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Computations of the first eigenpairs for the Sahinger
operator with magnetic field

V. Bonnaillie-Noél, M. Dauge, D. Martin and G. Vial

Abstract

This paper is devoted to computations of eigenvalues aneheggtors for the
Schroddinger operator with constant magnetic field in a dométh corners, as the
semi-classical parametértends to0. The eigenvectors corresponding to the smallest
eigenvalues concentrate in the corners: They have a twe-sttacture, consisting of
a corner layer at scalg/h and an oscillatory term at scate. The high frequency
oscillations make the numerical computations particyldelicate. We propose a high
order finite element method to overcome this difficulty. Radyon such a discretiza-
tion, we illustrate theoretical results on plane sectogsiases, and other straight or
curved polygons. We conclude by discussing convergengesss

1 Introduction

Superconductivity theory, modeled by Ginzburg and Landaativates investigations of
the Schrodinger operator with magnetic field and Neumanmdary conditions in two-
dimensional domains. The Schrodinger operat¢ohV —i.A)? derives from a linearization
of the Ginzburg-Landau functional and the behavior of igeaivalues and eigenvectors as
h — 0 gives information about the onset of superconductivityhimtnaterial, seé 6] I, 113,
[14,[20[29] for the general framework and[[Z] 15,16 171822926/ 28] for more closely
related questions concerning the Schrodinger operator.

We give the mathematical framework we will work within: |€ denote a bounded
polygonal domain inR? and A the magnetic potential(—z2,21) defined onR?. We
investigate the behavior of the eigenpairs of the Neumaatizegion P, on €2 for the
Schrodinger operator-(hV — iA)? ash — 0. The variational space associated with
Py, is H'(Q) and its domain is the subspace of functiansuch thatP,u € L?(2) and
v+ (hV —iA)u = 0 on 992, with v denoting the unit normal to2.

Let us first mention that the Schrodinger operalqris gauge invariant in the sense of
the following proposition:

Proposition 1.1. Let ¢ € H?(Q), thenu is an eigenvector associated with the eigenvalue
11 for the operator—(hV — 4.A)? if and only if u, := ¢*/"u is an eigenvector associated
with the eigenvalug: for the operator—(V — i(A + V¢))2.



_In particular, the eigenvalues of the Schrodinger operate the same for any potential
A such thatcurl A = curl A. This allows the use of adapted gauges according to the
domain.

In [L0], a complete asymptotic expansion of low-lying eigites is exhibited for curvi-
linear polygonal domains and refined results are provedercse when the domain has
straight sides and the magnetic field is constant. The eigdamhave a two-scale structure,
in the form of the product of a corner layer at scalé with an oscillatory term at scale
h. The latter makes the numerical approximation delicAtposteriorierror estimates are
used in[[3[D] to determine localized mesh refinement in a legrek finite element method.
We investigate here a finite element method using high dgglymomials, as described in
Sectior®.

Itis proved in [10] that the study of the Schrodinger operdt, in a domain with corners
of openingsay, ..., ay, relies on those of the Schrodinger operafsy := —(V —i.A)2 on
an infinite sector of opening;, for « = ay,...,« . SectiorB is devoted to this operator:
We show computations which make theoretical results mamgptete.

The next sections deal with the asymptotic behavior of therestates of?, ash goes
to 0: We give numerical solutions which illustrate the clusigrof eigenvalues, depending
on the symmetries of the domain. Several particular polggdomains are investigated,
highlighting different points of the theory: Tunneling et for the square, concentration in
the lowest corners for the trapezoid, the rhombus or thedpsti domain. We end with a
curvilinear polygon for which the asymptotics is appretyatifferent.

We conclude the paper in Sectibh 7 by numerical error curgeshie specific case of
a standard square of length and h = 0.02. We compare the performances of “p-
extensions” (increasing the polynomial degree on a fixedhinesnd of “h-extensions”
(refining the mesh with a fixed degree). According to the mtagiei of &, a locking phe-
nomenon is present, stronger and strongeh as 0. A disturbing feature of this locking
is the preasymptotic convergence to interior modes, cporeding to the lowest Landau
level, significantly larger than the correct eigenvaluesir @nclusion is the necessity for
using “p-extensions” if we wish to capture fine effects like tunneling effect in symmetric
domains.

2 General results on eigenvalue approximation

In the sequel, we will show numerical results of spectrakapipnations for the Schrodinger
operator in various domains. We wish first to recall somesfactthe numerical computa-
tion of eigenvalues and eigenvectors by a finite elementridalenethod, which serve as a
basis to justify the relevance of our results.

Let us fix some notation:
® L, IS then-th eigenvalue of the operatdt,
* uy 5, is anormalized associated eigenfunctionin= H'(Q),

o (7%)s¢ is a family of quadrilateral meshes, whetds the maximum size of the
elements (we changed the traditiortainto ¢ since the lette already stands for the
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small semi-classical parameter),

e Q, is the standard space of polynomials of partial degreae the reference square
element,

e VP is the conforming discrete variational space associatéd the Q,-reference
square element on the megh,
. (ufl’l;,ufl’p) is the n-th discrete eigenpair aP), in VOr:

/ (hV — iA)yuy® - (hV — iA)v dx = py” / uy? T de, Yo e VOP.

For the first eigenpair/{ = 1) or, more generally, ifes, », # fthn—1, itiS known from [4[5,
[17)] that the following Céa-like estimate holds

é, é? 1
lihn =il < Lyj, s inf = X, W

uEMh_,L X<
where M, ,, is the set of normalized eigenvecBassociated withuy, ,, and Lff; a positive
constant which, for each fixel > 0 andn € N, is bounded ag — 0 or p — oc.
Moreover the corresponding estimate for eigenvectorsste@tiere exists an eigenvector
uyp, , associated withyy, ,, satisfying

p

- 0, 0, .
[tnn = uphy v < Lyh, supinf lu— x|y @)
’ T ue ba

h,n X€

Thus discretization errors on the eigenpairs are essigrbialinded by the best approx-
imation errors on the eigenvectors 6f. We have to keep in mind that the latter closely
depends on the semi-classical paraméter

In the following, we will interpret the Galerkin approximais obtained for the eigen-
pairs, with respect to the asymptotic results[ofi [10]. We kasize the fact that, since by
constructionV? c V, the computed eigenvalues will always gesater than the exact
eigenvalue of same rank.

All the results displayed in this paper have been obtaindt thie Finite Elements Li-
brary Mélina, se€ [27]. Computations are mostly done wigttg coarse meshes (consisting
of less than100 quadrilaterals), but with high polynomial degrek (in general, referred
to asQqg-approximation). We justify our choice of a “p-extensiomiHere the degreg of
polynomials is increased), rather than a “h-extension”gmltthe size/ of the elements is
decreased), by the fact that — for the same number of degfdemedom — a p-extension
captures oscillations more accurately than a h-extensiea|[1/2R2["23] for related ques-
tions concerning the Helmholtz equation and dispersioaticgls at high wave number.
This point is discussed in more detail in Seclibn 7.

3 Model operators in infinite sectors

This section is devoted to the study of the Schrodingeraiper(V — i.4)? in an infinite
sector: The analysis of the operatfy, in a bounded domain with corners relies on this

Lif Wh,n = Mn,n—1,the setM}, ,, has to be modified accordingly.
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model situation. We first recall some theoretical resultenff8] concerning the spectrum
of the operator and, next, we show some numerical experanehich illustrate some of
these results or give hints on how to extend them.

3.1 Theoretical results on sectors

We denote byX = (X1, Xy) the Cartesian coordinates B?, and by R = |X| and ¢ the
polar coordinates. Let be the sector ifR? with openingo:

GY={XeR? 6e(0,a)l,
andQ“ be the Neumann realization of the Schrodinger operatév —i.4)? on the sector

G*. With the potential4(X) = 3(—Xas, X1 ), the operatoQ® takes the form

. 1
QY = —A +i(X10x, — X20x,) + Z|X|2'
The operatorQ® is associated with the following variational space

Ve ={Ue LXGY), (V—id)¥ e LGN}, [[9|[Ba = [1P[[72 + [|(V — iA)T||7..

We denote byu,(«) the k-th smallest element of the spectrum given by the max-min
principle. We quote some results 0f [8] about the spectrur® ®f

Theorem 3.1.
(i) The infimum of the essential spectrum(@gf is equal to©¢ := p1 ().
(i) Forall o € (0,7/2], pi(a) < ©p and, thereforey; () is an eigenvalue.

(i) Let o € (0,27) and k > 1. Let U'¢ be an eigenfunction associated wjif)(a)) < ©q
for the operatorQ“. ThenV ¢ satisfies the following exponential decay estimate:

Ve >0, 300 >0, [|e(VOrml—e)Xiga) <o 3
(iv) Forall « € (0, 7], o
?o < Nl(ia) < %’ @
and there holds (@) )
- 7 as «a— 0. (5)

Remark 3.2. Using the same technique &$ [8], one can establish asyegptitithe & -th
eigenvalue asr — 0, similar to [3):

AG) —>2k+1 as a— 0. (6)
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3.2 Numerical experiments on sectors

We present here some results of numerical computations eofaili-lying eigenvalues,
which illustrate the estimateEl (4[] (5) arid (6). Furthemmoar allows to investigate the
monotonic behavior ofi; («) with respect to the opening.

The method we have used to compute approximations of thengilygees consists in a
high order finite element method, using quadrilateral el@sand tensor-product polyno-
mials of degreel0. Let us explain the way we deal with the unboundedness ofdheah:
For a givena, we mesh a bounded cornered stripof openinga, see Figur&ll, and, for
any h > 0, we consider the scaled operawf, , defined onw as

Qh = —(hV —iA)*. (7)

S

|
"
{1
I

Figure 1: Meshes on cornered strips toe= 0.17, 0.357, 0.757.

By dilatation, the eigenvalues of the operat@ﬁh,lw are the same as those @?{M
divided by h. Consequently, taking the decay of eigenvectors into attcewe recover the
eigenvalues of)™ on the infinite sectot=* at the limith — 0. This formulation offers the
advantage to be consistent with the analysis in the nexpssdor bounded domains.

1.00

0.00

Figure 2: Moduli of the first eigenfunction far = 0.17, 0.357, 0.757.

To ensure that the eigenvalues in the infinite sector areoappated from above, we
impose Dirichlet boundary conditions on the edgesvoivhich differ from the boundary

5



of G* (keeping natural Neumann conditions elsewhere). The ehoianeshes such as
in Figure[l is justified by the localization of the eigenvestgiven in Theoreri 3 1. This
exponential concentration is illustrated in Figlite 2: Weeninat the behavior of the first
eigenvector changes when the opening increases. Indee, twd opening is small (e.g.,
a < 7/10 like in the left picture of Figur&l2), the eigenvector appetr be essentially
radial, in coherence with asymptotics as— 0. When the opening increases, the modulus
of the eigenvector spreads out along the boundary (seepighire of FigurdR). Conse-
quently, we realize computations with two different mesaesording to the opening (the
mesh on the right of Figuid 1 is refined near the edges whemdkravector is expected to
be mostly supported).

3.2.1 Asymptotics ofui () asa — 0

In order to increase the accuracy of the approximation ottgenvalues for small angles,
we introduce a gauge transform which leads to the potestial) = (—2,0). The result-
ing operatorQ® = —(V — i.A)? has the same spectrum thg, as explained in Propo-
sition[Id. The relevance of such a transform is linked toaimplitude of the potential:
for small openingsx, A is smaller thanA in the considered domain. We expect a better
approximation forQ® than for Q“ since the associated eigenvectors are less oscillating.

05 [ [ vt e

05 [ . 05

04 04
03 03

0.2 0.2

h=0.01 h=0.002
0.1 —— Essential spectrum 0.1} L —— Essential spectrum
—— Asymptotics —— Asymptotics
- Numerical estimates - Numerical estimates
] ]
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

o8 // W 06 / /// /

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

h=0.0005 h=0.0001

0.1F —— Essential spectrum 0.1
—— Asymptotics

- Numerical estimates

—— Essential spectrum
—— Asymptotics
- Numerical estimates

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Figure 3: (o) vs. &, k=1,...,7.

In Figure[3, we present numerical computationsupfa) for k =1, ---, 7anda €



{jm/1000,5 = 1,...,200} using h = 0.01, 0.002, 0.0005, 0.0001. We observe that we
capture very precisely the asymptotics.gf(«) given in [8) as soon as the parameteis
small. This is a consequence of the behavior of the eigeorercalled in Theorem3.1: the
eigenfunctions are localized near the corner and are exypiaitg small far from the corner.
Consequently, the leds, the less information we lose, and the better the approiomatf
the eigenpairs.

The improvement of the approximation for small angles isicia Figured3, whereas
the situation seems to be the reverse for larger values. dhdeed, the eigenvalues being
approximated from above, the results for> 7/10 are deteriorating for small. This phe-
nomenon can be explained by the fact that we keep the sameenaindlements to capture
higher oscillations: the mesh is too coarse to approximetarately the eigenfunctions.

3.2.2 Monotonicity of a +— pq ()

Let us now focus on the first eigenvalue. We have observedsyragotic behavior[{4) as

a — 0 in Figure[3 fora € (0,7/5). Figure[® gives computations fer € (0, 7) with a
discretization{j= /200, = 1,...,200}. We have realized these computations with several
values of h between10~* and 0.5 and three magnetic potentiald(z) = 1(—z2, 1)

o~

(symmetric gauge)ﬂ(a;) = (—z2,0) and A(z) = (0,z;) (Landau gauges). According
to Propositiod_LI1, the Schrodinger operator associaféttiese three potentials have the
same spectrum and the eigenvectors can be easily deducéwionine other. We show in
Figure[@ the effect of the gauge on the phase of the first eiggor The potentiald is
better adapted for small openings & 7/10), the potentialﬁ is more convenient for large
openings & > 197/20) since the eigenvector is localized in the corner and alsogathe
Neumann boundary. For the other openings, the potendtiglves better results.

Figure 4: Phases of first eigenvector for gaughsﬂ, A.

The curve in Figur&l5 plots the minimum value obtained froestéhconfigurations for
any opening. We have also represented on the graph the bofttra essential spectrum
Oy ~ 0.5901 and the lower and upper bounds givenlih (4). Since the nualezstimates
for the bottom of the spectrum give an upper-boung.ofo), we are ensured that; (o) <
O foranya € {jn/200,j =1,...,190}. We have gathered in Tatile 1 the valugof«)
obtained fora = jw/40. The comparison between the numbers obtained @itland Q1 -



approximations provides an accuracy estimation for theprded eigenvalues. Numerical
experiments forr € [, 67/5] do not show eigenvalue less th@p with similar meshes as
in Figure[d.

e
e

oab e ]

—— Essential spectrum

.| = Upper bound

—— Lower bound
Numerical estimates

0.Lf /s

0.2

0.4

0.6

0.8

Figure 5: 1 () vs. & for o € [0, 7].
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0.04516
0.08930
0.13160
0.17153
0.20883
0.24339
0.27524
0.30447
0.33123
0.35570
0.37806
0.39848
0.41713
0.43418
0.44976

0.04514
0.0893(
0.1316(
0.17153
0.20883
0.24334
0.27524
0.30447
0.33123
0.3557(

0.37806

0.3984¢
0.41713
0.4341¢

0.44976
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.46400
0.47704
0.48898
0.49990
0.50991
0.51907
0.52745
0.53512
0.54213
0.54853
0.55435
0.55965
0.56445
0.56880
0.57272

0.4640(
0.47704
0.48891
0.4999(
0.50991
0.51907

0.5274%

0.53517
0.54213

0.54852
0.5543%

0.55964
0.56443
0.5687¢
0.5726%

)

7l

|

7l

A= = . —

OH—O—00——=0

31
32
33
34
35
36
37
38
39
40

0.57623
0.57924
0.58193
0.58430
0.58632
0.58819
0.58997
0.59030
0.60130
0.59087

0.57614
0.57927

0.5818%

0.5841%
0.5861¢
0.58763
0.58904
0.5900(
0.59144
0.59064

= OO0 &GO

Table 1: Numerical values for the bottom of the spectrum.



Remark 3.3. Considering the results in FigurE 5, we conjecture thais strictly increasing
from (0, 7] onto (0, O], equal to®, on [, 2x] and thaty](w) = 0. Furthermore, from
the results in FigurEl 3 it appears that there is only one e@jeea 11; («) below the essential
spectrum fora € (7/5, ).

4 Square

We consider here the Schrodinger operagr= —(hV — i.A)? with Neumann boundary
conditions on the model squafe, = (—1,1) x (—1,1), and the rangd to 0.01 for the
parameter:.

4.1 Theoretical results

We denote bys; = (—1,—-1),s2 = (1,-1),s3 = (1,1), sy = (—1,1) the vertices of ).
The analysis of the eigenpairs 6}, on the square fits in the framework of more general
polygonal domains, studied ii‘J10]. We give here a specifedion of the results, which
takes into account the symmetry properties of the square.

Relying on Remark=313, we admit that there is only one eidelva, (7/2) below ©
for the operato)™? on the quarter plane and that(/2) is simple. Corresponding to the
4 corners of the square, the firgteigenpairs ofP;, derive from4 quasi-modegenerated

by the eigenpaif( 4, (7/2), \1,7{/2) on the quarter plane:

Notation 4.1. e Let yy, ,, be then-th eigenvalue of, counted with multiplicity and, ,,
be a normalized eigenfunction associated wily, .
e We introduce the sun#}, of the first4 eigenspaces aF},:

Fy, = span{up, 1, up2, Up,3, UWpa }-

¢ We define the corresponding spakg of quasi-modes

Eh - Spar{wh,sla 1/1h,527 ¢h,53, wh,54}

generated by the functionsy, s, defined as follows: Lej € {1,2,3,4} andR; be the
rotation of openingj — 1) /2. We first define the functionf;h&j by

y 1 ) - Ri(x —s; 1w
wh’sj(x) = ﬁexp <2Z—hfL'/\S]> \111/2 <%> on RJ 1G /2 (8)

and set ;
wh,s,' (aj) = Xj(l') ¢h75j (33) on qu- 9)

Here x; is a radial smooth cut-off function with support in the b&(s;, 2) and equal tal
in B(sj,2 — §) for some positivey .

The quasi-modegy, 5; allow to compare the eigenvalues Bf, with those ofQ™/2: the
distance between the clustefs, and £}, can be quantified as well. The results [of]1[10]
applied to the situation of a square give the estimates:



Proposition 4.2. With Notation], for any ¢ > 0, there existC. > 0 such that for

n=1234,
2,/0g—pu1 (5) —¢
0 1(2) . (10)

vh

‘Nh,n — hu (g)‘ <C.exp | —

Furthermore, for any: > §:

2/00 — i (3) —¢
d(Ep, Fy) < C:exp

_ v 7

whered is the distance defined b E},, F},) = ||lg, — g, g, ||#, with I, and g,
the orthogonal projections onté;, and Fj, respectively.

Consequently the eigenvectors associated with the smidieseigenvalues of?, are
exponentially close to a linear combination of the four qwasdesvy,s;, j = 1,2,3,4.
Numerical experiments show that these combinations ar&ivial. Furthermore, this the-
orem also proves that the smallest four eigenvalueg,diorm aclusterexponentially close
to hpy(mw/2). Numerical experiments bring more information about theavéor of these
eigenvalues, and display fine interactions. Moreoveroaljihn no theoretical results are
available for eigenvalues of rank larger than 5 (except #u that they cannot converge
below ©¢ ~ 0.59), we will see that they also organize into clusters of 4.

In the following, when representing eigenmodes, we show theduli and, most often,
their phases. The phase is computed according to the formnean (Im (z)/|z]).

4.2 Dependency orh of the first eigenfunction

Formula [B) exhibits a two-scale structure for the quaséeso a corner layer at sca{éﬁ
coming from the dilatatiorﬂ/fﬂ(-/\/ﬁ), and an oscillatory term at scatedue toe2r ",
Relying on Propositioi 412, the same holds for the functiartee eigenspacé;, . Conse-
quently, especially because of harsh oscillations, theeedifficult issue of approximating

correctly the eigenfunctions d?, for small values ofh.

We present as a conclusion of this paper in Sedfion 7 a systeimaestigation of errors
when discretizing our problem on the square thanks to hasidas with bilinear elements,
or to p-extensions with coarse meshed db 64 elements. In this section, we choose each
time an optimal combination mesh-degree to display eigel@s.o

To compute the first eigenfunction fér= 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, we keep
the polynomial approximation fixed t@;, and a8 x 8 mesh. Figur&l6 gives the modulus
of the first eigenfunction and Figuké 7 its phase. As expectedobserve that the modulus
is more and more concentrated in the corners and phase haeisbacillations wherh
decreases.
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0.00

Figure 6: Moduli of the first eigenfunctiork, = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01.

+1.50

k| +0.75

+0.00

k| +0.75
+0.00
-0.75

Figure 7: Phases of the first eigenfunctign= 0.1, 0.08, 0.06, 0.04, 0.02, 0.01.

4.3 Dependency on the rank of eigenfunctions for a given vaéuof h

In Figured8 we keeph = 0.02 fixed and compute the eigenfunctions associated with the
smallest eight eigenvalues df,. We observe that the eigenvectors associated with the
smallest four eigenvalues are localized in the four corasrpredicted by Propositidn #.2,
and that, moreover, each one is present in all the four cerasrcan be predicted by symme-
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try arguments. There is no theoretical results for the nigdrgairs, but the computations
show a localization of the eigenvectors along the edgeseoédfuare.

The full portrait (modulus and phase) of the first 32 modeshzafound in Appendix A.

Figure 8: Moduli of the first 8 eigenfunctiong, = 0.02.

4.4 Tunneling effect

The tunneling effectefers to the interaction between symmetric potential syedee[[21]
for instance. In our situation, the tunneling effect apptie corners of the same aperture. If
present, this effect is an interaction of eigenvalues st same cluster, possibly stronger
than the convergence of the whole cluster to its asymptond.| It could be formally
evaluated by investigating the eigenpairs of the Galerkajegation on the space of quasi-
modesy, s, -

Here, we simply compute, not only the firgt but the first12 eigenvalues, with &)1 -
approximation on uniform meshes of 4 to 64 elements, acegrth the value ofl/h,
ranging from1 to 90, with step 0.5. We present in FigurEl9 the graph of these first
12 eigenvalues divided by, vs. h~'. We observe that the eigenvalues interlace inside
clusters of four. The first cluster, converging to the vajugn/2) ~ 0.5099, is con-
tained in anexponential tubématerialized in the figure by the dashed curves of equation
h=1 1+ 0.5099 + 0.6 exp(—0.5665 h—1/2) as a numerical representation of the asymptotics
@@d)). The further clusters remain higher th@g ~ 0.59.

We note that, since>, is self-adjoint and its coefficients depend analytically /onits
eigenvalues can be organized to displayaalyticdependence oh in any interval disjoint
from 0. By a simple automatic postprocessing of the results, wleviokigenvalues as
families depending smoothly @n

The multiple crossings between eigenvalues are corragmbriay a closer look at the
eigenvectors: Tracking the symmetry properties of eigetors, it becomes obvious that
the crossings really occur. These oscillations are dueetonignetic field, and do not exist
in presence of an electric field alone.
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Figure 9:htpp,, vs. k™1, n=1,...,12 in Qg (left). Zoom to the first cluster (right).

5 Other polygons

Let now 2 denote a general polygon with straight edges. The behafitbedowest eigen-
values of the Neumann realizatid®, of the operator—(hV — i.A)? on Q ash tends to0
has, in a certain sense, the same features as previously.

Let 3 be the set of the vertices of (2, and as be the opening of2 at the vertexs.
As already seen in the case of the square, the spectruf) @ in close relation with the
spectra of the model operato€g™s for s describing the set of cornebs.

5.1 Theoretical results

Let us suppose for sake of simplicity that, for any verdexhe model operato@*s has at
most one eigenvalug; (as). This is the case for the examples we propose. From previous
computations, see Remdrk13.3, it is enough that the openringse greater tham /5. See

[LQ] for the general case.

Let 3; be the set of vertices such thatu(as) < ©¢. From Remark=313 again;;
coincides with the set of convex vertices ©f

Notation 5.1. e Let 1, be then-th eigenvalue ofP, counted with multiplicity.
e Let )\, be then-th element of the sefu;(as), s € £1}.
e Let p be the minimum distance between two corner$of

Theorem 5.2. With Notatiorl5J, for any ¢ > 0, there exists. such that

i — hAn| < Chexp (—% ( B0 — An — g>> . Vi< N = 4#()).

Thus, according to repetitions of the same valua {)\,..., Ay}, the corresponding
eigenvaluegy, ,, are gathered into clusters, exponentially close to the sadue h\. It is
proved in [10] that the corresponding eigenvectors are mampiially close to linear combi-
nations of quasi-modes: Quasi-modgs, are defined by translation, rotation, scaling, and
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cut-off from the eigenvectorg{ for any s € X; like in Notation[4.] for the square,

Notation 5.3. ¢ Using Notatio[ 2]1, we denote by\; < --- < Ay} the set of distinct
values in{\y,..., Ax}.
e Foranym < M, we define then-th cluster of eigenspaces &}, by

Fym = spaf{uy, | Vn suchthath, = A, },
and the corresponding clustéj, ,,, of quasi-modes
Epm = spaf{¢y s | Vs € $1 such thatus (as) = Ay}

Theorem 5.4. For any ¢ > 4, with 6 depending on the cut-off functiong, there exists
C. > 0 such that for anyn < M,

1
d(Eh,mth,m) < C.exp <_ﬁ <p O — A, — €>> .

5.2 Rhombus and Trapezoid

We consider two examples of convex quadrilateral domainsombus(,,, with two pairs
of distinct openings, and a trapezdiy, without symmetry with two openings equal.

The corners of the rhombu3,;, ares; = (—/2/2,0), s2 = (0, —/2), s3 = (v/2/2,0),
s; = (0,v/2). As illustrated in Figurd0, foh = 0.02 the first two eigenvectors are
localized in the smallest openings, whereas the third amdatlrth one are localized in the

largest openings. Because of symmetry, these eigenventiscalized in two corners and
not in one only.

1.00

0.75

0.25

0.00

Figure 10: Moduli of eigenvectors 1 to 4 i, for h = 0.02.

The corners of the trapezoid,, ares; = (—1,—1), sy = (1,—1), s3 = (1,0), s4 =
(—1,1). Thus the openings a; ands; are equal tor/2. We show in Figurd_11 the

14



first four eigenvectors folh = 0.02. As expected, the corners are visited according to
increasing magnitude. An interesting difference from ymammetric case is the localization
of eigenvectors 2 and 3 in corness and s with quite different coefficients. We have
noticed that the concentration in one corner only is stroagé gets smaller. The pictures
of moduli in log10 scale (bottom) give another insight on shipport of eigenvectors.

0.00

1.00E-06
1.00E-05
1.00E-04

1.00E-03

1.00E-02

Figure 11: Moduli of eigenvectors 1 to 4 i, for h = 0.02.
Natural color scale (top) and logarithmic color scale (bmtt)

The plots ofh—lmw vs. h~! display two convergent two-element clusters for the rhom-
bus (note the values ¢f; («) estimated by the method il for the two different openings:
0.395 and 0.565), and three distinct limits for the trapezoid (note;(«) ~ 0.434, 0.510
and 0.554). Eigenvalues interlace much less in the trapezoid, becatithe absence of
symmetry.

Figure 12:h 1y, ,, vs. h=1 for Q, (left) and Q. (right).
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5.3 L-shape
The L-shaped domaif; has six cornerss; = (0,0), so = (2,0), s3 = (2,1), s4 =
(1,1), ss = (1,2), ss = (0,2). Thus it has 5 corners of same opening2 and one

non-convex corner. The big five element cluster arounér/2) splits in fact in three
sub-clusters of 2, 1 and 2 elements, respectively, seedilgr

3

Figure 13: Moduli of eigenvectors 1, 3 and 5¢h , phase of eigenvector 1.

o] B

0.2
10 20 30 40 50 60

Figure 14:h =1y, ,, vs. h=1 for the L-shape, .

6 Curvilinear polygonal domains

If Q is a curvilinear polygon, as proved in]10], we still have wengence of the eigenpairs

of P, towards those ofb.cy;, Q< , but instead of being exponential, the convergence has the
ratev/h. Nevertheless, clustering and tunnelling are still pregene domain is symmetric,

as shown on the curved squde,,, below. The opening of the angles 6%, is equal

to 0.6507, corresponding tq:; (o) = 0.554. A geometrical interpolation of degree 4 has
been used for the design of tBex 8 mesh.

From FigurdIB, the slower convergence and weaker contientief eigenvalues inside
their cluster are visible, when compared to the case of tharsgq(see Figuid 9).
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1.00 +1.50

0.75

+0.75

+0.00

-0.75

0.00 -1.50

0.57

0.565

0.56

0.555

0.55

0.545

0.54

0.535

0.4 0.53

0.3 0.525

0.2 0.52
10 20 30 40 50 60 70 80 90 40 50 60 70 80 90

Figure 16:h 1y, vs. h™1, n=1,...,12, in the curved squar@,., .

7 h-extension vs. p-extension

We now compare in a systematic way the performances of theéemsion (i.e. keep the
polynomial degree fixed and refine the mesh) with those of thgtgnsion (i.e. keep the
mesh fixed and increase the polynomial degree). All numlegiqzeriments are carried with
the standard squai@,, centered at0,0) with side length2.

In g7 we keep the number of degrees of freedom (Dof) equal t6 468 compare the
dependency on the small parameheof eigenvalues computed with different combinations
of meshes and degrees. A andy7.3 the parametel is set t00.02 and show errors for
h- and p-extensions, respectively.

7.1 Several combinations mesh-degree
We compute the first eight eigenvalues Bf on the squardls, for 1~ = 10 to 60 by

step 0.5 with four different combinations of 1600 Doff); in a 40 x 40 mesh,Q, in a
20 x 20 mesh,Qs5 in a8 x 8 mesh, and, finallyQy in a 2 x 2 mesh. We plot in Figurds17

17



the first eight discrete eigenvalues divided byvs. h~!, and according to their smooth
dependency ik (like for Figure[®). And, like in Figur€l9, for the same reasae plot in
dashed lines the exponential tube® — 0.5099 + 0.6 exp(—0.5665h~'/2). We recall
that we expect the first four eigenvalue cluster to concentreside this tube.

11

0.9

0.8

0.7

0.6

05 ____:‘:::::::::::::::::‘:‘:;;
Y o
03 1600 elements, Q1 03 400 elements, Q2

0.2 0.2
10 20 30 40 50 60 10 20 30 40 50 60

0.9 0.9

0.8 0.8

0.7 0.7

04}~ 04}~

0.3 64 elements, Q5 0.3 4 elements, Q20

0.2 0.2
10 20 30 40 50 60 10 20 30 40 50 60

Figure 17:h 1y, ,, vs. k=1 for 1600 Dof

Besides the clearly visible better performance of high eegtwo features are noticeable:
(i) While they are belowt , the eight eigenvalues still gather into two clusters aneriace
with each other, anli) when eigenvalues get higher thanthey stick to this value and do
not oscillate any more.

7.2 h-extension with degree 1 and 2

The semi-classical parameteiis fixed t00.02. The reference value is taken@®0726621
for h_lﬂh,l’ and is obtained witlf),, -approximation on the& x 8 mesh.

From FigurdIB, we observe a preasymptotic convergendae fillowed by the asymp-
totic convergence towards 1, 1 . The preasymptotic convergence appears to be faster. A
closer look at the log-log plots of FiguEel19 shows that theveagenceatesare similar:

If ¢ denotes the mesh size, the rates are approximateind ¢* for Q; and Q,, respec-
tively, but the errors behave lik€'¢> and C¢* with a much largerC' for the asymptotic
convergence than for the preasymptotic one.
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Figure 18:A~1 1, 1 vs. number of Dof per side fa@; and Q2 -approximation.

0 ——Q1 0 PN

10°

10°

-3
10 o1
——Q2

10* 10° 10" 10

Figure 19: Relative errors for first eigenvalue, vs. numbdédaf per side.
Errors wrt preasymptotic valué (left), and to exact valu®.50726621 (right)

The structure of theses results evokes a possible crossiwgeen two very different
modes. We display the portrait (modulus and phase) of thesfight eigenvectors computed
with a Q; -approximation on &3 x 63 mesh (i.e., the last one before the bifurcation point
of the Q; curve, cf. Figurél8).

Itis clear that modes 1, 2, 3, 5 and 8 are of different naturd that modes 4, 6 and 7 are
somewhat closer to “true” modes 5-8, see Fidlire 8. Thesesedfating modes, especially
1-3, look like the firstLtandau modes

. 1
(X1, Xg) — (X1 +1X2) eXP( - Z(X% + X%)>7

for n = 0,1,2 and the scalingk = -%. The Landau modes are a basis of the (infinite
Vh
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90pup,1 = 1.0016 50pp, 2 = 1.0046 90pup,3 = 1.0093 50pup 4 = 1.0130

Figure 20: Modes 1 to 8, = 0.02, Q1 -approximation or63 x 63 mesh.
Moduli (top) and phases (bottom)

dimensional) eigenspace of the operateiV — i.4)? in R?, for thelowest Landau level
thatis, 1.

Examining the sequence of the first 32 modes computed witftleapproximation on
the 8 x 8 mesh, we can see that some of them, especially 32, 31 ands8dpak like the
first three Landau modes (cf. Appendix A).

From the63 x 63 mesh to thes4 x 64 mesh, we do observe crossings between modes:
For instance mode 4 becomes mode 1. Besides, the structaseitbfiting modes 4, 6 ad 7
produced with thes3 x 63 mesh is very close to that of exact modes.
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7.3 p-extension with coarse meshes

As in the previous section, the semi-classical paranvetierfixed to0.02 and the reference
value is the same.

—e—1 element
0
10 —A— 4 elements
—v— 16 elements
64 elements
10}
107
10° 5
10
1078 11
0 20 40 60 80 100

Figure 21: Relative errors for first eigenvalue, vs. numbdédaf per side.
Semi-logarithmic scale froh0—* to 10 for errors. Integers mark polynomial degree.

We plot on separate curves the errors for each mesh, letimglégree vary. We still
notice a locking region, wherg—!., 1 converges td (which also corresponds to a relative
error ~ 1). This region expands with the number of elements of the mBat) as a result,
with the same number of Dof the p-extension is far more peettian the h-extension.

8 Conclusion

Even with a size ratio equal tth0 between the domaif2 and the semi-classical parameter
h (this is the case fofly, with h = 0.02), the computation of the eigenpairs 8}, is a
numerical challenge for two reasor(®:the double scale for the first eigenvectors, inducing
oscillations of wave lengti® (h) E (i) the presence of different asymptotic modes, possibly
less oscillatory, like the Landau modes.

In fact, depending on the position of the domain with respedhe gauge center, the
preasymptotic convergence will have quite different feedu For a small enough fixed
like in the previous section, decreasing the mesh size wittwadegree approximation
provides a preasymptotic concentration of the first moderrsdahe gauge center. This
phenomenon has been observedin [25], too. Thus it is vefyluseknow the asymptotic

2The somewhat odd fact that the first mode is increasinglyllagng ash — 0 has some similarity with
the situation of sensitive shells, séel[12].
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behavior of eigenmodes before trying to compute them. Thasgmts to believe that the
first mode is approached as soon as a convergence appears.

From a more theoretical point of view, this rather simple, \@ry rich, example proves
the importance and the role of the global constﬁﬁﬁl in estimates[{1) and12). The ca-
pability of approximating the first mode of the cohtinuousl;dem isnot sufficientfor a
precise computation of its first eigenpair, cf. Figlité 20otier words, we do not have the
strict analogue of Céa lemma for eigenpair approximatidevertheless, the obvious better
performances of p-extension over h-extension have somaection to the approximabil-
ity of oscillatory functions by high degree polynomials ttee than by piecewise affine or
quadratic functions.

As a last remark, we notice the absence of influence of comgulgrities for this prob-
lem: (i) eigenmodes are mainly supported outside non-convex coaret(ii) the effect
of singularities at convex corners will be felt after the ibattons are resolved (beyond a
relative error of10~% in Figure[Z1). The main role played by these oscillations) e
fact that they spread everywhere in the domain makes it sséberefine meshes near cor-
ners. On the contrargniformmeshes have provided the most precise results regarding fine
interactions between corners (the tunnelling effect).
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Appendix A: The first 32 eigenpairs in the square forh = 0.02.

Computed inf2s, with the Q¢ -approximation on th& x 8 mesh.

We give, for each computed eigenmode, its rankhe value ofh—luh,n, the modulus and
the phase of a normalized eigenvector.

1: 0.50727 2: 0.50863 3:0.51129 4:0.51293
B B B B .

5: 0.62449 6: 0.63889 7:0.64291
i Y y -

Figure 22: Modes 1 to 8, Modulus (top) and phase (bottom).
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9: 0.72106 10: 0.75019 11:0.77995 12:0.80027

Pl & % J/
‘ | ) {
- . F L

13:0.86274 14:0.89110 15:0.90457 16: 0.93835

17:0.96564 18: 0.98089 19: 0.99023 20: 0.99516

Figure 23: Modes 9 to 20, Modulus (top) and phase (bottom).
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21:0.99803552512  22:0.99921135868 23:0.99971288354  24: 0.99990258870

32:0.99999999999

Figure 24: Modes 21 to 32, Modulus (top) and phase (bottom).
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Appendix B: Table of p;(a) vs. o

In the next two tables, in each column the integer numbgeterminesy by o = j7/1000,
the real number besides jg (a).

0.0018138|| 41 0.073586|| 81 0.14141}| 121 0.20305|| 161 0.25773
0.0036275|| 42 0.075342|| 82 0.14303| 122 0.2045 || 162 0.25901
0.0054411|| 43 0.077096|| 83 0.14465| 123 0.20595|| 163 0.26029
0.0072544|| 44 0.078848| 84 0.14627| 124 0.20739|| 164 0.26155
0.0090675|| 45 0.080597|| 85 0.14788|| 125 0.20883|| 165 0.26282
0.01088 46 0.082343|| 86 0.14948|| 126 0.21027|| 166 0.26408
0.012693 || 47 0.084086|| 87 0.15108| 127 0.2117 || 167 0.26534
0.014504 || 48 0.085826|| 88 0.15268| 128 0.21313|| 168 0.26659
0.016316 || 49 0.087564|| 89 0.15428| 129 0.21455|| 169 0.26784
10 0.018126 || 50 0.089298| 90 0.15587|| 130 0.21597|| 170 0.26908
11 0.019936 || 51 0.09103 91 0.15745|| 131 0.21738|| 171 0.27032
12 0.021745 || 52 0.092758| 92 0.15903| 132 0.21879|| 172 0.27156
13 0.023554 || 53 0.094484|| 93 0.16061|| 133 0.22019| 173 0.27279
14 0.025361 || 54 0.096206|| 94 0.16218|| 134 0.22159|| 174 0.27401
15 0.027168 || 55 0.097926|| 95 0.16375|| 135 0.22299|| 175 0.27524
16 0.028973 || 56 0.099642|| 96 0.16532| 136 0.22438|| 176 0.27645
17 0.030777 || 57 0.10135 97 0.16688|| 137 0.22576|| 177 0.27767
18 0.03258 58 0.10306 98 0.16843|| 138 0.22715|| 178 0.27888
19 0.034382 || 59 0.10477 99 0.16999| 139 0.22852|| 179 0.28009
20 0.036183 || 60 0.10647 || 100 0.17153|| 140 0.2299 || 180 0.28129
21 0.037982 || 61 0.10817 || 101 0.17308|| 141 0.23127|| 181 0.28248
22 0.03978 62 0.10987 || 102 0.17462|| 142 0.23263|| 182 0.28368
23 0.041576 || 63 0.11156 || 103 0.17615/| 143 0.23399|| 183 0.28487
24 0.043371 || 64 0.11325 || 104 0.17768|| 144 0.23535|| 184 0.28605
25 0.045164 || 65 0.11494 || 105 0.17921|| 145 0.2367 || 185 0.28723
26 0.046955 || 66 0.11662 || 106 0.18073|| 146 0.23805| 186 0.28841
27 0.048745 || 67 0.1183 107 0.18225|| 147 0.23939|| 187 0.28958
28 0.050533 || 68 0.11997 || 108 0.18377|| 148 0.24073|| 188 0.29075
29 0.052319 || 69 0.12164 || 109 0.18527|| 149 0.24206|| 189 0.29192
30 0.054103 || 70 0.12331 || 110 0.18678|| 150 0.24339|| 190 0.29308
31 0.055885 || 71 0.12498 || 111 0.18828| 151 0.24472|| 191 0.29424
32 0.057665 || 72 0.12664 || 112 0.18978| 152 0.24604( 192 0.29539
33 0.059443 || 73 0.12829 || 113 0.19127|| 153 0.24736|| 193 0.29654
34 0.061219 || 74 0.12995 || 114 0.19276|| 154 0.24867|| 194 0.29768
35 0.062993 || 75 0.1316 115 0.19424| 155 0.24998|| 195 0.29882
36 0.064764 || 76 0.13324 || 116 0.19572|| 156 0.25128|| 196 0.29996
37 0.066533 || 77 0.13488 || 117 0.19719| 157 0.25258| 197 0.30109
38 0.0683 78 0.13652 || 118 0.19866|| 158 0.25387|| 198 0.30222
39 0.070064 || 79 0.13816 || 119 0.20013|| 159 0.25517|| 199 0.30335
40 0.071826 || 80 0.13978 || 120 0.20159|| 160 0.25645|| 200 0.30447

O©CoO~NOOUIA, WNBEP

Table 2: i1 (j7/1000) vs. j, 7 =1,...,200, by stepl.
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205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400

0.31001
0.31546
0.32081
0.32607
0.33123
0.3363
0.34129
0.34618
0.35098
0.3557
0.36034
0.36489
0.36936
0.37375
0.37806
0.38229
0.38645
0.39053
0.39454
0.39848
0.40235]
0.40614
0.40987
0.41354
0.41713
0.42067
0.42413
0.42754
0.43089
0.43418
0.4374
0.44058
0.44369
0.44675
0.44976
0.45271
0.45561
0.45846
0.46125
0.464

405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600

0.4667
0.46936
0.47196
0.47453
0.47704
0.47951
0.48194
0.48433
0.48667
0.48897
0.49124
0.49346
0.49565
0.49779
0.4999
0.50197
0.50401
0.50601
0.50798
0.50991
0.5118
0.51367
0.5155
0.5173
0.51907
0.52081
0.52251
0.52419
0.52584
0.52745
0.52904
0.5306
0.53214
0.53364
0.53512
0.53658
0.538
0.5394
0.54078
0.54213

605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800

0.54346
0.54476
0.54604
0.54729
0.54852
0.54973
0.55092
0.55208
0.55323
0.55435
0.55545
0.55653
0.55758
0.55862
0.55964
0.56064
0.56161
0.56257
0.56351
0.56443
0.56533
0.56622
0.56708
0.56793
0.56876
0.56957
0.57037
0.57115
0.57191
0.57265
0.57338
0.57409
0.57479
0.57547
0.57614
0.57679
0.57743
0.57805
0.57865
0.57922

805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000

0.57978
0.58031
0.58084
0.58135
0.58185
0.58233
0.58281
0.58328
0.58372
0.58415
0.58458
0.58499
0.5854
0.5858
0.58619
0.58636
0.58669
0.58701
0.58733
0.58763
0.58793
0.58821
0.5885
0.58877
0.58904
0.58931
0.58956
0.58956
0.58978
0.59
0.59024
0.59049
0.59077
0.59113
0.59149
0.59143
0.59131
0.59114
0.59092
0.59064

Table 3: 1 (j7/1000) vs. j, 7 = 205,...,1000, by step5.
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