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NON-STRUCTURAL CONTROLLABILITY OF
LINEAR ELASTIC SYSTEMS WITH STRUCTURAL DAMPING

LUC MILLER

Abstract. This paper proves that any initial condition in the energy space for

the plate equation with square root damping ζ̈ − ρ∆ζ̇ + ∆2ζ = u on a smooth

bounded domain, with hinged boundary conditions ζ = ∆ζ = 0, can be steered
to zero by a square integrable input function u supported in arbitrarily small

time interval [0, T ] and subdomain. As T tends to zero, for initial states with

unit energy norm, the norm of this u grows at most like exp(Cp/T p) for any
real p > 1 and some Cp > 0.

Indeed, this fast controllability cost estimate is proved for more general lin-

ear elastic systems with structural damping and non-structural controls sat-
isfying a spectral observability condition. Moreover, under some geometric

optics condition on the subdomain allowing to apply the control transmuta-
tion method, this estimate is improved into p = 1 and the dependence of Cp

on the subdomain is made explicit.

These results are analogous to the optimal ones known for the heat flow.

A wide variety of dissipative linear elastic control systems may be represented
by a second-order differential equation in a Hilbert space:

ζ̈(t) + Dζ̇(t) + Sζ(t) = Bu(t), t ∈ R+(1)

where each dot denotes a derivative with respect to the time variable t and the func-
tion ζ represents the evolution of the system under the action of the input function
u. The structural vibration modes of the conservative system represented by (1) with
B = D = 0 are prescribed by the positive self-adjoint operator S. This ideal system
is perturbed by a dissipative mechanism prescribed by the positive self-adjoint op-
erator D. The system is actuated through a control mechanism prescribed by the
operator B (possibly unbounded to take into account trace operators prescribing
the boundary value of distributed states). Throughout this paper, controllability
will always mean the ability of steering any initial state (z(0), ż(0)) to zero over a
finite time by some appropriate input function u (i.e. exact controllability to zero
or null controllability).

This paper concerns the specific dissipative mechanism D = Sα with α ∈ (0, 1)
called structural damping, which generalizes the square root damping model α =
1/2 introduced in [CR82]: “The basic property of structural damping, which is
said to be consistent with empirical studies, is that the amplitudes of the normal
modes of vibration are attenuated at rates which are proportional to the oscillation
frequencies”. This model was also studied under the name “proportional damping”
(cf. [Bal90]). The quite different case α = 1 is known as “Kelvin-Voigt” damping.
When B is the identity and α ∈ (0, 1], this is the first class of parabolic-like control
models considered in [LT98, Tri03] with the extra assumption that S has compact
resolvent, dispensed with in [AL03].

This paper focuses on the cost of fast controls as in [Tri03, AL03]. The con-
trollability results known for these systems hold for a control time which can be
chosen as small as wished. This asymptotic is referred to as fast control. The cost
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over a given time is the supremum over every initial state with unit energy norm of
the smallest norm of an input function which steers it to zero over the given time.
The study of the cost of fast controls was initiated by Seidman (cf. references in
[Mil04]) and recently revived by Da Prato who connected it to some properties of
stochastic differential equations (cf. references in [AL03]).

The earlier results restricted to elementary forms of control operators (mainly
B is the identity or has rank one, cf. [Han91, LT98, LT00, RW00, SAI00, Tri03,
AL03]). A key point in their proofs is (loosely speaking) the existence of a common
eigenbasis for the three operators S, D and B, modeling respectively the structure,
the damping and the control. On the contrary, the controllability results of this
paper apply to non-structural controls, e.g. locally distributed control.

The main application is to the plate equation with square root damping on a
smooth bounded domain M of Rd with hinged boundary conditions:

ζ̈ − ρ∆ζ̇ + ∆2ζ = u on R+ ×M, ζ = ∆ζ = 0 on R+ × ∂M,(2)

where ρ > 0 and the input function u is supported on a non-empty subdomain Ω
(cf. theorem 2). Fast controllability is proved to hold for any control region Ω. As
the control time T tends to zero, the cost is proved to grow at most like exp(Cβ/T β)
for any β > 1 and some Cβ > 0. If the length LΩ of the longest generalized ray of
geometrical optics in M which does not intersect Ω is finite (this is the condition
of [BLR92]) and ρ < 2, then the cost is proved to grow at most like exp(CL2/T )
for all L > LΩ and some positive C which does not depend on Ω. These results
are analogous to the optimal fast controllability cost known for the heat flow (cf.
[FCZ00, Mil04]). They confirm the formal analogy: ∂2

t − 2∆∂t + ∆2 = (∂t −∆)2.
On the contrary, when Ω = M (i.e. B is the identity), [Tri03, AL03] prove that the
fast controllability cost grows like 1/T β for some β > 1/2, as in finite-dimensional
systems (cf. [Sei88]).

Earlier methods to estimate the cost of fast controls were global parabolic Carle-
man estimates (cf. [FCZ00, AL03]), the Fourier transform method for constructing
functions bi-orthogonal to exponential series (cf. [SAI00, Mil04] and references
therein) and the transmutation control method (cf. [Mil04, Mil05a]). The last
two are combined in section 2 to take the geometry of the control region into ac-
count and improve the cost estimate for (2) as stated above and more precisely in
theorem 2.

The proof of the abstract result, theorem 1 of section 1, applies a new method
using the control strategy of Lebeau and Robbiano in [LR95] as implemented in
[LZ98] (the companion paper [Mil05b] applies this method to a simpler model: the
holomorphic semigroup generated by exp(−tSβ), β > 0). The key assumption is
an observability condition on the spectral subspaces of S with respect to B stated
in definition 1. It is an abstract version of a result on sums of eigenfunctions of
the Dirichlet Laplacian proved in [LZ98, JL99] by local elliptic Carleman estimates
and extended to non-compact manifolds in [Mil05c]. Therefore the abstract result
applies to (2) (such concrete models with other forms of controls are considered
e.g. in chap. 3 of [LT00]) even if, e.g., M is unbounded, the Dirichlet Laplacian is
positive with non-compact resolvent and Ω is the exterior of a compact subdomain.

It is clearly desirable to study plate equations with other boundary conditions
or with locally distributed controls on the boundary instead of the interior. Other
open problems are mentioned in the remarks of section 2.1.

1. A structurally damped linear elastic control system

Before stating the abstract model and the theorem precisely, we need to introduce
a few notations.
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Let H0 and U be Hilbert spaces with respective norms ‖·‖0 and ‖·‖. Let A
be a self-adjoint, positive and boundedly invertible unbounded operator on H0

with domain D(A). We introduce the Sobolev scale of spaces based on A. For
any positive integer p, let Hp denote the Hilbert space D(Ap/2) with the norm
‖x‖p = ‖Ap/2x‖0 (which is equivalent to the graph norm ‖x‖0 + ‖Ap/2x‖0). We
identify H0 and U with their duals. Let H−p denote the dual of Hp. Since Hp is
densely continuously embedded in H0, the pivot space H0 is densely continuously
embedded in H−p, and H−p is the completion of H0 with respect to the norm
‖x‖−p = ‖A−p/2x‖0.

Let the observation operator C be in L(H2, U), which denotes bounded operators
from H2 to U , and let B ∈ L(U,H−2) denote the dual of C.

Let α ∈ (0, 1) denote the structural dissipation power, and let ρ > 0 denote the
dissipativity constant. With the structural operator A and the control operator B,
they define the second-order Cauchy problem with input function u:

ζ̈(t) + ρA2αζ̇(t) + A2ζ(t) = Bu(t),

ζ(0) = ζ0 ∈ H2, ζ̇(0) = ζ1 ∈ H0, u ∈ L2
loc(R;U).

(3)

In order to define the (mild) solution of this problem, we assume that B ∈ L(U,H0)
(which is enough for the application in section 2) or, more generally, that B is
admissible in a sense specified later in (9).

To state the “observability condition” on the spectral subspaces of A with respect
to C of the main theorem, we first introduce our spectral notations. Given γ > 0
and µ > 1, applying the functional calculus for self-adjoint operators to the positive
operator Aγ and the bounded function on R+ defined by 1λ6µ = 1 if λ 6 µ and
1λ6µ = 0 otherwise, yields the spectral projector 1Aγ6µ. The image of H0 under
this projection operator is just the spectral subspace 1Aγ6µ H0 of Aγ .

Definition 1. Let γ > 0. The observability of low modes of Aγ through C at
exponential cost holds if there are positive constants D0 and D1 such that:

∀µ > 1,∀v ∈ 1Aγ6µ H0, ‖v‖0 6 D0e
D1µ‖Cv‖ .(4)

This abstract condition is satisfies in some concrete applications given in the next
section. As illustrated in the proof of the following main theorem (cf. section 1.3),
it allows to compare the free dissipation of high modes to the cost of controlling
low modes.

Theorem 1. Assume that observability of low modes of Aγ through C at expo-
nential cost holds for some γ ∈ (0, 1) (cf. definition 1). For all ρ > 0 and
α ∈ (γ/2, 1 − γ/2), for all β > (2min {α, 1− α} /γ − 1)−1, there are positive con-
stants C1 and C2 such that for all T ∈ (0, 1], for all ζ0 and ζ1, there is an input
function u such that the solution ζ of (3) satisfies ζ(T ) = ζ̇(T ) = 0 with the cost
estimate: ∫ T

0

‖u(t)‖2dt 6 C2 exp
(

C1

T β

) (
‖ζ0‖2

2 + ‖ζ1‖2
0

)
.

1.1. The duality between observation and control. The proof of theorem 1
uses the well-known equivalence between controllability and observability (cf. [DR77]).
In this section, we clarify in what sense the dual of the control problem (3) is the
observation of the following Cauchy problem (without input):

z̈(t) + ρA2αż(t) + A2z(t) = 0, z(0) = z0 ∈ H2, ż(0) = z1 ∈ H0 .(5)
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The second-order differential equations (3) and (5) may be restated as first-order
systems by setting ξ(t) = (ζ(t), ζ̇(t)) and x(t) = (z(t), ż(t)):

ξ̇(t)−Aξ(t) = Bu(t), ξ(0) = ξ0 ∈ X, u ∈ L2
loc(R;U),(6)

ẋ(t) = Ax(t), x(0) = x0 ∈ X.(7)

The state space is X = H2 ×H0. The semigroup generator A of (7) is defined by:

A =
(

0 I
−A2 −ρA2α

)
, D(A) =

{
(z0, z1) ∈ H2 ×H2 |A2z0 + ρA2αz1 ∈ H0

}
.

It inherits from −A the necessary and sufficient properties of Lumer-Phillips for
generating a contraction semigroup.

The control operator is B = ΠB, where Π : X → H0 is defined by Π(z0, z1) = z1.
If B ∈ L(U,H0) (as in the application in section 2) then B ∈ L(U,X). Indeed
theorem 1 is valid in the following more general (canonical) setting introduced by
Weiss in [Wei89]. Let X1 be D(A) with the norm ‖x‖1 = ‖Ax‖ and let X−1 be
the completion of X with respect to the norm ‖x‖−1 = ‖A−1x‖. At first, we only
assume B ∈ L(U,X−1). In order to define the unique (mild) solution ξ ∈ C(R+;X)
of (6) by the integral formula:

ξ(t) = etAξ(0) +
∫ t

0

e(t−s)ABu(s)ds,(8)

we also make the admissibility assumption: for some T > 0 (hence for all T > 0)
there is a positive constant KT such that

∀u ∈ L2
loc(R;U), ‖

∫ T

0

etABu(t)dt‖2 6 KT

∫ T

0

‖u(t)‖2dt.(9)

We define the duality pairing on X by 〈(ζ0, ζ1), (z0, z1)〉 = 〈Aζ0, Az0〉0−〈ζ1, z1〉0.
With respect to this pairing, X and A are their own dual, X−1 is the dual of X1

and B is the dual of the observation operator C = CΠ. The assumptions on B are
equivalent to C ∈ L(X1, U) and, for all x0 ∈ D(A),

∫ T

0
‖CetAx0‖2dt 6 KT ‖x0‖2.

Therefore the output map x0 7→ CetAx0 from D(A) to L2([0, T ];U) has a continuous
extension to X. N.b. if α 6 1/2, then X1 = H4 ×H2 and X−1 = H0 ×H−2.

We recall the duality between controllability and observability (cf. [DR77]):

Lemma 1. Let T > 0 and CT > 0. The following properties are equivalent:
(i) For all initial state ξ0 ∈ X, there is an input function u ∈ L2

loc(R;U) such
that the solution ξ ∈ C(R+;X) of (6) satisfies ξ(T ) = 0 and ‖u‖L2(0,T ;U) 6 CT ‖ξ0‖.

(ii) For all initial state x0 ∈ X, the solution x(t) = etAx0 of (7) satisfies the
observation inequality: ‖x(T )‖ 6 CT ‖Cx(t)‖L2(0,T ;U).

N.b. the smallest constant CT such that these properties hold is the control-
lability cost mentioned in the introduction. The estimate in theorem 1 writes
C2

T 6 C2 exp
(
C1/T β

)
. The contractivity of etA, (8) and (9) imply the estimates:

‖ξ(T )‖2 6 2(1 + KT C2
T )‖ξ(0)‖2(10) ∫ T

0

‖ξ(t)‖2dt 6 2T (1 + KT C2
T )‖ξ(0)‖2,(11)

since Kt and
∫ t

0
‖u(s)‖2ds are nondecreasing, although Ct is nonincreasing.

1.2. Spectral and growth bounds. The proof of theorem 1 relies on a spectral
decomposition of the problem. We extend the action of the spectral projector
1Aγ6µ to X according to 1Aγ6µ(z0, z1) = (1Aγ6µ z0,1Aγ6µ z1). It commutes with
A and the generated semigroup. Therefore X is the orthogonal sum of the invariant
subspaces 1Aγ6µ X (low modes) and 1Aγ>µ X (high modes).
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The restriction of etA to 1Aγ>µ X satisfies the following exponential decay bound:

Proposition 1. Let γ′ = γ/(2 min {α, 1− α}). There is an r > 0 such that:

∀µ > 1, ∀x ∈ 1Aγ>µ X, ∀t > 0, ‖etAx‖ 6 exp
(
−rµ1/γ′t

)
‖x‖ .

This reduces to a spectral bound thanks to the results of Chen and Triggiani on
the differentiability of etA (cf. [CT89, CT90]). We first prove two spectral lemmas.

Lemma 2. The spectrum of A relates to the spectrum of A according to:

σ(−A) ⊂ {λ ∈ C | ∃µ ∈ σ(A), Pµ(λ) = 0} , with Pµ(λ) = λ2 − ρµ2αλ + µ2 .

Proof. Let λ /∈ {λ ∈ C | ∃µ ∈ σ(A), Pµ(λ) = 0}. The function µ 7→ Pµ(λ)/µ2 is
continuous on (0,+∞) ⊃ σ(A), it tends to 1 as µ tends to infinity and it does
not vanish on the closed set σ(A). Hence, there is an ε > 0 such that, for all
µ ∈ σ(A), |Pµ(λ)/µ2| > ε. Since µ 7→ |µ2Pµ(λ)−1| is bounded on σ(A) (by ε−1), we
have A2PA(λ)−1 ∈ L(H0) ⊂ L(H2,H0), PA(λ)−1 ∈ L(H0,H4) ⊂ L(H0,H2) and
(λI − ρA2α)PA(λ)−1 ∈ L(H2). Therefore the operator M(λ) defined by

M(λ) =
(

(λI − ρA2α)PA(λ)−1 −PA(λ)−1

A2PA(λ)−1 λPA(λ)−1

)
is bounded on X. But M(λ)(λI + A) = (λI + A)M(λ) = I, so that M(λ) is the
bounded inverse of λI +A. Hence λ /∈ σ(−A). �

Lemma 3. The roots λ± =
(
1±

√
1− (2µ1−2α/ρ)2

)
ρµ2α/2 of Pµ(λ) satisfy:

∀µ > 1, min {Re λ+,Re λ−} > rµ2 min{α,1−α}, with r = min {ρ/2, 1/ρ} .

Proof. Let x = 2µ1−2α/ρ. If x > 1, then Re λ+ = Re λ− = µ2αρ/2. Otherwise λ± ∈
R, λ+ = (1+

√
· · ·)µ2αρ/2 > µ2αρ/2, and λ− = (1−

√
1− x2)µ2αρ/2 > x2µ2αρ/4 =

µ2(1−α)/ρ. Since min
{
µ2α, µ2(1−α)

}
= µ2 min{α,1−α} for µ > 1, gathering these

lower bounds yields the lemma. �

Proof of proposition 1. Since etA is a differentiable semigroup for α ∈ (0, 1] ([CT90]
proves that this semigroup is of Gevrey class and that it is analytic if and only if
α ∈ [1/2, 1]), it is eventually continuous for the operator norm topology. The
semigroup generated by the restriction Aµ of A to 1Aγ>µ X inherits this property.

But lemma 3 and the proof of lemma 2 imply σ(−Aµ) ⊂
{

λ ∈ C |Re λ > rµ1/γ′
}

with r = min {ρ/2, 1/ρ}. Therefore the growth bound in proposition 1 holds. �

1.3. Proof of theorem 1. The last ingredient of this proof is the following cost
estimate corresponding to the control operator B = I proved in [AL03]:

Proposition 2 (Avalos-Lasiecka 2003). For all ρ > 0, for all α ∈ (0, 1), there are
positive constants c1 and c2 such that for all T ∈ (0, 1] the solutions of (5) satisfy:

∀z0 ∈ H2,∀z1 ∈ H0, ‖z(T )‖2
2 + ‖ż(T )‖2

0 6
c2

T c1

∫ T

0

‖ż(t)‖2dt.(12)

(Indeed, [AL03] specifies how the power c1 depends on α.)
In a first step, from the stationary condition in definition 1, proposition 2 and

the duality in lemma 1, we deduce the “controllability of low modes at exponential
cost” in the corresponding dynamics. In a second step, combining it with the decay
bound in proposition 1 according to the iterative control strategy introduced by
Lebeau and Robbiano in [LR95], we prove the controllability of all modes. We
estimate the controllability cost as the control time tends to zero, like in [Mil05b],
in the last step.
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First step. With the notations introduced in section 1.1, the observation inequality
(12) in proposition 2 writes:

∀x0 ∈ X, ‖eTAx0‖2 6
c2

T c1

∫ T

0

‖ΠetAx0‖2dt.(13)

Let τ ∈ (0, 1], µ > 1 and x0 ∈ 1Aγ6µ X. For all t ∈ [0, τ ], we may apply (4) to
ΠetAx0 since it is in 1Aγ6µ H0: ‖ΠetAx0‖2

0 6 D2
0e

2D1µ‖CΠetAx0‖2. First integrat-
ing on [0, τ ], then using (13) yields:

‖eTAx0‖2 6 D2
0e

2D1µ c2

τ c1

∫ τ

0

‖CetAx0‖2dt .

This “low modes fast observability for etA at exponential cost” is equivalent, by
the same duality as in lemma 1, to the controllability property: for all τ ∈ (0, 1]
and µ > 1, there is a bounded operator Sτ

µ : X → L2(0, τ ;U) such that, for all
ξ0 ∈ 1Aγ6µ X, the solution ξ ∈ C(R+, X) of (6) with input function u = Sτ

µξ0

satisfies 1Aγ6µ ξ(τ) = 0, and, ∃d3 > 0, ‖Sτ
µ‖ 6 d3

τc1/2 eD1µ (cost estimate).
Second step. The hypothesis on α implies that the γ′ of proposition 1 is lower
than 1. We introduce a dyadic scale of modes µk = 2k (k ∈ N) and a sequence of
time intervals τk = σδT/µδ

k where δ ∈ (0, γ′−1 − 1) and σδ = (2
∑

k∈N 2−kδ)−1 > 0,
so that the sequence of times defined recursively by T0 = 0 and Tk+1 = Tk + 2τk

converges to T . The strategy consists in steering the initial state ξ0 to 0, through
the sequence of states ξk = ξ(Tk) ∈ 1Aγ>µk−1 X composed of ever higher modes,
by applying recursively the input function uk = Sτk

µk
ξk to ξk during a time τk and

no input during a time τk. Introducing the notations

εk = ‖ξk‖, Ck = D2e
D1µk/τ

c1/2
k and ρk =

(
Ck+1εk+1

Ckεk

)2

,(14)

the cost estimate of the previous step writes ‖Sτk
µk
‖ 6 Ck and implies:

‖u‖2
L2(0,T ;U) =

∑
k∈N

‖uk‖2
L2(0,τk;U) 6

∑
k∈N

C2
kε2

k .(15)

Since τk 6 T 6 1, the estimate (10) between the times Tk and Tk + τk implies:
‖ξ(Tk + τk)‖2 6 2(1 + K1C

2
k)ε2

k. Since 1Aγ6µk
ξ(Tk + τk) = 0 and proposition 1

imply εk+1 6 e−rµ
1/γ′
k τk‖ξ(Tk + τk)‖, we deduce: ε2

k+1 6 2e−2rτkµ
1/γ′
k (1 + K1C

2
k)ε2

k.
Since Ck+1/Ck = 2δc1/2eD1µk , we deduce that, for any D3 > 4D1, there is a D4 > 0
such that:

ρk 6 21+δc1

(
e−2D1µk +

K1D
2
2

τ c1
k

)
e4D1µk−2rτkµ

1/γ′
k 6

D4

T c1
eD3µk−2rσδTµγ′−1−δ

k .(16)

Since γ′−1 − δ > 1, this implies: ∀ρ ∈ (0, 1), ∃N ∈ N, k > N ⇒ ρk 6 ρ. Therefore
limk εk = 0 and the last series in (15) converges. This completes the proof of the
controllability in theorem 1.
Third step. The controllability cost CT , formally defined after lemma 1, satisfies:

C2
T 6 C2

0

1 +
∑
l>1

∏
06k6l−1

ρk

 .(17)

Since l 6 µl,
∑

06k6l−1 µk 6 µl and
∑

06k6l−1 µγ′−1−δ
k > µγ′−1−δ

l−1 /2, (16) implies∏
06k6l−1 ρk 6 exp

(
(D3 + ln(D4/T c1))µl − rσδTµγ′−1−δ

l−1

)
. Hence, setting q =
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2γ′−1−δ and T ′ = rσδT/q:

∀l > 1,
∏

06k6l−1

ρk 6 exp
(
DT ′2l − T ′ql

)
with DT ′ ∼

T ′→0
c1 ln(1/T ′) .

As in [Mil05b], plugging this in (17) yields the cost estimate: ∀β > βq, ∃D6 > 0,

∃D7 > 0, C2
T 6 D6 exp

(
D7/T ′β

)
with βq =

(
ln q
ln 2 − 1

)−1

. Since T ′ is proportional

to T and βq decreases to
(
γ′−1 − 1

)−1 = (2 min {α, 1− α} /γ − 1)−1 as δ decreases
to 0, this proves the estimate in theorem 1 restated after lemma 1.

2. Interior controllability of structurally damped plates

This section concerns concrete applications of the abstract model studied in the
previous section. The main application is to the plate equation with square root
damping and interior control in Ω with hinged boundary conditions:

ζ̈ − ρ∆ζ̇ + ∆2ζ = χΩu on R+ ×M, ζ = ∆ζ = 0 on R+ × ∂M,

ζ(0) = ζ0 ∈ H2(M) ∩H1
0 (M), ζ̇(0) = ζ1 ∈ L2(M), u ∈ L2

loc(R+ ×M).
(18)

In this section, M is a smooth connected complete n-dimensional Riemannian man-
ifold with metric g and non-empty boundary ∂M , M denotes the interior and
M = M ∪ ∂M . Let ∆ denote the Dirichlet Laplacian on L2(M) with domain
D(∆) = H1

0 (M) ∩ H2(M) (thus ∆ denotes a negative differential operator with
variable coefficients depending on the metric g) . N.b. the results are already
interesting when (M, g) is a smooth domain of the Euclidean space Rd, so that
∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
. Let χΩ denote the multiplication by the characteristic func-

tion of an open subset Ω 6= ∅ of M .
For simplicity, in the following theorem proved in section 2.4, we assume that M

is compact. The second part of this theorem makes a geometric assumption on Ω
due to Bardos-Lebeau-Rauch based on generalized geodesics1. For this result and
whenever generalized geodesics are mentioned, we make the additional assumption
that they can be uniquely continued at the boundary ∂M (as in [BLR92], to ensure
this, we may assume either that ∂M has no contacts of infinite order with its
tangents, or that g and ∂M are real analytic).

Let LΩ denote the length of the longest generalized geodesic in M which does
not intersect Ω. For instance, we recall that LΩ < ∞ if Ω is a neigbourhood of the
boundary of a smooth domain M of Rd (in that case LΩ is the length of the longest
segment in M \ Ω) and that LΩ < 2D if Ω is a neighborhood of a hemisphere of
the boundary of a Euclidean ball M of diameter D.

Theorem 2. For all ρ > 0 and Ω 6= ∅, for all β > 1, there are C1 > 0 and C2 > 0
such that, for all T ∈ (0, 1], for all ζ0 and ζ1, there is an input function u such that
the solution ζ of (18) satisfies ζ(T ) = ζ̇(T ) = 0 and the cost estimate:∫ T

0

∫
M

|u|2dxdt 6 C2 exp
(
C1/T β

) ∫
M

|∆ζ0|2 + |ζ1|2dx .

For all ρ ∈ (0, 2) and L > LΩ, this result holds with this estimate improved by
replacing exp

(
C1/T β

)
with exp

(
CρL

2/T
)

where Cρ does not depend on Ω.

1In this context, the generalized geodesics are continuous trajectories t 7→ x(t) in M which
follow geodesic curves at unit speed in M (so that on these intervals t 7→ ẋ(t) is continuous); if

they hit ∂M transversely at time t0, then they reflect as light rays or billiard balls (and t 7→ ẋ(t)
is discontinuous at t0); if they hit ∂M tangentially then either there exists a geodesic in M which

continues t 7→ (x(t), ẋ(t)) continuously and they branch onto it, or there is no such geodesic curve
in M and then they glide at unit speed along the geodesic of ∂M which continues t 7→ (x(t), ẋ(t))
continuously until they may branch onto a geodesic in M .
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2.1. Application of theorem 1. Indeed, theorem 1 applies to structurally damped
plates with interior control in Ω more general than (18):

ζ̈ + ρ(−∆)2αζ̇ + ∆2ζ = χΩu on R+ ×M,

ζ(0) = ζ0 ∈ H2(M) ∩H1
0 (M), ζ̇(0) = ζ1 ∈ L2(M), u ∈ L2([0, T ]×M).

(19)

This is the abstract system (6) where the generator is A = −∆, the state and
input space is H0 = U = L2(M), and the control and observation operator is
B = C = χΩ. N.b. for square root damping (α = 1/2), X1 = H4 × H2 ={
(z0, z1) ∈ H4(M)×H2(M) | z1 = z0 = ∆z0 = 0 on ∂M

}
and the solution of (6)

satisfy the boundary conditions ζ = ∆ζ = 0 on R+ × ∂M in a generalized sense.
If M is not compact, assume that Ω is the exterior of a compact set K such

that K ∩ Ω ∩ ∂M = ∅ and that 0 /∈ σ(∆). In this setting, the observability of low
modes of (−∆)1/2 through C at exponential cost holds (cf. definition 1). When
M is compact this is an inequality on sums of eigenfunctions proved as theorem 3
in [LZ98] and theorem 14.6 in [JL99]. This was generalized to non compact M in
[Mil05c]. Applying theorem 1 with γ = 1/2 yields:

Corollary 1. For all ρ > 0 and α ∈ (1/4, 3/4), for all β > min {4α− 1, 3− 4α}−1,
there are C1 > 0 and C2 > 0 such that, for all T ∈ (0, 1], for all ζ0 and ζ1, there is
an input function u such that the solution ζ of (19) satisfies ζ(T ) = ζ̇(T ) = 0 and
the cost estimate: ‖u‖2

L2 6 C2 exp
(
C1/T β

) (
‖ζ0‖2

H2 + ‖ζ1‖2
L2

)
.

Remark 1. Note that proposition 2 proves controllability from Ω = M when
α ∈ [0, 1). It results from [AL03] that controllability does not hold in corollary 1
for α = 1. For α = 0, it can be proved by the transmutation control method
that the controllability for ρ = 0 (which holds if Ω satisfies the condition LΩ < ∞
of theorem 2) implies the controllability over the same time for ρ > 0. The case
α ∈ (0, 1/4] ∪ [3/4, 1) with Ω 6= M is still open.

Remark 2. More generally, theorem 1 applies to A = (−∆)1/(2γ) with γ ∈ (0, 1).
It does not apply to the wave equation which would correspond to γ = 1. The
wave equation with square root damping (α = 1/2) is just out of reach and seems
to us an interesting open problem (the appendix in [Mil05b] proves that it is not
controllable by a one dimensional input). It results from [ABFK04] that the wave
equation (γ = 1) with Kelvin-Voigt damping (α = 1) is not controllable from any
Ω 6= M . It results from [BLR92] that the damped wave equation (γ = 1, α = 0),
is controllable from Ω or not depending on whether the control time is greater or
lower than LΩ (defined before theorem 2).

2.2. Smoothing. The control transmutation method of section 2.4 applies to ini-
tial data smoother than in theorem 2. This drawback is easily overcome by a
general abstract remark, made here, concerning the null-controllability of analytic
semigroups: in the smoothness scale of Sobolev spaces defined by the generator, if
fast controllability holds for initial data in some space, then it holds for initial data
in any less smooth space; moreover the same statement holds for fast controllability
at exponential cost.

We recall the setting of section 1.1. A is the boundedly invertible generator of a
bounded analytic semigroup on the Hilbert space X. For any p > 0, let Xp denote
the Hilbert space D((−A)p) with the norm ‖x‖p = ‖(−A)px‖ (which is equivalent
to the graph norm) and let X−p be the completion of X with respect to the norm
‖x‖−p = ‖(−A)−px‖. There is a duality pairing on X such that X and A are their
own dual. For this duality pairing, X−p is the dual of Xp.

For any p ∈ R, the control operator B is said admissible in Xp and fast control-
lability is said to hold in Xp if B satisfies (9) and the property i of lemma 1 holds
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for all positive T , respectively, with X and its norm replaced by Xp and its norm.
In this case, the admissibility constant KT and the cost CT are denoted by Kp,T

and Cp,T .

Proposition 3. For all real numbers p and p′ such that p′ 6 p:
Admissibility in Xp implies admissibility in Xp′ . Conversely, if B ∈ L(U,Xp′)

and p′ > p− 1/2 then B is admissible in Xp.
Fast controllability in Xp implies fast controllability in Xp′ . Moreover, if there

are positive constants β, C1 and C2 such that Cp,T 6 C2 exp
(
C1/T β

)
, then for all

C ′
1 > C1 there is a positive constant C ′

2 such that Cp′,T 6 C ′
2 exp

(
C ′

1/T β
)
.

Proof. Since A−1 ∈ L(X), Xp ⊂ Xp′ continuously which proves the first statement.
Since etA is an analytic semigroup, it satisfies the smoothing property: ∀n > 0,

∀m ∈ R, Sn := supt>0‖tnAnetA‖L(Xm) < ∞.
By duality, Kp,T is also defined by: ∀x ∈ X−p′ ,

∫ T

0
‖CetAx‖2dt 6 Kp,T ‖x‖2

−p.
Therefore Kp,T 6 ‖C‖2

L(X−p′ ,U)S
2
p−p′

∫ T

0
t2(p

′−p)dt is finite for 2(p′ − p) > −1.
By duality, Cp,T is also defined by the observability inequality: ∀x ∈ X−p,

‖eTAx‖−p 6 Cp,T ‖CetA‖L2(0,T ;U). Therefore Cp′,2T 6 Sp−p′Cp,T /T p−p′ . �

2.3. Boundary controllability. This section concerns the following boundary
control version of the plate equation with square root damping (18):

ζ̈ − ρ∆ζ̇ + ∆2ζ = 0 on R+ ×M, ζ = 0 and ∆ζ = χΓu on R+ × ∂M,

ζ(0) = ζ0 ∈ H1
0 (M), ζ̇(0) = ζ1 ∈ H−1(M), u ∈ L2

loc(R+ ×M),
(20)

where χΓ denotes the restriction to the boundary followed by the multiplication
by the characteristic function of an open subset Γ 6= ∅ of ∂M . A key ingredient
of the control transmutation method of section 2.4 is the so-called “fundamental
controlled solution”for (18). It is constructed in corollary 2 of theorem 3 in this
section which applies [SAI00] to estimate the cost of fast boundary controls for (20)
when M is a (Euclidean) segment.

We first adapt the abstract duality framework of section 1.1 to this bound-
ary control system. Here A = −∆, H0 = L2(M), U = L2(Γ) and α = 1/2.
It is convenient to use the state space X = H1 × H−1 with the duality pairing
〈(ζ0, ζ1), (z0, z1)〉 = 〈ζ1, z0〉0 + 〈ζ0, z1〉0 +ρ〈Aαζ0, A

αz0〉0. With respect to this pair-
ing, X and A are their own dual, X−1 = H−1 ×H−3 is the dual of X1 = H3 ×H1.
Multiplying by ζ(T − t) the dual homogeneous equation:

z̈ − ρ∆ż + ∆2z = 0 on R+ ×M, z = ∆z = 0 on R+ × ∂M,(21)

and integrating by parts on (0, T )×M , yields that the control operator B (arising
when rewriting the second-order system (20) as the first-order system (6) on ξ(t) =
(ζ(t), ζ̇(t))) is the dual (with respect to the new pairing) of the Neumann observation
operator C ∈ L(X1, U) defined by C(z0, z1) = χΓ∂νz0, where ∂ν is a vector field
normal to ∂M . As in the proof of proposition 3, the admissibility of B results from
the analyticity of etA and C ∈ L(Xp;U) with p ∈ (1/4, 1/2). (N.b. C ∈ L(Xp, U)
for p > 1/4 since Xp = H2p+1 ×H2p−1 and χ∂M∂ν ∈ L(Hs;U) for s > 3/2.)

Theorem 3. For all ρ ∈ (0, 2), there are C1 > 0 and C2 > 0 such that, for all
L > 0 and T ∈ ]0, inf(π/2, L)2], for all ζ0 and ζ1, there is an input function u such
that the solution ζ of (20) with M = (−L,L) and Γ = {L} satisfies ζ(T ) = ζ̇(T ) = 0
and the cost estimate:

∫ T

0
‖u‖2

L2dt 6 C2 exp
(
C1L

2/T
) (
‖ζ0‖2

H1 + ‖ζ1‖2
H−1

)
.

Proof. By the duality lemma 1, it is enough to prove that the solution of (21) for
any initial data z(0) ∈ H1

0 (−L,L) and ż(0) ∈ H−1(−L,L) satisfies the observation
inequality: ‖z(T )‖2

H1 + ‖ż(T )‖2
H−1 6 C2 exp (C1/T )

∫ T

0
|∂sz(t, L)|2ds. The scaling
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(t, x) 7→ (σ2t, σx) reduces the problem to the case L = π. Using the explicit
eigenvalues and eigenfunctions of ∆ on M = (−π, π), this inequality becomes a
“window problem” for series of complex exponentials which is almost the one-
dimensional setting of “vibrational control with structural damping” considered in
section 6 of [SAI00], indeed simpler because more explicit. Therefore theorem 1 of
[SAI00] applies and completes the proof of theorem 3. �

Corollary 2. For all ρ ∈ (0, 2) there are positive constants Cρ and C ′
ρ such

that, ∀L > 0, ∀T ∈ (0, 1], there is a “fundamental controlled solution” k in
C0([0, T ];H−1(]− L, L[)) ∩ C1([0, T ];H−3(]− L,L[)) satisfying:

∂2
t k − ρ∂2

s∂tk + ∂4
sk = 0 in D′(]0, T [×]− L,L[) ,

ket=0 = δ, ∂tket=0 = δ′ and ket=T = ∂tket=T = 0 ,∫ T

0

‖k(t, ·)‖2
H−1(]−L,L[) + ‖∂tk(t, ·)‖2

H−3(]−L,L[)dt 6 C ′
ρe

CρL2/T .

Proof. The fast controllability in X = H1
0 (−L,L) × H−1(−L,L) stated in theo-

rem 3 implies, by proposition 3, the fast controllability in X−1 = H−1(−L,L) ×
H−3(−L, L) with the same form of cost estimate. Since the Dirac mass at the origin
δ is in Hs(R) for all s < −1/2, we may consider the controlled solution k obtained
by applying this result to the initial data (k, ∂tk)et=0 = (δ, δ′) ∈ X−1. The cost
estimate and (11) on X−1 imply the estimate in corollary 2. �

Although not needed in the proof of theorem 2, we state another corollary of
theorem 3 for its own sake. It is based on the following idea: the controllability
cost of a system is not increased by taking its tensor product with a contraction
semigroup (it was proved in [Mil05a] that the controllability cost of a system is not
changed by taking its tensor product with a unitary group). It applies in particular
when M is a rectangle or an infinite strip in the plane controlled from one side (this
controllability problem in a rectangle with other boundary conditions was solved in
[Han91] without the cost estimate, which was added later at the end of [SAI00]).
N.b. in this example, the condition LΓ < ∞ of [BLR92] required in theorem 2 is
not satisfied.

Corollary 3. Let M̃ denote another smooth complete Riemannian manifold. For
all ρ ∈ (0, 2), there are C1 > 0 and C2 > 0 such that, for all L > 0 and T ∈ (0, 1]
for all ζ0 and ζ1, there is an input function u such that the solution ζ of (20) with
M = (−L,L) × M̃ and Γ = {L} × ∂M̃ satisfies ζ(T ) = ζ̇(T ) = 0 and the cost
estimate:

∫ T

0
‖u‖2

L2dt 6 C2 exp
(
C1L

2/T
) (
‖ζ0‖2

H1 + ‖ζ1‖2
H−1

)
.

Proof. Let (s, y) denote the variable on M = (−L,L)× M̃ . Denoting respectively
by ∆s and ∆y the Dirichlet-Laplacians on the segment (−L,L) and on M̃ , we have
∆ = ∆s +∆y. Since ∆ is boundedly invertible, (20) may also be restated as a first-
order system on X = H−1(M)×H−1(M) by setting ξ(t) = (∆ζ(t), ζ̇(t)). Then the
semigroup generator A of the dual homogeneous system (7) becomes

A = ∆R with R =
(

0 1
−1 −ρ

)
, and etA = et∆sRet∆yR = et∆yRet∆sR .

The observation operator Cs defined by Csx = χΓ∂νz = ∂szes=L commutes with
et∆yR. We shall estimate the cost by the duality in lemma 1. Fix the initial state
x0 ∈ X and T > 0. Applying to s 7→ (eT∆yRx0)(s, y) for fixed y the observability
inequality corresponding to theorem 3 yields, with C ′

T := C2 exp
(
C1L

2/T
)
:∫ L

0

|eT∆sReT∆yRx0|2ds 6 C ′
T

∫ T

0

∫ L

0

|Cse
t∆sReT∆yRx0|2ds dt .
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Integrating this inequality over M̃ yields (the first and last step use Fubini’s theorem
and the commutation of operators acting separately on s and y, the second step
uses that et∆yR is a contraction):∫∫

M

|eTAx0|2ds dy 6 C ′
T

∫ T

0

∫ L

0

∫
M̃

|eT∆yRCse
t∆sRx0|2dy ds dt

6 C ′
T

∫ T

0

∫ L

0

∫
M̃

|et∆yRCse
t∆sRx0|2dy ds dt = C ′

T

∫ T

0

∫∫
M

|Cse
tAx0|2ds dy dt .

This is the observability inequality corresponding to corollary 3. �

2.4. Proof of theorem 2. The first part of theorem 2 is corollary 1 for α = 1/2.
We shall now prove the second part of theorem 2 by the transmutation control
method (cf. [Mil04, Mil05a]). According to proposition 3, it is sufficient to consider
initial data in the space X2 = H6 × H4 which is smoother than the energy space
claimed in theorem 2.

It results from the work of Bardos-Lebeau-Rauch that (n.b. the control time
and the time variable are denoted by L and s here):

Theorem 4 ([BLR88, BLR92]). Let L > LΩ. For all (w0, w1) and (w2, w3) in
H4(M) ∩H1

0 (M)×H3(M) ∩H1
0 (M) there is an input function v ∈ H3(]0, L[×M)

supported in ]0, L[×Ω such that the solution w ∈ ∩n∈NCn([0, L];H4−n(M)) of:

∂2
sw −∆w = v in ]0, L[×M, w = 0 on ]0, L[×∂M,

with Cauchy data (w, ∂sw) = (w0, w1) at s = 0, satisfies (w, ∂sw) = (w2, w3)
at s = L. Moreover, the operator SW defined by SW ((w0, w1), (w2, w3)) = v is
continuous in the corresponding norms.

Let T ∈ (0, 1] and L > LΩ be fixed from now on.
Let (ζ0, ζ1) ∈ X2 = H6 ×H4 be an initial data for the plate equation (18). Let

v± and w± be the input function and solution for the wave equation obtained from
theorem 4 with w0 = ζ0, w1 = ±ζ1 and w2 = w3 = 0. Let w(±s, ·) = w±(s, ·)
and v(±s, ·) = v±(s, ·) for s ∈ [0, L]. We define w ∈ ∩n∈NCn(R;H4−n(M)) and
v ∈ H3(R ×M) as the extensions of w and v by zero outside [−L,L] ×M . They
inherit from w± and v± the properties:

∂2
sw −∆w = v in D′(R×M), w = 0 on R× ∂M,(22)

(w, ∂sw)es=0 = (ζ0, ζ1) and (w, ∂sw)es=±L = (0, 0) .

Let k, Cρ and C ′
ρ be the fundamental controlled solution and corresponding

constants given by corollary 2. We define k as the extension of k by zero outside
]0, T [×]− L, L[. It inherits from k the following properties:

∂2
t k − ρ∂2

s∂tk + ∂4
sk = 0 in D′(]0, T [×]− L,L[) ,(23)

ket=0 = δ, ∂tket=0 = δ′ and ket=T = ∂tket=T = 0 ,∫ T

0

‖k(t, ·)‖2
H−1(R) + ‖∂tk(t, ·)‖2

H−3(R)dt 6 C ′
ρe

CρL2/T .(24)

The principle of the control transmutation method is to use k as a kernel to
transmute w and v into a solution ζ and an input function u for (18). Since
k ∈ C0(R+;H−1(R))∩C1(R+;H−3(R)), w ∈ H1(R;H3(M))∩H3(R;H1(M)) and
v ∈ H1(R;H2(M)) ∩H3(R;L2(M)), the transmutation formulas

ζ(t, x) =
∫

R
k(t, s)w(s, x) ds

u(t, x) =
∫

R
ρ∂tk(t, s)v(s, x) + k(t, s)

(
∂2

s + ∆
)
v(s, x) ds ,
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define functions ζ ∈ C0(R+;H3(M)) ∩ C1(R+;H1(M)) and u ∈ L2(R+ × M).
This ζ satisfies the required initial conditions: ket=0 = δ and wes=0 = ζ0 imply
ζet=0 = ζ0; ∂tket=0 = ∂sδ and ∂swes=0 = ζ1 imply ∂tζet=0 = ζ1 by integrating by
parts. This ζ satisfies the required final conditions: ket=T = ∂tket=T = 0 implies
ζet=T = ∂tζet=T = 0. This ζ satisfies the required boundary conditions: we∂M = 0
implies ζe∂M = 0 and ∆we∂M = ∂2

swe∂M = 0 implies ∆ζe∂M = 0. The input u is
supported in [0, T ]× Ω since k is supported in [0, T ]× (−L,L) and v is supported
in (−L,L) × Ω. These ζ and u satisfy the plate equation (18): using (22) in the
second step, integration by parts in the third, and (23) in the fourth,

ζ̈ − ρ∆ζ̇ + ∆2ζ =
∫

∂2
t kw − ρ∂tk∆w + k∆2w

=
∫

∂2
t kw − ρ∂tk(∂2

sw − v) + k
(
∂2

s (∂2
sw − v)−∆v

)
=

∫
(∂2

t k − ρ∂2
s∂tk + ∂4

sk)w +
(
ρ∂tk + k(∂2

s + ∆)
)
v = u = χΩu

The cost estimate: ‖u‖2
L2(R×M) 6 C2 exp

(
CρL

2/T
) (
‖ζ0‖2

H6 + ‖ζ1‖2
H4

)
results from

‖u‖L2(R×M) 6 ρ‖∂tk‖L2(R;H−3(R))‖v‖H3(R;L2(M)) + ‖k‖L2(R;H−1(R))‖v‖H1(R;H2(M)),

(24) and ‖v‖2
H3(R×M) 6 2‖SW ‖2(‖ζ0‖2

H4(M) + ‖ζ1‖2
H3(M)).
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91128 Palaiseau, France.

E-mail address: miller@math.polytechnique.fr


