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Generalized susceptibilities for a perfect quantum gas
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Abstract: The system we consider here is a charged fermions gas in the
effective mass approximation, and in grand-canonical conditions. We assume
that the particles are confined in a three dimensional cubic box Λ with side
L ≥ 1, and subjected to a constant magnetic field of intensity B ≥ 0. Define
the grand canonical generalized susceptibilities χN

L , N ≥ 1, as successive
partial derivatives with respect to B of the grand canonical pressure PL.
Denote by P∞ the thermodynamic limit of PL. Our main result is that
χN

L admit as thermodynamic limit the corresponding partial derivatives with
respect to B of P∞. In this paper we only give the main steps of the proofs,
technical details will be given elsewhere.

MSC 2000: 82B10, 82B21, 81V99
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1 Introduction and results

In this paper, we are interested in the thermodynamic behavior of perfect
Fermi gas in the presence of a constant magnetic field B at temperature
T > 0 and chemical potential µ fixed. Although the particles have electric
charge so that they can interact with the external magnetic field, we neglect
all self-interactions and work in the effective mass approximation. We also
neglect the spin, since it does not change the nature of our results.

Consider that the gas is confined in a three dimensional cubic box Λ of
side L ≥ 1, centered at the origin. The constant magnetic field is B := Be3
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and FRUMAM, Campus de Luminy, Case 907 13288 Marseille cedex 9, France; e-

mail:briet@univ-tln.fr
2Institut for Matematiske Fag, Aalborg Universitet, Fredrik Bajers Vej 7G, 9220 Aal-

borg, Danmark; H.C. is partially supported by MaPhySto – A Network in Mathematical

Physics and Stochastics, funded by The Danish National Research Foundation; e-mail:

cornean@math.auc.dk
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where e3 := (0, 0, 1) is the third vector of the canonical base of R3. Denote
with c the speed of light, e the electric charge which is supposed the same for
each particle, and define the Larmor frequency ω := ( e

c
)B ≥ 0. We associate

to B the magnetic vector potential a defined by:

Ba(x) :=
B

2
e3 ∧ x. (1)

The operator H(ω) := 1
2
(−i∇ − ωa)2 is essentially self-adjoint on C∞

0 (R3)
[K]. Denote by HL(ω) the restriction of this operator to C∞

0 (Λ). The Hamil-
tonian of our one-particle-problem is the self-adjoint extension of HL(ω) with
Dirichlet boundary conditions. We will use the same notation for HL(ω) and
for its self-adjoint extension.

Let z = eβµ be the fugacity (here β = 1/T > 0). We will allow z to take

complex values, i.e. z ∈ D := C\ ]−∞,−e
βω

2 ]. The grand canonical pressure
PL is then given from the grand canonical partition function ΞL by

PL(β, z, ω) =
1

βL3
ln ΞL(β, z, ω) =

1

βL3
Tr

[
ln

(
1 + ze−βHL(ω)

)]
. (2)

Define for ω > 0,

P∞(β, z, ω) = ω(2πβ)−
3

2

∞∑

k=0

f 3

2

(ze−(k+ 1

2
)ωβ)

and for ω = 0,
P∞(β, z, 0) = β−1(2πβ)−

3

2 f 5

2

(z)

where fα(z) are the standard Fermi functions (see e.g. [A-C]). It is proved
in [A-C] that PL(β, z, ω) admits P∞(β, z, ω) as thermodynamic limit in the
following sense: for all K compact included in D, and ω ≥ 0, one has

lim
L→∞

sup
z∈K

|PL(β, z, ω) − P∞(β, z, ω)| = 0. (3)

Yet it is known that if we define the grand canonical density ρL(β, z, ω) :=
βz ∂PL

∂z
(β, z, ω) and ρ∞(β, z, ω) := βz ∂P∞

∂z
(β, z, ω), one also has under same

assumptions

lim
L→∞

sup
z∈K

|ρL(β, z, ω) − ρ∞(β, z, ω)| = 0. (4)

The grand canonical generalized susceptibilities of a gas of fermions are de-
fined by:

χN
L (β, z, ω) :=

∂NPL

∂ωN
(β, z, ω), N ≥ 1. (5)
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Notice that χ1
L(β, z, ω) is the magnetization of the system, and χ2

L(β, z, ω)
is the magnetic susceptibility. In case ω = 0 and L → ∞, it is known in the
physical literature (see [A-B-N 1] for the rigorous proof) that χ1

∞(β, z, 0) = 0
and χ2

∞(β, z, 0) 6= 0. Thus at zero field, the magnetic response is quadratic.
In case ω 6= 0, the magnetization is not zero, thus the magnetic response
becomes linear. However, the rigorous treatment of this question needs good
estimates on the higher correction terms (χN

L , N ≥ 2) in the ω− expension
of the pressure.

Our main result is that the generalized susceptibilities admit a thermo-
dynamic limit in the following sense:

Theorem 1.1. Fix N ∈ N∗, β > 0 and ω ≥ 0. Then for every compact K

included in D = C\ ] −∞,−e
βω

2 ], one has

lim
L→∞

sup
z∈K

∣∣χN
L (β, z, ω) − χN

∞(β, z, ω)
∣∣ = 0. (6)

A straightforward consequence of this result is that under the same as-
sumptions:

∀N ∈ N
∗, ∀m ∈ N, lim

L→∞
sup
z∈K

∣∣∣∣
∂mχN

L

∂zm
(β, z, ω) −

∂mχN
∞

∂zm
(β, z, ω)

∣∣∣∣ = 0. (7)

Having uniform limits with respect to z is very useful if one wants to translate
this type of results in the canonical ensemble. See for example [C 1] and [C
2] for further ideas in this direction.

Now let us mention some previous works dealing with similar problems.
One of truly rigorous results for the case ω = 0 and N = 1, 2 was given by
Angelescu et al in [A-B-N 1]. Then Macris et al in [M-M-P] discussed the
case when ω was arbitrary but N = 1 and |z| < 1. In [C 1] this condition on
z was lifted for the case of Bose statistics (but this result can be immediately
translated for the Fermi case). Let us further remark that we can adapt our
techniques to the case when Λ is more general than just a box. We can in fact
allow any domain with regular enough boundary which converges to R3 in
the sense of Fischer. Moreover, our results hold for all ω. In comparison, the
method used in [A-B-N 1] was strongly conditioned by the parallelipipedic
geometry of Λ and by ω = 0.

We know that the physical importance of χN
L for N ≥ 3 becomes relevant

only when the deviations are large. But the mathematical proof of their
convergence is not much more complicated than in the case when N = 2,
and it shows that there is no accident that one had convergence when N = 1
or N = 2. Concluding, our present result settles the question for derivatives
of all order, for all Larmor frequencies and for all fugacities.
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We would like to remind the reader that this paper only contains very
basic ideas about proofs, and is mainly intended to give a detailed overview
about the long and rather complicated technical steps that are needed.

2 Strategy

Let us recall Vitali-Porter theorem [H-P]:

Theorem 2.1. Let {fL}L≥1 be a family of holomorphic functions on a fixed
domain D ⊆ C. Assume that |fL(z)| ≤ M for all L ≥ 1 and all z ∈ D.
Assume also the existence of a subset D′ ⊆ D having an accumulation point
z0 ∈ D, such that limL→∞ fL(z) exists for each z ∈ D′. Then limL→∞ fL(z)
exists everywhere in D, the convergence is uniform with respect to z in any
compact subset of D and the limit function f∞(z) is holomorphic in D.

In our case, we have D = C\ ] − ∞,−e
βω

2 ], D′ = {z ∈ C : |z| < 1},
fL(·) = χN

L (β, ·, ω), and f∞(·) = χN
∞(β, ·, ω).

Therefore, to prove the Theorem 1.1, we need to show first the pointwise
convergence on the unit open disk

lim
L→∞

χN
L (β, z, ω) = χN

∞(β, z, ω), |z| < 1, (8)

and second, that for every compact K ⊂ D one has the uniform bound in
L ≥ 1

sup
z∈K

∣∣χN
L (β, z, ω)

∣∣ ≤ const(β, K, ω). (9)

Then Theorem 1.1 would be proven.

3 Elements of proofs

3.1 The pointwise limit: proof of (8)

Denote by (I1(L
2(Λ)), ‖ · ‖I1

) the Banach space of trace class operators. It
is well known that for any ω ∈ R, the family of operators {WL(β, ω)}β>0 =
{e−βHL(ω)}β>0 is a Gibbs semigroup [H-P] (the operators HL(ω) are self-
adjoint, positive and {WL(β, ω)}β>0 ⊂ I1(L

2(Λ))). On the other hand WL

has an integral kernel GL(x,x′, β, ω) which is continuous on Λ × Λ with
respect to spatial variables x and x′. The diamagnetic inequality reads as:

|GL(x,x′, β, ω)| ≤
1

(2πβ)3/2
e−

|x−x
′|2

2β , x,x′ ∈ Λ, (10)
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which then implies that

‖WL‖I1
= Tr WL =

∫

Λ

GL(x,x, β, ω)dx ≤
L3

(2πβ)
3

2

(11)

Suppose z in the unit disk D′, from (2) we have (see e.g. (2.10) and (2.11)
in [C 1] in the case of Fermi statistics):

PL(β, z, ω) =
1

βL3

∞∑

n=1

(−1)n+1zn

n
Tr (WL (nβ, ω)) . (12)

We denote by G∞(x,x′, β, ω) the integral kernel of the corresponding opera-
tor defined on the whole space: {e−βH(ω)}β>0 (see (2.2) in [A-C] or (4.90) in
[C 1]). Its diagonal is very simple and is given by

G∞(x,x, β, ω) =
1

(2πβ)3/2

ωβ/2

sinh(ωβ/2)
.

We remark that this quantity is x−independent and in view of (2) we can
write

P∞(β, z, ω) =
1

β

∞∑

n=1

(−1)n+1zn

n
G∞(x,x, nβ, ω). (13)

We are interested in derivatives of PL with respect to ω. Due to formula
(12), these derivatives will act on the trace of the semigroup. We are thus
motivated to study the I1-analyticity with respect to ω of the semigroup.
Although this result was already proven in [A-B-N 1], we state it in Lemma
3.1, since we will use it later on.

In order to do that, we need to introduce further notation. Define the
following operators by their corresponding integral kernels:

R̂1,L(x,x′, β, ω) := a(x) · (i∇
x

+ ωa(x))GL(x,x′, β, ω),

R̂2,L(x,x′, β, ω) :=
1

2
a2(x) GL(x,x′, β, ω). (14)

The operators R̂1,L(β, ω) and R̂2,L(β, ω) are of trace class as well as the
operators,

In,L(i1, ..., in)(β, ω) :=

∫ β

0

dτ1

∫ τ1

0

dτ2...

∫ τn−1

0

dτn WL(β − τ1, ω) (15)

·R̂i1,L(τ1 − τ2, ω)R̂i2,L(τ2 − τ3, ω)...R̂in−1,L(τn−1 − τn, ω)R̂in,L(τn, ω)
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for n ≥ 1 and for (i1, ..., in) ∈ {1, 2}n. We can finally give the analyticity
result, define

cN
n (i1, ..., in) :=

{
1 if i1 + ... + in = N
0 otherwise.

(16)

Lemma 3.1. The operator-valued function R ∋ ω 7→ WL(β, ω) ∈ I1 admits
an entire extension to C. Fix ω0 ∈ R. For all ω ∈ C we have

WL(β, ω) =

∞∑

N=0

(ω − ω0)
N

N !

∂NWL

∂ωN
(β, ω0), (17)

∂NWL

∂ωN
(β, ω0) = N !

N∑

n=1

(−1)n
∑

ij∈{1,2}

cN
n (i1, ..., in)In,L(i1, ..., in)(β, ω0).

This implies in particular that the traces of the semigroup WL which
appear in formula (12) are entire functions of ω.

Remark 3.2. It is important to notice that the expansion (17) is not really
convenient if one wants to prove (8). That is because the expressions (14)
contain at least one term as a(x) which behaves like x. So direct estimates

show that the trace norm of ∂N WL

∂ωN (β, ω0) (see e.g. [A-B-N 2]) behaves like
L3+N , and this is very far from the desired behavior of L3. It is true that when
we look at the trace and not at the trace-norm, things are quite different. In
[A-B-N 1] it is proved at ω0 = 0 and for N = 1, 2 that due to some remarkable
identities, the terms growing like L3+N are identically zero. What we do next
in our paper is to give an alternative expansion which takes care of these
singularities for all terms at the same time.

In order to do that, we concentrate on the kernel GL. We remark first
the following

Lemma 3.3. For every ω ∈ C, the operator WL(β, ω) defined by the series
in (17) admits an integral kernel GL(x,x′, β, ω). This kernel is defined as
the sum of a series as in (17) where instead of operators we consider their
integral kernels. Then GL is continuous with respect to the spatial variables,
and is an entire function of ω. In addition, for all x,x′ ∈ Λ fixed, one has

∂NGL

∂ωN
(x,x′, β, ω) =

(
∂NWL

∂ωN

)
(x,x′, β, ω). (18)

Hints to the proof. Notice that ∂N GL

∂ωN (x,x′) is kernel’s derivative, while
∂N WL

∂ωN (x,x′) denotes the kernel of the trace class operator ∂N WL

∂ωN . The idea
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of the proof consists in showing that when replacing In,L from (17) with
its integral kernel (defined as a continuous function in x,x′ ∈ Λ by the
multiple convolution (15)), the power series in (17) converges uniformly for
x,x′ ∈ Λ, and has an infinite radius of convergence. The estimates rely on
the diamagnetic inequality (10) and an induction argument.

Since ∂N GL

∂ωN (x,x′, β, ω) is continuous for (x,x′) ∈ Λ × Λ, and ∂N WL

∂ωN is a
trace class operator, its trace can be expressed as the integral of the diagonal
of its kernel (see the remark at page 523 in [K]). We conclude that for every
ω ∈ C:

∂N

∂ωN
Tr (WL (β, ω)) = Tr

(
∂NWL

∂ωN
(β, ω)

)
=

∫

Λ

∂NGL

∂ωN
(x,x, β, ω) dx. (19)

In the light of Remark 3.2, we need a different formula for the above
kernel, so that the apparent growing terms cancel each other. This will be
done by using a modified perturbation theory for magnetic Gibbs semigroups.
Previous works which dealt with similar problems are [C-N], [C 1], [B-C] and
[N].

For that, we introduce the magnetic phase φ and the magnetic flux fl
where for x,y, z ∈ Λ, and as before e3 = (0, 0, 1),

φ(x,y) :=
1

2
e3 · (y ∧ x), fl(x,y, z) := φ(x,y) + φ(y, z) + φ(z,x). (20)

We have
|fl(x,y, z)| ≤ |x − y| |y − z|. (21)

For every n ≥ 1 and for every points x,y1, ...,yn ∈ Λ, we introduce

Fl1(x,y1) = 0, Fln(x,y1, ...,yn) =
n−1∑

k=1

fl(x,yk,yk+1), n ≥ 2.

Fix ω > 0. Consider now the bounded operators given by their integral
kernels:

R1,L(x,x′, β, ω) := a(x − x′) · (i∇
x

+ ωa (x))GL(x,x′, β, ω),

R2,L(x,x′, β, ω) :=
1

2
a2(x − x′)GL(x,x′, β, ω) (22)
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and for all x ∈ Λ, n ≥ 1 and k ≥ 0

W k
L,n(x,x, β, ω) :=

n∑

j=1

(−1)j
∑

(i1,...,ij)∈{1,2}j

cn
j (i1, ..., ij)

∫ β

0

dτ1

∫ τ1

0

dτ2 ...

∫ τj−1

0

dτj

∫

Λ

dy1 ...

∫

Λ

dyj
(i (Flj(x,y1, ...,yj)))

k

k!
GL(x,y1, β − τ1, ω)

Ri1,L(y1,y2, τ1 − τ2, ω) ... Rij−1,L(yj−1,yj, τj−1 − τj , ω)Rij ,L(yj ,x, τj, ω).(23)

By convention, in the case when k = 0 we set 00 ≡ 1.
The next lemma gives a new expression for the diagonal of kernel’s N -th

derivative with respect to ω at finite volume.

Lemma 3.4. Fix ω0 ≥ 0. Then for all x ∈ Λ, and for all N ∈ N∗, one has

1

N !

∂NGL

∂ωN
(x,x, β, ω0) =

N∑

n=1

W N−n
L,n (x,x, β, ω0). (24)

Hints to the proof. The proof heavily relies on the general theory de-
veloped in [A-B-N 2] and in [C 1], where a version of Duhamel’s formula is
written for the perturbed semigroup WL(β, ω) for dω := ω − ω0 small, here
ω0 ≥ 0 is fixed (see Proposition 3 and formula (4.61) in [C 1]). Roughly
speaking, one has to iterate this formula N times, and identify the term
containing (dω)N .

Based on the above formula, we can give an expression for the corre-
sponding quantities at infinite volume:

Lemma 3.5. Fix ω0 ≥ 0. Then for all x ∈ Λ, and for all N ∈ N∗, one has

1

N !

∂NG∞

∂ωN
(x,x, β, ω0) = lim

L→∞

1

N !

∂NGL

∂ωN
(x,x, β, ω0)

=

N∑

n=1

n∑

j=1

(−1)j
∑

ik∈{1,2}

cn
j (i1, ..., ij)

∫ β

0

dτ1

∫ τ1

0

dτ2...

∫ τj−1

0

dτj

∫

R3

dy1...

∫

R3

dyj
(iFlj(x,y1, ...,yj))

N−n

(N − n)!
G∞(x,y1, β − τ1, ω0)Ri1,∞(y1,y2, τ1 − τ2, ω0)

...Rij−1,∞(yj−1,yj , τj−1 − τj , ω0)Rij ,∞(yj ,x, τj, ω0) (25)

where Rj,∞ are defined as in (22) with L ≡ ∞.

Hints to the proof. We need to estimate (GL − G∞)(x,x′) and (i∇
x

+
ω0a(x))(GL − G∞)(x,x′). We have to take into account the walls’ influence
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on the integral kernel at finite volume. We use a variant of Green’s formula
for the solutions of the heat equation inside Λ. Thus, we get the next result.
Define for all x ∈ Λ, δ

x
:= dist(x, ∂Λ) and M := {x ∈ Λ : δ

x
≤ 1}. Then

one has

|(GL − G∞)(x,x′, β, ω0)|, |(i∇x
+ ω0a(x))(GL − G∞)(x,x′, β, ω0)|

≤
const

β2
exp

(
−
|x − y|2

cβ

) (
χM(x) + χM(x′) + exp

(
−

δ2
x

cβ
−

δ2
x
′

cβ

))
, (26)

where c > 0 is a constant and χM is the characteristic function of M . Then
(25) follows after some straightforward calculations from (10), (26), (20), the
estimate (4.46) in [C 1], and (24).

Since our aim is to prove (8), we write from (12) and (13)

(PL − P∞)(β, z, ω) =
1

βL3

∞∑

n=1

(−1)n+1zn

n

∫

Λ

dx (GL − G∞)(x,x, nβ, ω).(27)

In order to conclude that (8) is true, it will be sufficient to show that

Lemma 3.6. Fix ω0 ≥ 0. Then for all N ∈ N
∗, one has

∣∣∣∣
∫

Λ

dx

(
∂NGL

∂ωN
(x,x, β, ω0) −

∂NG∞

∂ωN
(x,x, β, ω0)

)∣∣∣∣ ≤ L2 f(β, ω0, N), (28)

where f(·, ω0, N) is a function of β which is polynomially bounded.

Hints to the proof. Fix N ∈ N∗. One denotes by FL,N(x, β, ω0) the for-
mula obtained by replacing in formula (25) all the spatial integrals on R3 by

integrals on Λ. To estimate the difference FL,N(x, β, ω0) −
∂N GL

∂ωN (x,x, β, ω0),
we use (24), (10), (26), (20), and the estimate (4.46) in [C 1]. Finally we find
that∣∣∣∣

∫

Λ

dx

(
FL,N(x, β, ω0) −

∂NGL

∂ωN
(x,x, β, ω0)

)∣∣∣∣ ≤ L2 f1(β, ω0, N), (29)

where f1 is polynomially bounded with respect to β. Now we need to estimate
the difference FL,N(x, β, ω0)−

∂N G∞

∂ωN (x,x, β, ω0). From the definition of FL,N ,
this difference will consist with integrals as in (25) where in at least one of
the spatial integrals one integrates over R3 \ Λ. Since it can also be shown
that (29) holds again if we replace GL with G∞, the lemma is proven up to
the use of the triangle inequality which yields (28).

Since we have seen in (19) that the derivatives with respect to ω and the
trace commute at finite volume, formula (27) and Lemma 3.6 show that for
every |z| < 1, the derivatives with respect to ω of (PL − P∞)(β, z, ω) behave
like 1

L
, which finishes the proof of (8).
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3.2 The uniform bound: proof of (9)

If we denote by gL(β, τ, ω) = gL(β, τ, ω, z, ξ) = (ξ − zWL(β, ω))−1zWL(τ, ω)
then for β > 0, z ∈ K ⊂ D, ω ≥ 0, one has (see (4.2) in [C 1] for the Bose
case):

PL(β, z, ω) =
1

2iπ

∫

C

dξ
ln(1 + ξ)

ξ

1

βL3
Tr (gL (β, β, ω)) (30)

with C ⊂ C\] −∞,−1] surrounds the eigenvalues of zWL. In addition, one
chooses C in order to have (ξ − zWL(β, ω))−1 bounded for every ξ ∈ C and
z ∈ K. We have seen that ω 7→ WL(β, ω) is I1-analytic on C; one can also
see that Tr(gL) is a real-analytic function of ω. In the end, the generalized
susceptibilities are well defined as functions of z on D. We see that (9) will
follow from

sup
z∈K

sup
ξ∈C

∣∣∣∣
∂N

∂ωN
Tr (gL(β, β, ω))

∣∣∣∣ ≤ L3 const(β, K). (31)

Here we have a similar problem as the one pointed out for the semigroup in
Remark 3.2. We could try to use the inequality

∣∣∣∣
∂N

∂ωN
Tr (gL(β, β, ω))

∣∣∣∣ ≤
∥∥∥∥
∂NgL

∂ωN
(β, β, ω)

∥∥∥∥
I1

,

but the right hand side behaves like L3+N and not like L3 as desired. What
we do instead is finding a Taylor expansion directly for the trace, and to give
the right estimate for its derivatives.

In view of developing Tr(gL) as a function of ω in a small real neighbor-
hood Ω of ω0 ≥ 0, we first analyze gL in I1(L

2(Λ)). As a general rule, for
an integral operator T (ω0) with kernel t(x,x′, ω0), we denote by T̃ (ω) the
operator which has an integral kernel given by (see also (20))

t̃(x,x′, ω) := ei(ω−ω0)φ(x,x′)t(x,x′, ω0).

Lemma 3.7. Fix ω0 ≥ 0 and N ≥ 1. Then for every dω := ω − ω0 small,
there exist N trace class operators aL,n(β, ω) = aL,n(β, ω, z, ξ), 1 ≤ n ≤ N ,
and an operator RL,N+1(β, ω) = RL,N+1(β, ω, z, ξ) such that

gL(β, β, ω) = g̃L

(
β,

β

2
, ω

)
W̃L

(
β

2
, ω

)
+

N∑

n=1

dωn aL,n(β, ω) (32)

+ RL,N+1(β, ω),

10



where

‖aL,n(β, ω)‖I1
≤ const(β, K, C)L3, ω ∈ Ω, 1 ≤ n ≤ N

‖RL,N+1(β, ω)‖I1
≤ |dω|N+1 const(β, K, C)L3. (33)

Notice that the operators aL,n still depend on ω.

Hints to the proof. We use a technique which generalizes the one developed
in [C 1], which only worked for N = 1. Our generalization is considerably
more involved than the original argument given in [C 1], which at its turn was
rather lengthy. See for comparison formula (4.84) in [C 1], which corresponds
to the case N = 1 in our lemma. Full proofs will be given elsewhere.

As (32) is valid in I1(L
2(Λ)), we can take the trace term by term in this

equality. This gives (see also (4.85) in [C 1]):

Tr(gL(β, β, ω)) = Tr(gL(β, β, ω0))

+
N∑

n=1

dωn (Tr(aL,n(β, ω))) + Tr (RL,N+1(β, ω)) . (34)

The last technical result we need is contained in the following lemma, given
again without proof:

Lemma 3.8. Fix ω0 ≥ 0, N ≥ 1 and 1 ≤ n ≤ N . Then there exists a family
of ω-independent coefficients {bm

L,n(β, ω0)}m∈N = {bm
L,n(β, ω0, z, ξ)}m∈N, and

a remainder rN+1
L,n (β, ω) = rN+1

L,n (β, ω, z, ξ) such that for dω = ω − ω0 small,
one has

Tr (aL,n(β, ω)) =

N∑

m=0

dωm bm
L,n(β, ω0) + rN+1

L,n (β, ω), (35)

|rN+1
L,n (β, ω)| ≤ L3|dω|N+1 const(β, K, C),∣∣bm
L,n(β, ω0)

∣∣ ≤ L3 const(β, K, C).

Consequently, from (34) and (35) we have

[
∂N

∂ωN
Tr(gL)

]
(β, β, ω0, z, ξ) =

N∑

n=1

bN−n
L,n (β, ω0, z, ξ), (36)

and (31) follows.
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