
HAL Id: hal-00015956
https://hal.science/hal-00015956

Submitted on 15 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phenomenological Scale Factors for the Liquid-Vapor
Critical Transition of Pure Fluids

Yves Garrabos

To cite this version:
Yves Garrabos. Phenomenological Scale Factors for the Liquid-Vapor Critical Transition of Pure
Fluids. Journal de Physique, 1985, vol. 46, p. 281-291. �hal-00015956�

https://hal.science/hal-00015956
https://hal.archives-ouvertes.fr


cc
sd

-0
00

15
95

6,
 v

er
si

on
 1

 -
 1

5 
D

ec
 2

00
5
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We discuss a phenomenological method which allows to determine the singular asymptotic be-
haviours for a pure fluid at equilibrium, when the liquid-gas critical point and the tangent plane
to the characteristic surface of this point are localized experimentally, in the pressure, density and
temperature coordinates.

PACS numbers: 64.60.-i; 05.70.Jk; 64.70.Fx

English translation of the published paper in J.
Physique (Paris) 46 (1985) 281-291.

I. INTRODUCTION

The renormalization group (RG) theory has con-
tributed to the description of the critical phenomena ob-
served in systems at equilibrium very close to their second
order transition points where the order parameter of the
transition goes to zero continuously [1]. Very different
physical systems can be grouped within the same univer-
sality class [1, 2] if they have the same dimension d of the
space, and the same dimension n of the order parameter
(OP) density, respectively. For each given class, the RG
theory predicts the existence of two dimensionless param-
eters characteristic of each system belonging to this class
[1, 3, 4, 5, 6]. This result is a verification of the two-scale
factor universality hypothesis [7]. However, the theory is
unable to provide values for these two parameters which
are system-dependent.

In the present study, we propose a phenomenological
determination of these two characteristic parameters for
a pure fluid at equilibrium very close to its gas-liquid
critical point (CP). We demonstrate that the asymptotic
singular behaviour of such near-critical fluid can be com-
pletely defined by four different critical parameters which
are: i) the critical pressure, pc; ii) the critical temper-
ature, Tc; iii) the critical density, ρc; iv) the common

limiting critical slope, γ
′

c, in the p, T diagram, of the sat-
uration vapor pressure curve and the critical isochore at
the critical point. As a result, the two scale factors char-
acteristic of each pure fluid can be related to these four
quantities.

In order to derive the explicit forms of the two scale
factors, we select the two asymptotic amplitudes, ξ+ and
Dc as being the two independent (but each one system-
dependent) parameters. ξ+ is the asymptotic amplitude
for the dimensionless correlation length, ℓ∗, along the
critical isochore in the single phase region. Dc is the
amplitude for the dimensionless chemical potential differ-
ence, ∆µ∗

p̄ = µ∗

p̄ − µ∗

p̄,c, along the critical isotherm (here
the chemical potential refers to the normalized thermo-
dynamics per particle). All the pure fluids constitute a

sub-class within the universality class d = 3 and n = 1
[8, 9], for which the asymptotic behaviour is then com-
pletely determined provided that the same definitions for
dimensionless quantities can be used for any pure fluid.
Therefore, we also propose in this study an explicit selec-
tion of the two macroscopic parameters of energy dimen-
sion and length dimension, respectively, which are neces-
sary to formulate a description of the critical phenomena
observed close to the CP in terms of the dimensionless
variables.

In the next section 2, we recall the main results of the
RG theory for d = 3 and n = 1 which are needed for a
correct description (in terms of ξ+ and Dc) of the uni-
versal features of the critical behavior for the pure fluid
subclass. In section 3, we unequivocally define four dif-
ferent quantities characteristic of pure fluids in terms of
Tc, pc, ρc and γ

′

c. Then we introduce (βc)
−1

= kBTc and

αc =
(

kBTc

pc

) 1
d

(kB is the Boltzmann’s constant), as units

of length and energy, respectively, to made dimensionless
all the thermodynamics properties and correlations func-
tions. The remaining two dimensionless parameters are
Yc = γ

′

c
Tc

pc
−1 and Zc =

pcmp̄

ρckBTc
(mp̄ is the molecular mass

of the fluid particle). In section 4, we give relations which
enable the unequivocal calculation of the amplitudes, ξ+

and Dc, knowing Yc and Zc. The agreement with the
existing experimental data is very good. Using these re-
lations, we propose in section 5, a scale dilatation method
of the physical fields which provide a formulation of the
asymptotic universality for the pure fluid subclass equiv-
alent to the one obtained from the RG methods applied
to the complete universality class. For crossing CP along
the thermodynamic path corresponding to the critical
isochore, this formulation uses quantities such as pres-
sure and temperature which are directly accessible with
experiments. We conclude after a qualitative comparison
to the recent results of Bagnuls and Bervillier [10] given
in section 6.
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II. RECALL OF THE MAIN RESULTS
OBTAINED FROM RG THEORY

The theoretical results will be concerned with systems
(noted S) belonging to the universality class, d = 3 and
n = 1. Our presentation will be limited to the character-
ization of the asymptotic singular behavior of a property,
XS , which is expected to follow the non-analytic power-
law

X = X
(L)
S (τ∗S)

−x
[1 + O (τ∗S)] (1)

when τ∗S goes to zero. All the quantities which appear in
Eq. (1) are made dimensionless (see below). τ∗S is a small
finite physical field, associated to a thermodynamic path
denoted by the subscript (L), which vanishes asymptoti-
cally to CP (τ∗S = 0 at CP). When the subscript (L) de-
note the critical isochore of S, the associated field τ∗S can

be thus defined as the thermal field, τ∗S ≡ ∆τ∗ = T−Tc

Tc
,

which is the dimensionless temperature distance to CP
for fluid systems. Along this critical isochore, (L) will
be then noted + when the critical point is approached
from the single phase region (T > Tc; ∆τ

∗ > 0) and -
when the critical point is approached from the two-phase
region (T < Tc; ∆τ

∗ < 0). The exponent x is a uni-
versal number which depends not on the system, but on
the universality class that the system belongs to. The

reduced asymptotic amplitude, X
(L)
S is a system depen-

dent quantity. The term [1 + O (τ∗S)] corresponds to the
so-called Wegner expansion [11], which accounts for the
deviation from power-law behaviour with increasing τ∗S
due to the confluent corrections to scaling. Such a cor-
rective expansion will not be taken into consideration in
this study [12]. Similar power law formulations of the
singular behaviors of XS can be provided in terms of the
vanishing ordering field, hereafter noted h∗S (with h∗S = 0
at CP), when the thermodynamic path to cross CP cor-
responds to the critical isotherm (with (L) ≡ c in that
case).

For any system S belonging to the universality class
d = 3 and n = 1, noted φ4

d=3 (1) in the following, the
RG numerical results obtained from the non linear treat-
ment of φ4 model in three dimensions [3, 4, 5], are of
sufficient accuracy to verify the two-scale factor univer-
sality hypothesis. Therefore, there are only ten universal
relations between the twelve asymptotic amplitudes as
there are only ten scaling laws related to twelve criti-
cal exponents [13]. As a result, the non-universality of
φ4

d=3 (1), can be adequately characterized by selection of
two independent asymptotic amplitudes. In this present
study, we chose the two amplitudes, ξ+ and Dc, defined
as follows:

i) along the critical isochore in the single phase region
(τ∗S > 0; h∗S = 0; (L) ≡ +)

ℓS = ξ+ (τ∗S)
−ν

(2)

ii) along the critical isotherm (τ∗S = 0; h∗S 6= 0; (L) ≡
c)

h∗S = Dc |m∗

S |
δ

(3)

where ν and δ are the two critical exponents of respec-
tive universal value. m∗

S is the order parameter (OP)
density for the transition, while h∗S is it congugate or-
dering field. ℓ∗S is the correlation length of the OP
density fluctuations. For the case where S is a one-
component fluid in the close vicinity to its CP, (with the
fluid subclass noted V LCP in the following), OP den-
sity is proportional to the difference between the number

density (n = N
V

= ρ
mp̄

) and the critical number density

(nc = ρc

mp̄
), i.e. m∗

S ≡ ∆n∗ ∝ ∆n = n− nc = ∆ρ
mp̄

= ρ−ρc

mp̄

(N is the total amount of matter, i.e. the total number
of constitutive particles, and V is the total volume of the
system). Its conjugate ordering field is then proportional
to the difference between the chemical potential per par-
ticle (µp̄ = µρ ×mp̄) and the critical chemical potential
(µp̄,c = µc ×mp̄), i.e. h∗S ≡ ∆µ∗

p̄ ∝ ∆µp̄ = µp̄ − µp̄,c =
∆µ × mp̄ = (µρ − µρ,c) × mp̄. We note that the mass

density ρ and the chemical potential per mass unit µρ

are the two conjugated density-field variables when the
thermodynamics is normalized per mass unit [14].

In Table 1, we present the results of RG treatment
where we can easily verify that the two numbers, ξ+ and
Dc are sufficient for complete calculation of all the other
asymptotic amplitudes [15]. The estimated values of the
two independent exponents, ν and δ, are 0.63 and 4.815,
respectively [4].

We emphasize however that this RG formulation of
universal features for any complete class is only the con-
sequence of the basic assumptions in this theoretical ap-
proach [16]. Indeed, this approach assumes analytical
relations between the two relevant renormalized fields,
t∗ and h∗, of the model, and the corresponding physical
fields, τ∗S and h∗S , of the system. In the asymptotic near
critical domain, these relations are given by

t∗ = ϑτ∗S + O
[
(τ∗S)

2
, τ∗Sh

∗

S

]
(4)

h∗ = ψh∗S + O
[
(h∗S)

2
, τ∗Sh

∗

S

]
(5)

where the scale factors ϑ and ψ are mandatory system-
dependent parameters. The concept of two-scale factor
universality lies behind the direct linearization of equa-
tions (4) and (5) [10, 16], according to which each sys-
tem is characterized uniquely by the two factors, ϑ and
ψ, linked to τ∗S and h∗S , respectively [10, 16]. It is there-
fore equivalent to characterize the non-universality of the
fluid, either by two independent amplitudes, such as ξ+

and Dc, or by the two scale factors, ϑ and ψ [17].
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a. Universality class Amplitudes Amplitude combinations Exponents Scaling laws

Thermodynamics

&

Correlations

Independent

quantities

ξ+

Dc

ν = 0.63

δ = 4.815

Universality
A+

D̂

R+
ξ = ξ+

(
A+

) 1
d

RD = Dc
(
D̂

) δ+1
2

α

η

dν = 2 − α
2−η

d
= δ−1

δ+1

Thermodynamics
Independent

quantities
Dc, A+ δ, α

Universality

Γc

Ac

Γ+

B

Γ−

A−

l = δΓc (Dc)
1
δ

QAc = Ac
[
δA+ (Dc)

1
δ

] −α
2−α

QΓ+ =
(
Γ+

) δ+1
δ

[(
A+

)δ−1
(Dc)2

] 1
δ

QB = B
(

Dc

A+

) 1
δ+1

Γ+/Γ−

A+/A−

γc

αc

γ

β

γ
′

α
′

γc = δ−1
δ

αc = α(δ+1)
2−α

γ = (2−α)·(δ−1)
δ+1

β = 2−α
δ+1

γ = γ
′

α = α
′

Correlations
Independent

quantities
ξ+, D̂ ν, η

Universality
ξc

ξ−
Qξc = ξc

(
D̂

) δ+1
2dδ

ξ+/ξ−

νc

ν
′

νc = 2/ (d + 2 − η)

ν = ν
′

b. relations to the amplitude combinations defined in Table 1 of reference [13]

QAc =
[
RAc/

(
Rξ+

)2d
]
−α/(2−α)

QΓ+ =
[
(Rχ)2 (RC)δ−1

]1/δ

QB = (Rχ/RC)1/(δ+1)

Qξc =
[
Q2Q3/δ (RD)1/δ

]2δ/(δ−1)






Rξ = Γ+DBδ−1

RC = A+Γ+/B2

RAc =
[(

ξ+
)2

(Ac)ν
]d

(Γc)α






Q1 = Γcδ
(
Bδ−1Γ+

)
−1/δ

Q2 =
(
Γ+/Γ−

)
(ξc/ξ)2−η

Q3 = D̂
(
ξ+

)2−η
/Γ+

Table I: a. Equivalence between the ten universal amplitude combinations and the ten scaling laws connecting the twelve
asymptotic amplitudes and the twelve critical exponents, respectively, for the universality class d = 3 and n = 1. The
definitions and notations are those used in Ref. [13], except for the four new universal ratios QAc , QΓ+ , QB (which have been
introduced in the “Thermodynamics” part), and Qξc (which have been introduced in the “Correlations” part) of this Table.
Of course, they are connected to the other universal ratios proposed in Ref. [13], as shown in the lower part b. In part a, each
mixed description and each separated description of the thermodynamic properties and the correlation functions are made in
terms of the two amplitude-exponent pairs selected as being independent.

III. CHARACTERISTIC PARAMETERS OF
VLCP

The singular thermodynamic properties of a pure fluid
are usually expressed in reduced form using Tc, pc and
ρc [18]. Such a procedure, however presents difficulties
[19]. The results are often given in terms of the critical
compression factor Zc which is defined by the relation

Zc =
pcmp̄

ρckBTc

(6)

and which is a characteristic parameter of each pure fluid.
Moreover, the knowledege of the three critical parame-
ters, Tc, pc and ρc is not suficient to define the thermo-
dynamic paths of crossing CP. Indeed, the definition of
these lines require not only to localise the critical point
in the phase space, but also to provide the position of
the tangent plane with respect to the phase surface at

this point. To precise that topological aspect, we con-
sider the phase surface of equation f (p, ρ, T ) = 0 used
by the experimentalists, which results from the equation

of state p (vp̄, T ) = −
(

∂ap̄

∂vp̄

)

T
, where ap̄ (T, vp̄) is the Hel-

moltz energy per particle, and vp̄ = 1
n

=
mp̄

ρ
is the vol-

ume per particle (considering here a one-component fluid
at constant amount of matter and the thermodynamic
potentials normalized per particle, such as for example

ap̄ (T, vp̄) = A(T,V,N)
N

, where A (T, V,N) is the total Hel-
moltz free energy).

The tangent plane to this phase surface at CP is de-
fined by two orthogonal lines which pass through CP. One
direction is trivial - parallel to the axis of the normalized
extensive variable vp̄ - and is common to all the fluids
(reflecting infinite value of their isothermal susceptibility
at CP). On the contrary, the second (finite) direction is
characteristic of each pure fluid. It is defined as the com-
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mon limiting slope γ
′

c at the critical point, in the p;T
diagram, of the saturation vapor pressure curve psat (T )
and of the isochoric pressure p (T, ρc) along the critical

isochore. γ
′

c can be expressed as

γ
′

c =
∂

∂T
[p (T, ρc)]T→T

+
c

=
d

dT
[psat (T )]T→T

−

c
(7)

In view of the thermodynamic approach to CP, there
are four macroscopic critical parameters. We unambigu-
ously define four new quantities given by the following
equations [19]

(βc)
−1

= kBTc (8)

αc =

(
kBTc

pc

) 1
d

(9)

Zc =
pcmp̄

ρckBTc

(10)

Yc = γ
′

c

Tc

pc

− 1 (11)

where (βc)
−1

and αc are two quantities evaluated at
the CP, with dimensions of energy and length, respec-
tively. They are sufficient to reduce the physical quanti-
ties of fluids into their dimensionless form [20]. Zc and Yc

are then two dimensionless parameters, characteristics of
each fluid.

The analyses of the thermodynamic analogies between
systems belonging to the same universality class [8, 9]
are at the origin of the relations (10) and (11). These
analogies establish the symmetry properties of the char-
acteristics surfaces [9]. For the case of pure fluids along
the critical isochore in the single phase domain, the nor-
malized field p

T
seems thus the analog of the density of

the total Gibbs free energy for the case of Ising systems
belonging to φ4

d=3 (1) (considering then the system main-
tained at constant volume and the thermodynamics nor-
malized per volume unit) [21, 22]. The definition of αc,
such as a length unit of Eq. (9), arises from the natu-
ral reduction of p

T
by the corresponding critical intensive

parameters (which are then non-dependent of the total
volume of the system). The fact that the asymptotic di-
vergence of the specific heat at constant volume along
this path is only due to the contribution of the singular
part of p

T
, is also taken into account in establishing the

dimensionless form of Yc given by Eq. (11) [21, 23].
We emphasize that the dimensionless numbers Zc and

Yc are not two of the twelve dimensionless asymptotic
amplitudes of φ4

d=3 (1) which are defined in Table 1.
All the pure fluids should show universal behavior pre-

dicted by RG methods is an introductive hypothesis given
in the present work. Consequently, we admit that ξ+ and

Dc are related to Zc and Yc by both functional forms
given below

ξ+ = ξ+ (Yc, Zc) (12)

Dc = Dc (Yc, Zc) (13)

It stands out that this new formulation of our hypothesis
has an important topological characteristic. The func-
tional relations (12) and (13) assume that all the infor-
mation necessary to describe the asymptotic behavior in
approaching the CP is contained in the location of this
point at the characteristic surface and the tangent plane
to this surface at this point.

IV. PHENOMENOLOGICAL DETERMINATION
OF ξ+AND Dc

The selection of the amplitudes, ξ+ and Dc, indicates
two paths of thermodynamic approach which are distinct
in their thermodynamic nature. One path is on the crit-
ical isochore (a line for a fluid at constant extensivity)
and the other path is on the critical isotherm (a line for
a fluid at constant intensivity).

Equations (12) and (13) can be simplified if each
asymptotic amplitude is only a function of one of the
factors. Yc should be for the critical isochore since it is
the reduced form of the slope of the potential p

kB T
along

this path. To establish a connection between Zc and the
critical isotherm, we need to resort to the results of GR
which show that the amplitude Dc is related to the am-

plitude D̂ through the universal ratio RD = Dc
(
D̂

) δ+1
2

(see Table I). Since D̂ has one divergent quantity at the

exact critical point (t∗ = 0;h∗ = 0), Zc and D̂ are the
only parameters defined uniquely at the exact critical-

ity. Therefore, it is legitimate to associate the Zc specific
role to the critical isotherm since the direction of the
tangent plane along this line is also defined by this same
parameter, for every pure fluid. We lay down therefore
the importance of these phenomenological observations
to introduce two supplementary hypotheses.

i) The dimensionless number Yc is characteristic of

only the singular asymptotic domain along the critical

isochore.

ii) The dimensionless number Zc is characteristic of

only the singular asymptotic domain along the critical

isotherm.

Thus, the above functional forms (12) and (13) can be
modified as follows:

ξ+ = ξ+ (Yc) (14)

Dc = Dc (Zc) (15)
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The phenomenological arguements which permit to ex-
plicit the above functional forms will be provided in a
more detailled manner in the following sections. How-
ever, for practical (critical) dimensional analysis, the
above functional forms (14) and (15) can be already writ-
ten as the following equations

ξ+ (Yc)
φ = YG (16)

Dc (Zc)
ζ

= FG (17)

where we expect that φ, ζ, YG and FG have the same
values for all pure fluids. Since the experimental values
of Zc and Yc are available for a large number of fluids,
there are six unknown quantities in equations (16) and
(17).

For the determination of the above unknown parame-
ters φ, ζ, YG and FG, it is in principle sufficient to know
the experimental values for ξ+ and Dc for only two flu-
ids with different Zc and Yc values. We emphasize that
the asymptotic nature of the amplitudes ξ+ and Dc im-
poses that experiments to be performed in the region as
close as possible to CP, with high relative accuracy [14],
particulary in order to minimize the contribution of the
corrective terms [24] in the Wegner expansion.

The previous conditions are partly realized in the Fran-
hauffer diffraction experiments [25], and in some light
scattering experiments [26, 27, 28, 29], for the three fluids
Xe, SF6, and CO2. However, the amplitude Dc, which
can only be deduced from the results of the diffraction ex-
periments, remains determined with a large uncertainty,
reflecting the impossibility to observe directly the critical
shape of the critical isotherm for the chemical potential
of a pure fluid [30].

This is why it would be preferable to find another way
which would enable the calculation of Dc, avoiding the
difficulties mentioned previously, but maintaining always
enable the unequivocal determination of φ, ζ, YG and
FG. Indeed, the values of the three amplitudes ξ+, Γ+

and B, where any two of which are independent, can be
obtained with acceptable precision from experiments. Γ+

is the amplitude for the power law divergence of the sus-
ceptibility along the critical isochore in the single phase
domain and B is the amplitude of the power law top-
shape of the vapor-liquid coexistence curve in the two
phase domain. We can thus utilize the theoretical uni-
versal value of the amplitude combination Rχ (see Table
I) to obtainDc knowing Γ+ andB. More generally, start-
ing with the experimental values for any amplitude pair
made from the three amplitudes ξ+, Γ+ and B, the re-
maining non-selected amplitude andDc can be calculated
from the following universal amplitude combinations (see
Table I)

R = R+
ξ (RC)−

1
d = ξ+

(
B2

Γ+

) 1
d

(18)

Rχ = DcBδ−1Γ+ (19)

using their estimated values R+
ξ = 0.27, RC = 0.066, (i.e.

R = 0.66811), and Rχ = 1.7 [5].
In practice, we chose xenon as the reference fluid for

VLCP. The specific contributions of Zc and Yc become
evidenced by the Xe− SF6 comparison (where only the
contribution of Yc is significant) and the Xe−CO2 com-
parison (where both the contributions are mixed). In
such conditions, by using all the possible combinations
together with experimental values of the three asymp-
totic amplitudes, Γ+, B and ξ+, we obtained the follow-
ing empirical values of the constants, φ and ζ

φ = 1.55 ± 0.15 (20)

ζ = −0.12 ± 0.06 (21)

The uncertainty of the exponent ζ, because of its small
value, reflects two unfavorable conditions for its deter-
mination, which are: i) the small differences in the Zc

values for the three selected fluids; ii) the large relative
variation of the calculated Dc values resulting from the
different choices of the entry pair made of two indepen-
dent amplitudes.

As of today, there exists a lot amount of experiments
for pure fluids close to their critical points to increase
the precision on the estimated values of the exponents φ
and ζ using the method described above. However, our
phenomenological approach implies other constraints on
φ and ζ which permit their determination, specially from
scaling arguements. This is because the universality of
the sub-class of fluids is necessarily the one predicted by
the RG theory. As a particular point, the two only inde-
pendent critical exponents are ν and δ, selected in sec-
tion 2 and defined in Table I. Consequently, in conformity
with the two hypothesis formulated at the beginning of
this section, there are also unequivocal relations between
φ and ν along the critical isochore and between ζ and δ
along the critical isotherm. Here, we immediatly provide
the explicit forms of these relations

φ =
1

ν
, with ν = 0.63; φ = 1.587 (22)

φ =
−2

3 (δ + 1)
, with δ = 4.815; ζ = −0.11465 (23)

The above relations will be discussed more in depth in
sections 5 and 6 where we introduce the scale dilatation

of the field distances to the CP on each of these paths
which is the only method able to provide the Eqs. (16),
(17), (22), and (23). In such a basic approach, we can
already pointed out that the linearization of the ther-
mal field relation for example (see Eq. (4), added to the
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ξ
(
10−10m

)

1 2 3 4

Ar 1.5 1.61

Kr 1.61 1.73

Xe 1.76 1.89 1.85 ± 0.1 1.86 ± 0.1

CO2 1.46 1.56 1.5 ± 0.1 1.50 ± 0.1

SF6 1.84 1.96 1.9 ± 0.1 1.86 ± 0.1

C2H6 1.80 1.84 1.8 ± 0.1

CClF3 1.82 1.95 ± 0.15

NH3 1.35 1.44

C2H4 1.73 1.89

CH4 1.64 1.72

N2 1.54 1.62

O2 1.48 1.62

F2 1.39

H2O 1.20 1.34

CF4 1.66

p − H2 1.63 1.87
4He 1.92 2.15
3He 2.31 2.67

C3H8 1.89 2.04

Table II: Values in Å of the asymptotic critical amplitude ξ+
0

of the correlation length along the critical isochore (T > Tc)
for neinteen pure fluids.

Column 1 : our determination using equations (9), (11),
(16), (22), and (24), with ξ+

0 = αcξ
+.

Column 2 : calculated values in a semi-empirical way by
Sengers et al (see Ref. [35]).

Column 3 : experimental values obtained by light scattering
intensity measurements and turbidity measurements by

Garrabos et al in the LIMHP (see Ref. [29]).
Column 4 : experimental values reported by Sengers and

Moldover in Ref. [32] and by Sengers in Ref. [33] (for
original references of the experimental works see refs.

[25, 26, 27, 28]).

recent predictions of Bagnuls and Bervillier [10] for the
asymptotic singular power law divergence of the correla-
tion length along the critical isochore, give evidence for
the relation φ = 1/ν.

With the values of φ and ζ given by Equations (22)
and (23), we obtain the constants YG and FG by using
the values of the amplitudes Γ+ and B for xenon, chosen
as one standard critical fluid [31, 32, 33, 34]

YG = 0.380 (24)

FG = 0.526 (25)

A first time limited justification of the phenomenolog-
ical equations is provided in Tables II and III.

In Table II, we compare for about twenty or so fluids,
the values of the amplitude ξ+0 = αcξ

+obtained by using
equations (9), (11), (16), (22) and (24) with experimental

data [29, 32, 33] and with their values calculated using a
semi-empirical approach [35].

In Table III, we compare for Xe, SF6, and CO2, the
values of ξ+, Dc, B, and Γ+, determined using our
method, with their experimental values.

The results given in these Tables show that our hy-
potheses, introducing the two critical parameters Zc and
Yc as being the characteristic numbers for the singular
domain of pure fluids, are realistic.

V. MASTER SINGULAR BEHAVIOUR OF
THERMODYNAMIC POTENTIALS

We have assumed that the contribution of each char-
acteristic factor can be separated along two distinct lines
on the phase surface f(P, ρ, T ) = 0. As a result, the
asymptotic form of at least one among the (non-analytic)
thermodynamic properties which are defined on each line
is also entirely characterized by the factor it is associ-
ated with. In all generality, this thermodynamic property
comes from the singular contribution of the appropriate
thermodynamic potential and acts such as an equation
of state. This is why we reformulate our two hypothesis
in consideration of the critical behaviour of two thermo-
dynamic potentials, the selection of which were already
justified by analogy between pure fluids and magnetic
systems of spins [21].

Hypothesis 1: When scaled by the factor Yc, the asymp-

totic behavior of ∆p∗ - the difference of the dimension-

less thermodynamic potential
(

p
T

)
∗

from its critical value(
p
T

)
∗

c
at CP - along the critical isochore, in the single

phase region, is the same for all pure fluids.

Hypothesis 2: When scaled by the factor Zc, the

asymptotic behavior of ∆µ∗

p̄ - the difference of the di-

mensionless chemical potential µ∗

p̄ and its critical value

µ∗

p̄,c at CP - along the critical isotherm, is the same for

all pure fluids.

In order to view the results predicted from hypothesis
1 and 2, we consider the critical behavior, schematized
on one appropriate field-potential diagram, of two dif-
ferent pure fluids, that are labelled by the subscript i,
which means i = I and i = II. Crossing CP along the
thermodynamic path (L), with {(L) ≡ ± for the critical
isochore, (L) ≡ c for the critical isotherm}, the thermo-
dynamic potential G, with {G = p

T
, µp̄}, is a function

of the field g, with {g = T, n}. Figure 1a illustrates the
distinction on the two curves Gi(g) |(L) with {i = I, II}.
At each critical point g = gc, the potential has the value
G = Gc. Of particular interest is the potential difference
∆G = G − Gc, which is a function of the field distance
∆g = g − gc measured along (L).

The reduction of the quantities ∆G and ∆g can in-
volve appropriate combination of the energy scale factor
(βc)

−1
, see Eq. (8), and the length scale factor αc, see

Eq. (9). The results of the dimensionless processing are
given in Figure 1b where each curve is represented by the
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Xe SF6 CO2

mp̄

(
10−26kg

)
21.803 24.252 7.308

(0) pc (MPa) 5.84 3.76 7.3753

ρc

(
kg m−3

)
1110 737 467.8

Tc (K) 289.74 318.70 304.14

γ
′

c

(
MPaK−1

)
0.119 0.0835 0.170

(1) (βc)
−1 = kBTc

(
10−21J

)
4.0 4.4 4.2

αc =
(

kBTc

pc

) 1
d (

10−10m
)

8.815 10.54 8.29

Zc =
pcmp̄

ρckBTc
0.287 0.281 0.274

Yc = γ
′

c
Tc

pc
− 1 4.9 6.08 6.01

(2) ξ+ =
(

YG

Yc

)ν

0.1997 0.1745 0.175

Dc =
(

FG

Zc

)
−

3(δ+1)
2

5.04 10−3 4.24 10−3 3.42 10−3

(3) ξ+
0 = αcξ

+
(
10−10m

)
1.76 1.84 1.45

(4) ξ+
0 (exp); Table II; Ref. [33] 1.86 ± 0.10 1.86 ± 0.10 1.50 ± 0.10

ξ+
0 (exp); Table II; Ref. [29] 1.85 ± 0.10 1.9 ± 0.1 1.5 ± 0.1

(3) Dc
LGS = (Zc)

−(δ+1) Dc 7.2 6.8 6.3

(5) Dc
LGS (min); see Ref. [19] 6.13 5.51 5.92

Dc
LGS (max); see Ref. [19] 7.53 7.10 6.93

(3) BLGS = Zc

[(
Rχ

Dc

) (
R
ξ+

)d
] 1

δ+1

1.455 1.575 1.59

(5) BLGS (exp); see Ref. [25] 1.48 1.56 1.54

BLGS (exp); see Ref. [32] 1.42 ± 0.06 1.62 ± 0.06 1.42 ± 0.05

(3) Γ+
LGS = (Zc)

2
(

Rχ

Dc

) 2
δ+1

(
R
ξ+

)2−η

0.0565 0.044 0.046

(5) Γ+
LGS (exp); see Ref. [32] 0.058 ± 0.002 0.046 ± 0.004 0.046 ± 0.002

Table III: Results for Xe, SF6, and CO2 of mass particle mp̄.

Lines (0) : Generalized critical parameters of the pure fluids.
Lines (1) : Characteristic parameters of the pure fluids defined by Equations (8) to (11).

Lines (2) : Calculated values of the asymptotic amplitudes ξ+ and Dc from the characteristics parameters, using Eqs. (8) to
(25).

Lines (3) : Calculated values of the asymptotics amplitudes ξ+
0 = αcξ

+, Dc
LGS , BLGS , and Γ+

LGS (see Refs. [20, 30, 34]). See
the Table I and the text for definitions and estimated values of the amplitude combinations R and Rχ.

Lines (4) : Experimental values of ξ+
0 following Table II.

Lines (5) : Values of Dc
LGS , BLGS , and Γ+

LGS obtained by different analyses of the data from the the Fraunhofer diffraction
experiments (see Ref. [25]).

following functional form

∆G∗ = f∗

i (∆g∗)|(L) (26)

Following hypothesis 1 and 2, we can now transform
these curves into a master curve, the functional equation
of which is given by

G∗

Π (∆G∗) = F∗

(L) [D∗

Π (∆g∗)] (27)

where F∗

(L)is a function which does not depend on the

pure fluid under consideration but only on the thermo-
dynamic path to cross CP. On the other hand, the new di-
mensionless functions G∗

Π (∆G∗) and D∗

Π (∆g∗) which ap-
pear on equation (27), depend on ∆G∗ and ∆g∗ through
the dimensionless number Π which is characteristic of
(L), with Π = Yc for the critical isochore (L) ≡ ±, and
Π = Zc for the critical isotherm (L) ≡ c. For explaining

this dependency, we resort to the general view of the scale
dilatation of the physical field [36], which is characterized
here by the scale factor Π. The quantities ∆G and ∆g
transform with dilatation to the following quantities

G∗

Π = ΠE∆G∗

∣∣
(L)

(28)

D∗

Π = Πe∆g∗|(L) (29)

where E(L) and e(L) are the same values for all the pure
fluids. In such conditions, the master curve along (L)
described by equation (27) is given in Figure 1c, where
the renormalized variables G∗

Π and D∗

Π are obtained by
equations (28) and (29).

For a better representation of the scale dilatation de-
fined on each path, we derive now the equations (26) to
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Figure 1: a) Schematic asymptotic behaviours along the crit-
ical path (L) of the thermodynamic potential G as a function
of the field g, for pure fluids I and II.

b) Schematic asymptotic behaviours of the dimensionless
potential difference ∆G∗ versus the dimensionless field
distance ∆g∗ to the critical point. The method to make
dimensionless the potential G and the field g, involves

separately either the length scale factor αc [see Eq. (9)] or
the energy one (βc)

−1 [see Eq. (8)].
c) Master asymptotic behaviour [see Eq. (27)] along (L) of

the renormalized potential G∗ as a function of the
renormalized field D

∗, for every fluids. This behaviour is
obtained using scale dilatations [see Eqs. (28) and (29)] of
axes in figure 1b, which take into account the scaling factor

Π related to (L). Π is a characteristic parameter of each
pure fluid.

(29), and the relations (16) and (17) introduced in the
previous section. In these next developments, we will
consider only the non-analytic asymptotic contributions
of the different functions [12].

A. Scale dilatation along the critical isotherm

The master scaling form of the renormalized chemical
potential, H∗ at the critical isotherm is given by [18, 21]

H∗ = ZH |M∗|δ (30)

where M∗ is the renormalised order parameter (H∗ and
M∗ are two dual variables with respect to one appro-
priate renormalized thermodynamic potential). ZH is
a number which has the same value for all pure fluids.
In accordance with equations (28) and (29), we define
the following quantities renormalized along the critical
isotherm as

H∗ = (Zc)
V

∆µ∗

p̄ (31)

M∗ = (Zc)
v
∆n∗ (32)

The asymptotic amplitude, Dc, is related to the reduced
physical quantities, ∆µ∗

p̄ and ∆n∗, by the following ex-
pression

∆µ∗

p̄ = Dc |∆n∗|
δ

(33)

As a result, we obtain the relation

Dc = ZH (Zc)
vδ−V

(34)

which assumes the following form

(Dc)
1

V −vδ Zc = (ZH)
1

V −vδ (35)

equivalent to equation (17).
An examination of equation (35) shows that the values

of V and v are linked to δ through equations (17) and
(23). The renormalized variables defined by equations
(31) and (32) are related by equation (30). Renormaliza-
tion by only one variable is sufficient to characterize the
scale dilatation along the critical isotherm. The two new
numbers introduced in this section (ZH and one exponent
V or v) are linked to FG and ζ introduced previously
through the relation (17). The fact that we have not
been able to determine the value of the exponent ζ with
certainty in section 4, or the two equivalent exponents
V and v in this section, prevents us going further with
our phenomenological approach (due to the fact that all
the dimensionless quantities can be always defined at an
unknown power of Zc).

B. Scale dilatation along the critical isochore

When approaching CP along the critical isochore in
the single phase domain, it is possible to quantify the
scale dilatation associated to this path. The reduced dif-
ferences of physical quantities are expressed in terms of
pressure and temperature in the following manners

∆p∗ =
p

T

Tc

pc

− 1 (36)
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∆τ∗ ≡ τS =
T

Tc

− 1 (37)

In accordance with our hypothesis 1 and the adopted
notation, the renormalized variables are defined by the
following relations

P∗ = (Yc)
W

∆p∗ (38)

T ∗ = (Yc)
w

∆τ∗ (39)

For φ4
d=3 (1), the non-analytic asymptotic term of the

thermodynamic potential P∗ defined along the critical
isochore varies as (T ∗)2−α [21, 23]. Particularly for
the pure fluid subclass, experiments predominantly show
that ∆p∗ has a term linear in ∆τ∗, which justifies the ad-
dition of one regular contribution, (∝ T ∗), to P∗. Con-
sidering the dominant regular and non-analytic terms,
the master scaling form of the potential P∗ should be
given by

P∗ = a1T
∗ + Z+

P (T ∗)
2−α

+ ... (40)

where a1 and Z+
P take the same values for all pure fluids.

Taking into account the definition of the characteristic
parameter Yc, the selection of values W = 0 and w = 1
for equations (38) and (39) implies that a1 = 1. Accord-
ingly, the renormalized variables are properly defined by
the following equations

P∗ ≡ ∆p∗ (41)

T ∗ = Yc∆τ
∗ (42)

where Yc plays the role of the multiplicative factor for
the dimensionless thermal distance generally used in ex-
periments.

With these particular choices, the form of equation
(17) described in the previous section is now exact. In
fact, the singular behavior of the renormalized heat ca-
pacity C∗ is proportional to the second derivative of the
potential considered above. Correspondingly, the asymp-
totic amplitude A+ of the dimensionless singular part
∆c∗V of the physical heat capacity at constant volume, is
defined as follows

∆c∗V =
A+

α
(∆τ∗)

−α
[1 + ...] (43)

As a result, there is a relation between A+ and Yc given
by

A+ = Z+
A (Yc)

2−α
(44)

where Z+
A is a unique value for every pure fluid (Z+

A

depends on the unique value Z+
P and the universal value

of α, due to the appropriate definition of the renormalized
heat capacity).

As the RG theory predicts the existence of the uni-
versal ratio, R+

ξ (Table 1), we can deduce the following

relation from equation (44)

(ξ)
d

2−α Yc = (Rξ)
d

2−α
(
Z+

A

) 1
2−α (45)

Equation (45) is equivalent (from a constant power ex-
ponent) to equation (16) and is to do with the scaling
law of Josephon between the critical exponents α and ν
(Table I).

The formulation and the steps folllowed in this sec-
tion for derivation of equation (16) and (17) character-
ize the non-universal transformations of physical fields.
We anticipate that with these transformations, singular
behavior of the properties of pure fluids on each of the
thermodynamic paths considered here will be identical.
These phenomenological results are therefore comparable
to the predictions of Bagnuls and Bervillier.

VI. COMPARISON WITH THE THEORETICAL
RESULTS OBTAINED BY BAGNULS AND

BERVILLIER [10]

Along the critical isochore of pure fluids, we propose
the scale dilatation with a phenomenological definition

T ∗ = Ycτ
∗

S (46)

which is formally equivalent to the one needed to applied
RG thechniques

t∗ = ϑτ∗S (47)

Following the work of Bagnuls and Bervillier, the singu-
lar behavior of the reduced correlation length depends
uniquely on the scaled variable t∗. The asymptotic term
of this behavior is given by

ℓ∗ (t∗) = Z
+
ξ (t∗)

−ν
[1 + O (t∗)] (48)

where Z
+
ξ is a “universal” constant. Using equations (2)

and (48) and taking into account that t∗ is given by equa-
tion (4), the following relation can be derived

ξ+ = Z
+
ξ ϑ

−ν (49)

Equation (49) is comparable to our phenomenological
equation (16) which has the form given by

ξ+ = Z+
ξ (Yc)

−
1
φ (50)

where the relation φ = 1/v is evident between the expo-
nents. On the other hand, the value of the phenomeno-
logical constant given by

Z+
ξ = (YG)

ν
(51)
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equals Z+
ξ = 0.54, as calculated from the YG value given

by equation (24), and is different from the theoretical
value of Z

+
ξ = 0.48, provided by the numerical treat-

ment of φ4
d=3 (1). This difference is essentially due to the

non-universality of the reduction process of the physical
quantities. As a matter of fact, equation (48) contains
the non-universality of the model, the origin of which is
not easy to explain. Nevertheless, it is easy to conceive
that both non-universality and the basic hypothesis of
RG theory are partly taken into account in the dimen-
sionless reduction of the physical variables. This point is
emphasized by Bagnuls and Bervillier [10] and discussed
for the case where the fluid is xenon [17].

In equation (50), we separated the non-universality of
the pure fluid into two terms which are: i) The dimen-
sionless compression factor, Zc which is associated with
the two chosen units for expressing the variables in re-
duced form ; ii) The non-universal number Yc which is the
scale factor along the critical isochore. Our approach as-
sumes therefore that Z+

ξ keeps the same numerical value
for all pure fluids. Due to a lack of a comparison between
the results from the model and the ones from the fluids
(specially on the dimensional length scale proper to the
model), there is no evident reason for Z+

ξ to be a uni-

versal number proper to φ4
d=3 (1), and therefore equal to

the Z
+
ξ value found in Ref. [10].

VII. CONCLUSIONS

We assumed that the asymptotic singular behavior of
a pure fluid at equilibrium close the gas-liquid critical
point can be entirely characterized by four macroscopic
parameters. These parameters describe the location of
the critical point on the characteristic surface and the
tangent plane to this surface at this point. Two of these

parameters, (βc)
−1

= kBTc and αc =
(

kBTc

pc

) 1
d

, are pa-

rameters which are evaluated at CP and have units of
energy and length, respectively. The remaining two pa-

rameters are Yc = γ
′

c
Tc

pc
− 1 and Zc =

Pcmp̄

ρckBTc
, both of

which are dimensionless numbers.
In accordance with the two-scale factor universality

predicted by the RG theory, we proposed two relations
between the two asymptotic amplitudes ξ+ and Dc and
the parameters, Yc and Zc. We thus define a new system
dependent set made of 12 theoretical asymptotic ampli-
tudes for φ4

d=3 (1) and two experimentally accessible pa-
rameters, Yc and Zc. As a consequence, the critical sin-
gular behavior of each pure fluid which is defined in RG
approach by the selection of two amplitudes is defined in

our phenomenological approach by the four parameters,
βc, αc, Yc and Zc.

We moved forward with two hypothesis for definition
of the the singular behavior of the thermodynamic poten-
tial along the critical isochore and the critical isotherm.
As part of these hypothesis, we proposed a scale factor
transformation of the reduced physical fields as functions
of the distance to the critical point along these paths. We
obtained simple relationships between the two asymp-
totic amplitudes taken as the system dependent parame-
ters in the RG theory and the characteristic experimen-
tal parameters, Yc and Zc. Comparison with the results
of the GR approach shows that the proposed method of
scale factor transformation of physical fields is equivalent
to the one in the theoretical approach.

We are now working on testing the universality as-
sociated with the contribution of the first term of the
non-analytic correction to the asymptotic behavior [10].
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Note added 15 December 2005

To conform with the usual notation of the dimension-
less energy such as βE with β = 1

kBT
, the present defini-

tion of the energy scale factor corresponds to the inverse
of the energy scale factor defined in the initial french ver-
sion of this paper. In addition, the present length scale
notation αc = kBTc

pc
replaces the initial one a = kBTc

pc
(to

avoid confuse situation with the Helmholtz free energy

density a (T, n) = A(T,V,N)
V

). The chemical potential per
particle µp̄ is here labellized with the decorated subcript
p̄, to make explicit distinctions with the chemical poten-
tial per mass unit, noted µρ, and with the pressure, noted
p. The dimensionless leading amplitudes of the suscep-
tibility, noted C+, C− and Cc in the initial french ver-
sion, are presently noted Γ+, Γ− and Γc (respectively), to
conform with actual standard notations of fluid singular-
ities. In the Table I, a printing power index mistake was
corrected in the definition of the universal combination

QΓ+ which now reads QΓ+ = (Γ+)
δ+1

δ

[
(A+)

δ−1
(Dc)

2
] 1

δ

.

Some font modifications between english and french ver-
sions are consistent with actual fonts used in recent re-
lated papers.

[1] Phase transitions, status of the experimental and theo-
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