. Expect about one week
for N ~ 1000.

A. Numerical results

The main results of the present work are shown on Fig.8. This is a double-logarithmic plot for the external pressure
versus the volume fraction of the particles. Several sets of data are represented, all of them obtained from numerical
simulations of systems with N = 500 particles, n; = 200 pins per particle, and [, = [,. Four sets of values of E; were
used, namely: E4/E, =0.04, E4/E, =4, E4/E, = 9 and E4/E, = 360 ~ 10000. The various behaviors are discussed
and explained in the subsequent Sections.
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FIG. 8. Double-logarithmic plot of the reduced pressure P/ P, versus the volume fraction ¢, for various values of the disruptive
energy Fy4. Triangles are for Eq/E, = 4, circles for Eq/FE, = 9, and stars for various values of F4/FE, ranging from 360 up
to 10000. A dashed line is used for the smallest values of Eq presented here: Ey/E, = 0.04, which exhibits discontinuous
jump in ¢ from about 1072 to 0.5 at P/P, ~ 1.25. The latter is an exemple of fragile behavior (see text). Full straight lines
(corresponding to power-law behaviors) are the predictions (7) and (9) of the theoretical model.

B. Stiff behavior

This behavior is not really important for our purpose, and it should correspond to the pressure domain P/ P, smaller
than a constant independent on Fy4, as explained in Section V.B (see (6)). The results plotted on Fig.8 indicate that
the stiff domain is well represented by P/P, < A, with A ~ 7 for all values of Ej,.

C. Elastic behavior

This behavior can be seen only when the bonds cannot break so easily, i.e. for the large values of the disruptive
energy Fy. In Fig.8, for E4/E, > 360 (stars), the power-law P o ¢** shows up over one decade in pressure. It
corresponds precisely to the formula (7), when 1 < P/P, < E4/FE,. The remarkable feature of this part of Fig.8
is that the detailed constitutive equation (with all its parameters, and domain of validity) is fairly independent on
the relative disruptive energy E;/E,, as long as its value is larger than some threshold (here, larger than ~ 100).
This probably means that, in agreement with the theoretical argument of Brown and Ball [19], the full equation is
essentially a function of the value of the local stiffness k of a spring, and of the morphology of the blobs.

D. Dissipative behaviors
1. Plastic behavior

As explained in Section V.D, the plastic behavior is characterized by a series of breakages in a whole domain of
pressure. The theoretical feature is equation (9), which is precisely recovered in the numerical data of Fig.8 as straight
lines with slope 1.7. It is worth remarking that the same power-law equation fits well the data for different values
of the disruptive energy, with a prefactor that increases with E;. This suggests a common scenario yielding this
behavior, as the one proposed in Section V.D.1.

The role of the bond breakups is examplified on Fig.9, where it is seen that the pressure domain where plastic
behavior occurs, corresponds to a strong enhancement of the breakage rate (here counted as Nj, the total number of
bonds broken between a given pressure and the previous equilibrated pressure).
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FIG. 9. Evolution of the breakage rate per particle Ny/N (right-hand figure) versus the pressure P/P,, for three samples
with Eq/E, = 9. Scale is linear in N, /N, and logarithmic in pressure and volume fraction. The two horizontal lines visualize
the boundaries of the plastic domain. The bold line is the slope 1.7.

2. Fragile behavior

For E;/E, = 0.04, the bonds are so weak that the system cannot resist to any pressure larger than a small threshold.
This is basically a 2-states system with no definite intermediate stable configuration in between the low-density initial
state and the final compact state.

E. Collapse

All the numerical simulations tend to the finite volume fraction ¢* ~ 0.64 of the random close-packing model,
when the applied pressure is very high. This is seen on Fig.10 which corresponds to the linear plot of all our data for
which a limit value of ¢ was detected (the same data as Fig.8 and other ones corresponding to various choices for the
disruptive energy, the number N of particles and the number n; of pins per particle). Only the domain 0.55 < ¢ < 0.7
is shown in order to see clearly the behavior.

The average value of the limit value is found equal to ¢* = 0.643, which is in close agreement with the value
expected for the random close-packing of spheres [25].

This is a remarkable result in the sense that it shows that presence of bonds between the particles forbids voids
larger than those expected in the random close-packing. One can say that springs act here as a lubricant, leading to
a system definitely different from the dry granular medium at the same (i.e. here zero-) temperature. In the latter
system, presence of arches and bridges may prevent the system from reaching the random close-packing state [26].
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FIG. 10. Close view (domain: 0.55 < ¢ < 0.75) of the final compaction stages of the P versus ¢ curve in the double-linear
plot, for all the numerical simulations performed in the current work (values of E4/E, ranging from 0.04 to 10000). The vertical
solid line corresponds to ¢* = 0.64.

Close to the compact structure, compression should be dominated by excluded volume effects. A tentative formula
to describe the approach to the random close-packing result can be proposed here. Plotting the same data as on Fig.8,
but with the variables (P/P,)/¢"" versus ¢* — ¢, with ¢* = 0.643, in the double logarithmic plot, one obtains Fig.11.
This plot exhibits a behavior, close to ¢* — ¢ = 0, resembles the Van der Waals equation (2), but in the modified
form:

P/P, o /\¢* 6, (10)

for all the data where the plastic behavior is clear (i.e. 1 < Eq/FE, < 100). This formula is just indicative considering
the small number of reliable points involved.

In(PIP,0")
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FICG. 11. Double-logarthmic plot of P/P,¢*" versus ¢* — ¢. Same data and same symbols as for the Fig.8. The lines of
slope -1/2 could indicate the Van der Waals behavior (10) near the complete compact structure. The accumulated points in
the right-hand side (close to In(¢* — ¢) ~ —0.45) correspond to the small volume fractions.
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VII. CONCLUSION

The aim of this work was to determine the laws for quasi-static compression of dissipative networks, made of
aggregated particles that interact through non-central forces. A model was constructed, which describes interparticle
forces as breakable harmonic springs attached to the particle surfaces. The fundamental parameter of this model is
the disruptive energy Fy needed to break one bond.

Numerical simulations of this model show a discrete set of compressional responses that are independent of initial
conditions. Systems with low disruptive energies F4 respond with a plastic behavior, where large numbers of bonds are
broken and created. Systems with higher disruptive energies respond with an elastic behavior, wherre most bonds are
permanent. The scalings of pressure vs. volume fraction of particles in these two regimes can be understood through
some general theoretical arguments. Finally, the numerical simulations also show that these scenarios converge, at
very large applied pressures, to the random close-packing of spheres.

This work may have practical uses in material sciences, for the design an fthe control of materials containing
colloidal aggregates, such as ceramic pastes and flocculated emulsions. Indeed, the compressional properties of such
materials are known from experiments that apply an osmotic stress, such as ultrafiltration, centrifugation, dialysis
or drying. There are strong evidences that the experimental laws are qualitatively similar to those predicted here.
Typical examples can be found in [27] for compaction of dry colloidal silica, and [20] for polystyrene or colloidal
alumina gels. A quantitative match of these laws would make it possible to determine the parameters that characterize
interparticle forces, principally the bond strengths and the disruptive energies. Conversely, it is now possible to predict
quantitatively the consequences of changes ni interparticle forces for the mechanical properties of such materials.
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