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We report experimental results on the evolution of a laminar liquid jet injected with negatively
buoyant condition in a miscible surrounding liquid. Since molecular diffusion is negligible, the only
significant miscible effect is the absence of any surface tension. After an initial intrusion phase, the
jet reaches a steady-state characterized by a constant penetration depth. A simple theoretical model
is derived which successfully predicts the transient phase as well as the subsequent steady state in
terms of stationary penetration depth and jet’s profile. All the experimental points collapse on a
master curve involving two dimensionless numbers: the densimetric Froude number Fr andS, a
number comparing viscous friction to buoyancy. Finally, this curve obtained for laminar flows is
compared to classical results on turbulent fountains. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1907735g

I. INTRODUCTION

A buoyant jet refers to the general situation of a fluid
locally injected into another one.1 The case of a downward
flow in a lighter fluid, or of an upward flow in a denser fluid,
is called a positively buoyant jet since inertia of the flow and
buoyancy act together in the same direction. Inversely, a
negatively buoyant jet corresponds to the reverse case where
buoyancy is opposed to the injection flow. This arises in
numerous industrial processes or natural flows such as refu-
eling compensated fuel tanks on naval vessels,2,3 waste dis-
posal systems, ventilation of large buildings,4 or motion of
plumes and clouds in the atmosphere.5

In most of these situations, the Reynolds number is quite
large and the flow becomes turbulent very close to the injec-
tion source. Such turbulent jets, or turbulent fountains, have
been extensively studied. Their general behavior is indepen-
dent of the Reynolds number Re and solely depends on the
Richardson number Ri which compares inertia to buoyancy.
Ri can be defined as Ri=g*D /V2 where g* =gDr /r is the
reduced gravity between the jet and the ambient liquid,D the
orifice diameter, andV the mean velocity of injection. Some
authors also define this quantity as a densimetric Froude
number constructed onD and equal to Ri−1/2. In the follow-
ing, this terminology will be reserved for the use of a densi-
metric Froude number built not on the orifice sizeD but on
the maximal penetration depthH. One of the main experi-
mental results, first obtained by Turner, deals exactly with
this penetration depthH of a turbulent jet and predicts a
power law dependence with Ri:H /D~Ri−1/2 for heavy salt
jets in pure water.4,5 This result is consistent with dimen-
sional analysis assuming that momentum and buoyancy
fluxes are the only relevant parameters in this problem.4–6

Many other results in close situations, such as a denser liquid
jet in pure water,1,3,7–10 a liquid jet impinging on an
interface,2,3 or a turbulent heated air in ambient air,11 suggest

a similar power law relation. According to Friedman and
Katz,2,3 the exponent of the power law is<−1/2 when Ri
,0.1, but seems close to −1 for larger values of Ri.

To our knowledge, only a few studies have been dedi-
cated to the case of laminar jets. In the particular situation of
the impingement of an immiscible interface with a vertical
jet, Friedman and Katz2,3 obtained a power lawH /D
~Ri−1/3. For a numerical model of weak laminar fountains
with Reynolds numbers ranging from 800 down to 5, Lin and
Armfield9,10 found for Ri the same power law as in the tur-
bulent case but with an extra dependence on Re:H /D
~Re−1/2Ri−1/2. Nevertheless, both studies correspond to very
small penetration depthsH /D,2d due to rather large values
of Dr /r in comparison to the ones used in our experiments.
Moreover, in the situation investigated by Lin and Armfield,
the difference of density comes from the difference of tem-
perature between the injected fluid and the ambient fluid.
This leads to thermal diffusion and, thus,H also depends on
the Prandtl number PrsPr=n /kT with kT the thermal diffu-
sivityd. Contrariwise, thermal as well as molecular diffusions
are negligible in our study. This means that the only signifi-
cant miscible effect is the absence of surface tension at the
interface between the outer and the inner liquids. Finally, we
can also mention the work of Clanet12 on pulsating fountains
of water in air. But in this last case the surface tension leads
to a very specific behavior and, here again, any comparison
seems rather difficult.

In this paper, we present an experimental study of a liq-
uid jet injected in a miscible surrounding liquid. The outer
liquid is slightly denser than the inner one and in all the
experiments the flow regime is laminar, except for a few
experiments presented in the last section. The paper is orga-
nized as follows. After a description of the setup in Sec. II
and of the experimental observations in Sec. III, a simple
theoretical model is proposed in Sec. IV and provides a com-
plete analytical solution. The dynamics of the head of the jet
during the initial penetration phase is studied in Sec. V
whereas Sec. VI is devoted to the subsequent steady-state
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regime with a particular focus on the shape and the maximal
penetration depth of the jet. Finally, in Sec. VII, a general
collapse is obtained in terms of dimensionless numbers and,
a comparison with the case of turbulent fountains is pre-
sented.

II. EXPERIMENTAL SETUP

The experiments are performed as follows: a liquid of
densityr is injected downwards, at a constant volume flow
rateQ, from a nozzle into a tank containing a miscible liquid
of densityr+Dr with Dr.0. The injection is carried out by
a syringe pump or by a siphon from a large storage tank. The
flow rateQ was varied in a large range from<0.002 cm3/s
to about 20 cm3/s. A picture of a typical experiment is pre-
sented in Fig. 1. The inner diameterD of the nozzle was also
varied from 0.254 mm up to 4.83 mm; more precisely we
have used seven different diameters:D=0.254 mm,
0.407 mm, 0.508 mm, 0.838 mm, 1.372 mm, 1.75 mm, and
4.83 mm. From the small values of the Reynolds number
sRe=Q/nD,100 see Sec. VIId and the quite large lengthL
of the nozzlesL=20 mm, 30 mm, and 65 mmd, we can de-
duce that the flow inside the nozzle is a fully developed
Poiseuille flow13 sstrictly speaking, in all the cases, the entry
length is smaller than the nozzle lengthLd. In each experi-
ment, we used two liquids with a small difference of density
and of kinematic viscosityn. But, as detailed later, the re-
sultant buoyancy is proportional toDr whereas the viscous
dissipation does not depend on the difference of viscosity but
only on the absolute value ofn in each liquid. So, since the
difference of viscosity between the two liquids is very small,
we can consider thatn is almost uniform in the whole tank.
Three different liquids have been used: pure water with ki-

nematic viscosity n0=10−2 cm2/s at 25 °C and two
glycerin–water mixtures for which we measured a viscosity
ratio n /n0, respectively, equal to 2.0 and 3.7. In nearly all the
experiments, the difference of density was obtained by add-
ing a little amount of commercial ethanolspurity 95%d in the
liquid of the jet except in two experiments where we used
salt water in the tank and pure water in the jet. Since the
latter situation yields identical results, the only relevant pa-
rameters characterizing the differences of properties between
the two liquids areDr /r andn sexcluding any other param-
eter as the surface tension, for instanced. All experiments are
performed in the range 4310−4øDr /rø3310−2. The dis-
tance from the bottom of the nozzle to the free surface was
kept nearly constant to about 1 cm even if it does not seem
to have a significant influence on the jet. Finally, a few
amount of dyesmethylene blued added to the injected liquid
allows the visualization of the jet which is recorded either on
a charge-coupled device camera at 25 images/sec or on a
high-speed video camerasFastCam Super 10k from Photrond
up to 250 frames/sec. Note that the presence of dye is taken
into account in Dr /r. Several high-resolution pictures
s425632848das the one presented in Fig. 1 were also used
to evaluate the radial enlargement of the jet with depth.

A few experiments have also been carried out to evaluate
the velocity profile in the flow by particle image velocimetry
sPIVd with the high-speed camera: both liquids are seeded
with some tracerssplastic spheres of radiusdp<60 mm and
densityrp=1.03 g cm−3d and the tank is locally illuminated
by a thin vertical laser sheet which is orientated perpendicu-
larly to the camera and intercepts the jet axis. The light sheet
thickness is about 0.1 mm. The verticality of the light sheet
is easily obtained and the jet is precisely centered inside the
sheet by a micrometric stage. However, as the light sheet
thickness is not negligible compared to the quite small diam-
eters of the jets, we can only access to mean velocity profiles
averaged on the illuminated region. The images are recorded
sat 250 frames/sec with a resolution of 5403480d and pro-
cessed by the softwareDAVIS 6.2 with algorithms from Lavi-
sion. An example of a velocity profile obtained by this pro-
cedure is presented in the inset of Fig. 1.

III. OBSERVATIONS

The liquid jet penetrates in the tank and progressively
slows down due to the opposing buoyancy force and to the
viscous dissipation in the whole flow. During this transient
phase of penetration, the jet remains thin and exhibits a large
head. This head consists of a toric lobe structure which re-
sults from the viscous friction of the outer liquid initially
motionlessssee the insets within Fig. 2d. Note that this shape
is similar to thermal rising plumes as, for instance, the ones
induced by local heating in a silicon oil14 or in mantel con-
vective flows.15 After few seconds, the jet finally stabilizes
and reaches a steady state with a constant penetration depth.
When reaching the end of the jet, the liquid is radially ex-
pelled and then starts to slowly rise back to the top of the
tank. In some experiments, the initial penetration phase was
recorded with the fast-camera up to 250 frames per second.
Then a space-time diagram of the vertical central line of the

FIG. 1. Typical example of a steady jet: a liquid is injected downwards from
a nozzle in a tank containing a slightly denser miscible liquid and reaches a
stationary penetration depthHs after a few seconds. Inset: example of a
velocity profile obtained by PIV measurement at mid-height in the jet. The
vertical dotted lines show approximately the boundary between the central
jet of lighter liquid sdiameterDd and its radial boundary layer. An approxi-
mate fit is also presentedssee later for detailsd.



jet can be plotted. A typical example is shown in Fig. 2. We
can accurately observe the transient regime of penetration,
up to the maximal depthHm, followed by the final steady
state. We can notice that the stationary depth of penetration
Hs is slightly smaller thanHm. This effect will be discussed
later.

Some PIV measurements have been performed in the
steady regime. A typical velocity profile is displayed on the
inset of Fig. 1. The width of the profile is larger than the
diameter of the jet and the profile exhibits a bell-shape in the
central part of the jet with a large radial boundary layer out-
side. From the injection nozzle to the extremity of the jet,
both the boundary layer and the central jet of the inner liquid
progressively widen as can be seen in Fig. 1.

The control parameters are the injection flow rateQ, the
internal diameterD of the nozzle, the relative difference of
density between outer and inner liquidDr /r, and the kine-
matic viscosity of both liquidsn. Qualitatively, when the
three other parameters are fixed, an increase of each ofD,
Dr /r or n induces a decrease of the final penetration depth,

whereas an increase ofQ obviously produces the opposite
effect.

As the density difference is produced by either ethanol
or salt, the role of the molecular diffusion in the jet’s flow
studied here must be clarified. Three different length scales
must be introduced to analyze this flowssee the sketch in
Fig. 3d. First,D is the width of the jet at a given depthz and
corresponds to the width of the flow of the lighter liquid
injected from the nozzle.D progressively widens with depth
due to the mass conservation of the injected liquid and to the
slowing down of the flow. This slowing down is caused by
viscous damping and by the buoyancy force resulting from
the small difference of density between the two liquids. So
the widening ofD is a purely hydrodynamic effect. The two
other length scales are associated to momentum and molecu-
lar diffusion.dn measures the length of the viscous boundary
layer from the interface of the lighter liquid jet whereasdm is
the length of the mixing layer at the interface between the
injected liquid and the outer liquid caused by molecular dif-
fusion of ethanol towards the outer liquid.

To know whether the molecular diffusion can be ne-
glected or not,dm must be compared toD. This can be sim-
ply done in two steps. First, the comparison betweendm and
dn gives directly,

dm

dn

,Îkm

n
, Sc

−1/2,

where km is the molecular diffusivity andSc=n /km is the
Schmidt number.13 The tabulated values for the molecular
diffusivity of ethanol and salt are, respectively, at 25 °C:
km<1.3310−5 cm2/s and km<1.5310−5 cm2/s. Conse-
quently, the ratiodm/dn is about 10−2. Then we can now
comparedn with D by means of the PIV measurements.dn is
estimated on the velocity profile andD is measured using the
contrast of luminosity induced by the dye. Clearly,dn is the
same order of magnitude thanD ssee the insets of Figs. 1 and
4d. So, sincedm/dn,10−2 and dn,D, we can finally con-
clude thatdm is much smaller thanD and consequently the
molecular diffusion of ethanol at the interface between the
injected liquid and the outer liquid can be neglected. The
same conclusion holds for salt diffusion since the molecular
diffusivity of salt is nearly the same than the one of ethanol,
anda fortiori for dye diffusion since the molecular diffusiv-

FIG. 2. Typical space-time diagram of the vertical central line of a jet. The
jet progressively slows down until it reaches, within a few seconds, a sta-
tionary regime with a constant penetration depth. Here,Q=0.127 cm3/s,
D=0.1372 cm,Dr /r=4.5310−3, andn=n0. Insets: pictures of the jet dur-
ing its transient penetration phase att=0.5 s, 1 s, 2 s, and 4 s.

FIG. 3. Sketch of the flow at a given depthz: vertical
velocity profile sblack curved and density profilesgray
curved with the three length scales involved in the flow
D, dn, anddm.



ity of methylene blue is one order of magnitude smaller than
the one of ethanolskm<1.7310−6 cm2/sd: this means in
particular that the dye accurately tracks the lighter liquid and
can be used to visualize the frontier between the jet and the
viscous boundary layer.

To conclude with the role of molecular diffusion, it is
important to underline that, generally speaking, a jet flow in
a miscible fluid depends on the Schmidt number. But here,
the flow corresponds to the limit of infinite Schmidt number
where molecular diffusion is negligible. Another way to say
it is that the flow has no significant miscible effect except at
the interface between the outer and the inner liquids where
there is no surface tension.

IV. THEORETICAL MODEL

A. Description of the model

Using the generalized theorem of Bernoulli, a simple
theoretical model can be proposed to understand the penetra-
tion phase of the jet and the dependence of its stationary
penetration depth and profile with the different control pa-
rameters:Q, D, Dr /r, andn. Following the preceding dis-
cussion on diffusion, all diffusive processes are neglected in
the model. Denoting the distance from a horizontal cross
section of the jet to the exit of the nozzle asz, the difference
of energyDE betweenz and z=0 is related to the viscous
dissipation rateWnszd by

dsDEd
dt

= Wnszd. s1d

Seeing that the radial length scaleD is negligible com-
pared with the vertical length scaleH, only the vertical ve-
locity profile vsr ,zd will be considered in the following. We
can also reasonably assume that the pressure inside the jet is
equal to the hydrostatic pressure in the tank. Then the left-
hand side of Eq.s1d reads

dsDEd
dt

=E
0

` 1

2
rfv3sr,0d − v3sr,zdg2pr dr − QDrgz.

Since the viscosity is almost the same inside and outside
the jet, the dissipation rateWnszd is reduced to

Wnszd =E
0

zE
0

`

hS ]v
]r
D2

2pr dr dz.

To go further, we use two practical assumptions. The
first one concerns the velocity profile in the jet. This profile
is not extensively known and only few PIV measurements
have been realized. Moreover, a complete resolution of the
Navier–Stokes equation seems quite complex. Nevertheless,
as suggested by the bidimensional case,13 we can reasonably
assume the following separation of variables:

vsr,zd = VszdCfr/sszdg. sH1d

Here Vszd is the maximal velocity in the jet andC corre-
sponds to the radial dependency of the profile withCs0d
=1. sszd is a scaling factor which accounts for the flow en-
largement with depth. Sosszd is the characteristic width of
the whole flow, including the jet and its viscous boundary
layer.

A direct relationship between this characteristic viscous
layer sszd and the jet widthDszd would also be useful. The
growth of the viscous boundary layer from the nozzle is pro-
portional toÎnt wheret is the transit time to reach a given
depth z. So, sszd−Dszd /2~Întszd with t given by t
,e0

zdz8 /vfr =Dsz8d /2 ,z8g. Then, we can obtain the follow-
ing implicit expression for the ratioDszd /2sszd=lszd:

fl−1szd − 1g2 ~
n

D2szdE0

z dz8

Vsz8dCflsz8dg
.

This implicit equation is strongly nonlinear and cannot be
solved easily. Nevertheless, another way to extract a direct
relationship betweensszd andDszd is to use the PIV experi-
ments. The procedure has already been discussed in the pre-
ceding section:D is measured using the contrast of luminos-
ity induced by the dye andsszd is estimated on the velocity
profile. The results are presented in Fig. 4fnote that the
criterion used to definesszd at a given depthz is vss ,zd
,vs0,zd /10g. What we observe is that, far enough from the
nozzle, l is roughly constant which suggests that, in first
approximation, there is a simple proportionality relation be-
tweensszd andDszd. And so, this will be the second hypoth-
esis of the model,

sszd =
1

l

Dszd
2

, sH2d

wherel is a constant strictly smaller than 1.
A reason for this result might come from the aspect ratio

of the flow: the jet is indeed quite long compared to its
diameter. So, from the exit of the nozzle, the flow is very
likely to quickly reach an asymptotic state which simply
gives rise to this proportionality relationship. This influence

FIG. 4. Measurements along the flow of the radius of the jetj=D /2 sPd and
of the radius of the whole flows shd obtained forQ<0.16 cm3/s, D
=0.175 cm,Dr /r=4.7310−3, andn=n0. The criterion used to estimates is
vss ,zd /vs0,zd,0.1. Inset: ratios /j as a function of the depthz snote that
l,j /s with l defined in the textd.



of the aspect ratio may also explain why our results are quite
different from the previous work on negatively buoyant
fountains.2,3,9,10

From hypothesissH1d, the injection flow rateQ can be
expressed as

Q = Vszds2szdE
0

lszd

Csud2pu du.

Furthermore, using also hypothesissH2d gives the fol-
lowing relation:

gQ = VszdD2szd, s2d

whereg is a constant equal to

g = 4l2YE
0

l

Csud2pu du. s3d

Then, with help of Eqs.sH1d, sH2d, ands2d, Bernoulli
theorem expressed in Eq.s1d becomes

QH1

2
rafV2s0d − V2szdg − DrgzJ = bhE

0

z

V2szddz, s4d

with two coefficients,a and b, which depend only on the
velocity profile. They can be directly expressed as

a =E
0

`

C3sudu duYE
0

l

Csudu du, s5d

b = 2pE
0

`

fC8sudg2u du. s6d

Then, after derivation and integration of Eq.s4d over z,
the expression ofVszd is easily obtained. From here, the
following nonlinear partial differential equation is derived
for the penetration depthH by imposing the conditionVsz
=Hd=dH/dt at the head of the jet,

dH

dt
= Vs0dÎS1 +

g*Q

nbV2s0dDe−s2bn/aQdH −
g*Q

nbV2s0d
, s7d

where g* =sDr /rdg is the reduced gravity andn=h /r the
kinematic viscosity in the whole liquid.Vs0d is the maximal
velocity of the jet at the exit of the nozzle and, from hypoth-
esissH2d, it is directly proportional to the flow rateQ since
Dsz=0d=D:

Vs0d = gQ/D2. s8d

Using the change of variablesy=e−s2bn/aQdH, Eq. s7d can
be solved analytically and gives the following expression for
the transient penetration phase of the jet:

Hstd = Hm − a
Q

n
ln31 + tan21 t − tm

2ag
D2

n
Îb

nQ

g*D424 . s9d

Equations9d is valid for t, tm and, for t. tm, H=Hm where
Hm is the maximal penetration depth of the jet and can be
written as

Hm = a
Q

n
lnS1 + b

nQ

g*D4D . s10d

tm corresponds to the transient time needed to achieve this
maximal depth and reads

tm = 2ag
D2

n
Îb

nQ

g*D4 arctanSÎb
nQ

g*D4D . s11d

Finally, the three following parametersa=a /2b, b
=bg2, andg are introduced in the model and all of them can
be expressed from the exact shapeCsud of the velocity pro-
file.

B. Parameters of the model

So, the parametersa, b, andg of the model only depend
on the exact shape of the velocity profile. From Eq.s8d we
can infer thatg.4/p, which is the lower limit correspond-
ing to a plug flow in the jet while a purely Poiseuille flow
would give g=8/p. From the velocity profile shown in the
inset of Fig. 1, we can note that the velocity of the flow at the
frontier between the jet and its boundary layer is close to the
maximal valueVszd. This means that the shape of the profile
might be closer to a plug flow than to a Poiseuille flow and
that g must be only slightly larger than 4/p<1.27.

As an example, a further estimation of parametersa, b,
and g can be extracted from the velocity profile of Fig. 1.
Using Eq. s6d, we can directly evaluateb and obtainb
<3.0. Note that the profile can be satisfactory fitted by a
Gaussian law or by a hyperbolic function inspired by the
classical result of laminar bidimensional jet.13 This latter fit
is presented in Fig. 1 and corresponds toCsud
=1/fcoshsudg2. Using these two fitting functions, the analyti-
cal calculus of Eq.s6d givesb=p for the Gaussian law and
b<0.87p<2.73 for the hyperbolic function. These values
are in good agreement with the direct evaluation. As already
presented in Fig. 4, it is also possible to correctly estimate
the proportionality constantl between the width of the flow
and the diameter of the jet defined by Eq.sH2d. Then, from
Eqs. s5d and s3d, we obtain values ofa and g in the range
a,1.1–1.4 andg,1.4–1.8 which is, as mentioned before,
a very reasonable value.

Finally, we can rather accurately fix the order of magni-
tude of the parameters:

a , 0.2, b , 7, g , 1.6.

V. TRANSIENT PENETRATION

As already mentioned, the inverse buoyancy force and
the viscous drag make the velocity of the liquid jet decrease
while penetrating in the outer liquid. We have performed few
sets of measurements in this transient regime for different
experimental conditions. The temporal evolutionHstd of the
depth is obtained from space-time diagrams such as the one
shown in Fig. 2. These have been compared to the theoretical
expression of Eq.s9d for the transient dynamics of penetra-
tion Hstd. An example of comparison between the model and
the experiments is presented in Fig. 5. Here we have used
only one free parameter, namely,b: indeed, from the experi-



mental measurements of both the maximal penetrationHm

and the transient timetm, Eqs.s10d and s11d give directlya
andg as functions ofb. In this way, we have obtained values
of a, b, andg exactly in the range previously proposed. The
agreement between the theory and the measurements is very
good confirming the relevance of the assumptions made in
the model, especially the two hypothesessH1d and sH2d.

VI. STEADY-STATE REGIME

A. Theoretical predictions

After the transient penetration of the jet, a steady state is
reached where the penetration depth remains constant. As
previously mentioned, this stationary depthHs is slightly
smaller thanHm, the maximal penetration depth of the jet at
the end of its transient phasessee Fig. 2d. This effect can be
understood as follows: in the steady state, the liquid reaching
the extremity of the jet is radially expelled and then starts
rising back to the surface This slow backflow is governed by
the negative buoyancy and slightly modifies the velocity pro-
file of the boundary layer. So the viscous dissipation is ex-
pected to increase and thus the penetration depth to slightly
decrease. We have also observed that the larger the differ-
ence of density, the larger the gap betweenHm andHs, which
confirms this explanation. In the model, this effect could be
taken into account by a small change of the parametersa and
b in Eq. s10d: b increases buta decreases so thatHs is
slightly smaller thanHm.

Then the following nondimensional expression forHs is
obtained from Eq.s10d:

Hs

l0
= aSlns1 + bSd, s12d

where we have introduced a nondimensional parameter

S=
nQ

g*D4 =
Q

Q0
. s13d

Note that this expression defines a characteristic flow
rate, Q0=g*D4/n, and a characteristic length directly built
with Q0: l0=Q0/n.

The model gives a full prediction of the jet depth during
the transient phase up to the final valueHs but it can also
predict the shape of the jet in the steady-state regime. Indeed,
from Eq. s2d, Dszd, the diameter of the jetsboundary layer
not includedd at depthz can be written as

Dszd
D

=Î gQ

VszdD2 .

Then, using the expression ofVszd obtained by integra-
tion of Eq. s4d swith the stationary conditiondH/dt=0d and
the expression ofHs given by Eq.s12d, Dszd reads

Dszd
D

= sbSd1/4fs1 + bSd1−z/Hs − 1g−1/4. s14d

So, the model can give a complete description of the
steady-state regime characterized by a constant penetration
depth and a stationary profile which theoretical expressions
are, respectively, given by Eqs.s10d and s14d.

B. Stationary profile of the jet

In order to test these theoretical predictions, many ex-
periments have been performed in the steady-state regime of
the jet. The profilesDszd are extracted from high-resolution
pictures such as the one in Fig. 1. They can all be success-
fully fitted by expressions14d providing thatD is replaced by
a slightly smaller valueD* . This adjustment is simply due to
the jet’s contraction at the exit of the nozzle,16 an effect
which was neglected in the model.sNote that, strictly speak-
ing, the originz=0 used in the model does not exactly cor-
respond to the exit of the nozzle but to the location of the
maximal contraction of the jet just after it exits from the
nozzle.d Some of these profilesDszd are presented in Fig. 6.

As Eq. s14d depends only weakly onb, a direct fitting
procedure fails to give a reliable value forb. So, we pre-
ferred to use a fixed value forb, namely,b=7. Then, the
corresponding values obtained forD* are in the range 0.9
,D* /D,0.94 which appears realistic.16

C. Penetration depth

To test the theoretical expression of the penetration
depth given by Eq.s8d, we have made systematic measure-
ments ofHs as a function of the flow rateQ in a large range
of the different control parameters:D, Dr /r, andn. As can
be seen on Fig. 7sad, for a given couple of liquids, which
corresponds to fixed values ofDr /r andn, it appears that the
variation ofHs with Q is consistent with a power law. In all
experiments, the exponent remains between 1.4 and 1.8 and
the proportionality coefficient depends only onD. This de-
pendence onD can be easily quantified by plotting the non-
dimensional depthHs/D as a function of a characteristic ve-
locity U=Q/D2 which is directly proportional to the mean

FIG. 5. Penetration of the head of the jet during the transient phase:ssd in
the same experimental conditions as in Fig. 2sQ=0.127 cm3/s, D
=0.1372 cm,Dr /r=4.48310−3, and n=n0d; sPd for more viscous liquids
sQ=0.283 cm3/s, D=0.175 cm, Dr /r=6.35310−3, and n=3.7n0d. The
solid lines represent the prediction of the model with the following param-
eters: ssd a=0.216, b=6.99, andg=1.54; sPd a=0.189, b=7.21, andg
=1.72.



injection velocity: the points collapse rather well on a master
curve. This is shown in Fig. 7sbd and also in Fig. 7scd where
the data obtained in two other experimental conditions in
terms ofDr /r andn have been added.

Then, all the collected data can be compared to the gen-
eral nondimensional expression of Eq.s12d. The result is
presented in Fig. 8. It reveals that experimental points nicely
collapse on a master curve and the following remarks can be
made.

First, these results confirm thatHs/l0= fsS=Q/Q0d is
quite a correct nondimensional form in a very large range of
nearly four decades forHs/l0 and six decades forS=Q/Q0.

Second, the quantitative prediction of the model is very
close to the experimental data except on both extremities of
the graph:Sø10−2 and Sù102. The theoretical curve pre-
sented in solid line in Fig. 8 was obtained with the typical
values of the parameters:a=0.2 andb=7. The first signifi-
cant discrepancy between the model and the measurements
concerns the caseQ!Q0. This corresponds to experimental
conditions where the jet becomes slightly turbulent and
where the penetration depth starts to fluctuate. In Fig. 8, the
maximal values ofHs is used. But, for these points, we can

also estimate the mean penetration depthH̄s by averagingHs

for a few ten of seconds. Then, if one replacesHs by H̄s, a

fairly better agreement is obtained between the theory and
the experimental data as shown in the inset of Fig. 8. In the
other extremity of the graph, i.e.,Q@Q0, we also observe a
deviation between the experimental points and the model.
These data correspond to the situation wheren=n0 and
where we have used the thinner injection nozzle. So, as the
collapse remains valid, this suggests that the model might
still be used but with slightly different parameters. And
maybe this is caused, at the exit of the nozzle, by a larger
contraction of the jet when the diameter of the nozzle be-
comes smaller.16

Finally, a power law dependance betweenH and Q is
suggested by the experimental results of Fig. 8. Despite the
fact that Eq.s12d does not predict this behavior, an empirical
power law can fit reasonably well the data on nearly all the
experimental range. This empirical law is shown in dotted
line in Fig. 7 and reads here

FIG. 6. Examples of jet profiles observed just after the steady state is
reached under the same conditionssD=0.137 cm,Dr /r=4.36310−3, and
n=n0d and for four different flow rates of injection:Q=0.047 cm3/s sPd,
0.086 cm3/s shd, 0.132 cm3/s smd, and 0.151 cm3/s s,d. The theoretical
expression of the model is represented by the solid lines with the fixed
parameterb=7 andD* /D=0.90 sPd, 0.91 shd, 0.91 smd, and 0.94s,d.

FIG. 7. sad Dependence of the penetration depthHs with the flow rate of
injection Q with Dr /r=4.48310−3 andn=n0 and for four different nozzle
diameters:D=0.254 mmsnd, 0.407 mmssd, 0.838 mms,d, and 1.75 mm
shd. The dotted lines are power laws with, respectively, exponent 1.70snd,
1.64ssd, 1.62s,d, and 1.69shd. sbd Collapse of the points presented insad
by plotting the penetration ratioHs/D as a function of the characteristic
velocity U=Q/D2. The dotted line is a power law with a new exponent 1.50.
scd Plots ofHs/D as a function ofU=Q/D2 for three different experimental
conditions: Dr /r=4.45310−4 and n=n0 sjd; Dr /r=4.48310−3 and n
=n0 sLd fsame points as already presented insad and sbdg, and Dr /r
=6.35310−3 andn=3.7n0 s1d. The dotted lines are power laws with expo-
nent 1.49sjd, 1.50 sLd, and 1.46s1d.



Hs

l0
. 0.25S Q

Q0
D1.5

. s15d

Note that Eq.s15d can also be expressed as

Hs

D
. 0.25S U

U0
D1.5

, s16d

whereU=Q/D2 is proportional to the injection velocity and
where U0=sng*d1/3 appears as a characteristic velocity al-
though we do not have any simple physical interpretation for
it. Just note that when looking for a relation betweenHs and
U by dimensional analysis, the physical parameters areD,
g* , andn. Then, if we assume thatHs is simply proportional
to D, as suggested by the experiments,U0 is the only rel-
evant choice to construct a characteristic velocity withn
andg* .

VII. DISCUSSION AND CONCLUSION

A. Dimensionless numbers

Up to now, we have drawn our interpretation on a theo-
retical model which can very satisfactorily predict most of
the experimental observations and measurements. But these
results can also be interpreted in terms of dimensionless
numbers. Two of them seem particulary relevant in this prob-
lem: the Reynolds number Re and the Froude number Fr. Re
characterizes the competition between convective and vis-
cous effects in the flow at the injection. It is built withU
=Q/D2 andD as velocity and length scales at the nozzle end:

Re =
UD

n
=

Q

nD
.

Fr compares kinetic energy to gravitational energy. Tak-
ing into account the resultant density, i.e., gravity and nega-
tive buoyancy, and the depth of penetrationHs, we obtain

Fr =
rU2

DrgHs
=

Q2

g*HsD
4 .

Some authors useD instead ofHs in the definition of Fr or of
the Richardson number Ri. This number, already mentioned
in the Introduction, is frequently used in the context of tur-
bulent jets or plumes and reads

Ri =
g*D

U2 =
g*D5

Q2 .

Here we preferred to chooseHs as gravitational length scale
because, contrary toD, it corresponds to the real displace-
ment performed by the lighter liquid from the nozzle of in-
jection down to the head of the jet.

In addition to these three dimensionless groups, another
number comes very naturally from the model and was al-
ready defined in Eq.s13d:

S=
nU

g*D2 =
nQ

g*D4 .

This number compares the viscous friction to the resultant
gravity force and is a combination of the Reynolds and Ri-
chardson numbers:S=sRe Rid−1. It should be noticed that,
contrary to the other numbers which compare opposite ef-
fects, the viscous and buoyancy terms used inS act together
in the same direction. SoS predicts whether the slowing-
down of the flow from the nozzle down to the jet’s cap is
mainly due to the viscous frictionsS@1d, to the negative
buoyancysS!1d or to both of themsS,1d. It can be seen as
the inverse of the Poiseuille number or also as the Reynolds
number divided by the Galileo number. Anyway, this number
has already been used by different authors in the context of a
liquid moving in an outer miscible liquid17 and it appears to
be a very relevant parameter in this particular situation.

Now, it is possible to check any dependency between
these dimensionless numbers. Then, as shown in Fig. 9, a
strong correlation is obtained between the Froude number Fr
and the parameterS. Using Eq.s12d in the expression of Fr,
one simply obtains from the model

Fr =
S

a lns1 + bSd
. s17d

This equation is presented in solid line in Fig. 9 with the
typical values of the parametersa=0.2 andb=7; it is in very
good agreement with the experimental data. Note that the
constant value of Fr in the inviscid limitsS!1d corresponds
simply to the Bernoulli relation,DrgHs=

1
2raVs0d2, where

the kinetic energy is fully converted in potential energy.
Here again, the data can be satisfactory described in

nearly the whole experimental range by a power law inS.
Equationss15d ands16d suggest an exponent close to 1/2. In
fact, the best agreement is obtained with an exponent 0.6 and
gives the following empirical law:

Fr < 3.5 S0.6. s18d

FIG. 8. Plot of the dimensionless depthHs/l0 as a function of the flow rate
ratio S=Q/Q0 for many different experiments:sad n=n0 and Dr /r=1.31
310−2 sPd, 8.13310−3 s* d, =7.10310−3 sjd, 4.48310−3 s.d, 4.47
310−3 s3d, 2.0310−3 s1d scase of pure water injected in salt waterd, and
4.13310−3, 1.74310−3, 8.18310−3 and 4.45310−3 s,d; sbd n=2.0n0 and
Dr /r=4.62310−3 smd; scd n=3.7n0 andDr /r=6.35310−3 snd. The solid
line corresponds to Eq.s12d with a=0.2 andb=7 whereas the dotted line is
the power law of Eq.s15d. Inset: enlargement of theQ!Q0 zone where the

values ofH̄s/D have been added in open symbols.



B. From laminar to turbulent jets

The comparison between our results and previous works
is difficult since only very few studies have been carried out
in the laminar situation, in miscible or immiscible
conditions.2,3,9,10Furthermore they were all restricted to the
case of very small penetration ratiosH /D,2d. Then, the
horizontal length scale is comparable to the vertical length
scale and the situation is totally different in terms of physical
mechanisms involved. Contrary to the laminar situation, the
case of turbulent jets or plumes has been extensively studied
and quite a general consensus seems to be reached: indeed, it
appears that the penetration rationH /D is strongly correlated
to the Richardson number Ri. For small values of Ri, i.e.,
Ri,1, an empirical power law with an exponent −1/2 was
first proposed by Turner4,5 and can be written as follows:

H

D
< 2.21 Ri−1/2. s19d

This expression is also consistent with a dimensional
analysis.4,5

We have seen in the previous sections that our experi-
mental results as well as our model do not predict such a
relation. Nevertheless, from the empirical laws of both Eqs.
s15d ands18d, we can obtain approximately the same depen-
dence on Ri but with an extra dependence on Re with an
exponentf,0.5–0.6:

Hs

D
< 0.25 RefRi−1/2. s20d

As we have also worked with Richardson numbers
smaller than 1, we can compare these results in terms of
Reynolds number, from the small values used in our laminar
experimentssRe,100d to the fully established turbulent
flow with Reynolds numbers larger than 1000. So, we can
infer that between these two limit behaviors a progressive
transition from laminar to turbulent takes place. Then the jet

gradually loses its dependence in Reynolds number while
viscous friction becomes totally insignificant in comparison
to inertial effects.

To analyze this transition more precisely, we have per-
formed few additional experiments where the Reynolds num-
ber was increased up to about 350, the maximal value that
can be reached in our setup. The influence of the Reynolds
number on the penetration ratio can be clearly underlined by
plotting Ri1/2 Hs/D as a function of Re. The results are pre-
sented in Fig. 10 where we have also added the previous
experimental datasFigs. 8 and 9d as well as the turbulent
limit obtained by Turner and which corresponds to an ap-
proximate value of 2.21.4,5 When the flow becomes turbu-
lent, Hs corresponds no more to the stationary depth but to
the mean penetration depth because the jet fluctuates more or
less intensively.

As expected from Eq.s20d, in the small Re zone, the
data are satisfactory fitted by a power law with an optimal
exponentf=0.6. For larger values of Re, the experimental
points progressively deviate from this power law and do not
collapse anymore whenDr /r or D is changed. All these
points as well as part of the previously collected data corre-
spond to values of Ri1/2 Hs/D larger than the turbulent limit
of 2.21. During the transition from laminar to turbulent flow,
this quantity first increases until it progressively stabilizes
before starting to decrease. Finally, for high values of Re, it
should reach Turner’s limit. So, from the relative positions of
the three experimental curves observed in Fig. 10 at Re
.100, we can infer that the transition to turbulence is pro-
duced more easily for a larger diameter of injectionD and
for a higher difference of densityDr /r. This can be rather
well understood since the physical mechanism of this transi-
tion might be due to Kelvin–Helmholtz instabilities which
are more likely to appear in a jet with a big diameter or with
a large contrast of density. Finally, one curvesD=0.483 cm
and Dr /r=6.98310−3d reveals that the transition is at first

FIG. 9. Same points as in Fig. 8swith H̄s instead ofHs for S,2310−2d but
plotted in terms of dimensionless numbers: Fr as a function ofS. The solid
line corresponds to the model prediction with parametersa=0.2 andb=7
whereas the dotted line is a power law with an exponent 0.6 slightly larger
than 1/2.

FIG. 10. Plot of Ri1/2 Hs/D vs the Reynolds number Re for all the experi-
mental data previously collectedsPd and for three experiments with higher
values of Re: D=0.175 cm, Dr /r=2.59310−2, and n=n0 shd; D
=0.483 cm,Dr /r=6.98310−3, and n=n0 smd; and D=0.483 cm,Dr /r
=2.59310−2, andn=n0 snd. The turbulent limit deduced from Turner’s law
is shown in dotted line and is approximately equal to 2.21. The previously
collected datasPd are well fitted by a power law with an exponentf=0.6
and shown here in dashed line.



progressive and then becomes very sharp: indeed, at Re
,280, the quantity Ri1/2 Hs/D falls abruptly down to a value
rather close to the turbulent limit. For the two other curves,
we believe that a similar sharp transition might take place for
values of Re larger than those accessible here. With a suit-
able setup, this procedure could be used to study more in-
depth the transition from laminar to turbulent flow in a ver-
tical liquid jet.

C. Conclusion

We have presented an extensive study of negatively
buoyant jets injected in a miscible liquid. Almost all experi-
ments were performed in laminar conditions. They revealed
a transient penetration followed by a subsequent steady state
with a constant penetration depth. Based on two practical
assumptions, a theoretical model is proposed which accounts
for the transient phase and for the final penetration depth as
well as the stationary profile of the jet. The agreement be-
tween the measurements and the model was very satisfactory
and seems to confirm the assumptions made. In particular, a
general relation between the densimetric Froude number and
the numberS comparing viscous to buoyant effects is ob-
tained both theoretically and experimentally. Finally, these
results have been profitably compared to previous studies of
turbulent plumes: our analysis suggests that the transition
from laminar to turbulent flow is characterized by the pen-
etration ratio Hs/D which progressively evolves from a
double dependence on Re1/2 and Ri−1/2 to a single depen-
dence on Ri−1/2.
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