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Introduction

Let X 1 , ..., X n be a sequence of independent and identically distributed (i.i.d.) random variables with distribution function F. In the present paper, we assume that F is a Weibull tail-distribution, which means that 1 -F(x) = exp(-H(x)) with H -1 (x) := inf{t :

H(t) ≥ x} = x θ ℓ(x), (1) 
where θ > 0 denotes the Weibull tail-coefficient and ℓ is a slowly varying function at infinity satisfying ℓ(λx) ℓ(x) -→ 1, as x → ∞, for all λ > 0.
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Based on the limited sample X 1 , ..., X n , the question is how to obtain a good estimate for a quantile of order 1p n , p n → 0 defined by

x p n = inf{y : F(y) ≥ 1 -p n },
such that the quantile to be estimated is situated on the border of or beyond the range of the data. Extrapolation outside the sample occurs for instance in reliability [START_REF] Ditlevsen | Distribution Arbitrariness in Structural Reliability, Structural Safety and Reliability[END_REF], hydrology [START_REF] Smith | Estimating the upper tail of flood frequency distributions[END_REF], and finance [START_REF] Embrechts | Modelling extremal events[END_REF]. [START_REF] Beirlant | Practical analysis of extreme values[END_REF] investigated this estimation problem and proposed the following estimator of x p n :

x p n = X n-k n +1,n log(1/p n ) log(n/k n ) θ n , (3) 
where X 1,n ≤ ... ≤ X n,n denote the order statistics associated to the original sample and θ n is an estimator of θ. One can use for instance the estimator introduced in Diebolt et al. (2008):

θ n = 1 k n k n i=1 i log(n/i) log(X n-i+1,n ) -log(X n-i,n ) . (4) 
We refer to [START_REF] Gardes | Estimating extreme quantiles of Weibull taildistributions[END_REF] for a study of the properties of (3). In the preceding equations, k n denotes an intermediate sequence, i.e. a sequence such that k n → ∞ and k n /n → 0 as n → ∞. See [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF], [START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF][START_REF] Beirlant | Practical analysis of extreme values[END_REF], [START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF], and Gardes andGirard (2006,2008) for other contributions to the estimation of θ and [START_REF] Beirlant | Semiparametric lower bounds for tail index estimation[END_REF] for Local Asymptotic Normality (LAN) results. Denoting τ n = log(1/p n )/ log(n/k n ), the estimator (3) can be rewritten as

x p n = X n-k n +1,n τ θ n n . It appears that the extreme quantile of order 1p n is estimated through an ordinary quantile of order 1k n /n with a multiplicative correction τ θ n n . It will appear in the next section that x p n exhibits a bias depending on the rate of convergence to 1 of the ratio of the slowly varying function ℓ in [START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF]. In order to quantify this bias, a second-order condition is required. This assumption can be expressed as follows: Assumption (R ℓ (b, ρ)). There exists a constant ρ < 0 and a rate function b satisfying b(x) → 0 as x → ∞, such that for all ε > 0 and 1 < A < ∞, we have sup λ∈ [1,A] log(ℓ(λx)/ℓ(x)) b(x)K ρ (λ) -1 ≤ ε, for x sufficiently large, with K ρ (λ) = λ 1 t ρ-1 dt. It can be shown that necessarily |b| is regularly varying with index ρ (see e.g. [START_REF] Geluk | Regular Variation, Extensions and Tauberian Theorems[END_REF]. In this paper, we focus on the case where the convergence (2) is slow, and thus when the bias term in θ n and therefore in x p n is large. This situation is described by the following assumption:

x|b(x)| → ∞ as x → ∞, (5) 
which is fulfilled by Gamma, Gaussian and D distributions, see Table 1. The D distribution is an adaptation of Hall's class [START_REF] Hall | Adaptive estimates of parameters of regular variation[END_REF] to the framework of Weibull tail-distributions, see the appendix for its definition. The methodology that we propose in order to reduce the bias of x p n is to use the following regression model proposed by [START_REF] Diebolt | Bias-reduced estimators of the Weibull-tail coefficient[END_REF] for the log-spacings of upper order statistics:

Z j := j log n/j log(X n-j+1,n ) -log(X n-j,n ) = θ + b log (n/k n ) log(n/k n ) log(n/j) f j + o P b log (n/k n ) , (6) 
for 1 ≤ j ≤ k n , where ( f 1 , ..., f k n ) is a vector of independent and standard exponentially distributed random variables and the o P -term is uniform in j. This exponential regression model is similar to the ones proposed by [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF][START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF] and [START_REF] Feuerverger | Estimating a Tail Exponent by Modelling Departure from a Pareto Distribution[END_REF] in the case of Pareto-type distributions. The model [START_REF] Breiman | Robust confidence bounds for extreme upper quantiles[END_REF] allows us to generate bias-corrected estimates θ n for θ through a Least-Square (LS) estimation of θ and b(log(n/k n )). The resulting LS estimates are then the following:

               θ n = Z k n -b log(n/k n ) x k n b log(n/k n ) = k n j=1 (x j -x k n )Z j k n j=1 (x j -x k n ) 2
where x j = log(n/k n )/log(n/j),

x k n = 1 k n k n j=1 x j and Z k n = 1 k n k n j=1 Z j .
The asymptotic normality of the LS-estimator θ n is established in [START_REF] Diebolt | Bias-reduced estimators of the Weibull-tail coefficient[END_REF]. Now, in order to refine x p n , we can use the additional information about the slowly varying function ℓ that is provided by the LS-estimates for θ and b. To this aim, condition (R ℓ (b, ρ)) is used to approximate the ratio

F -1 (1 -p n )/X n-k n +1,n , noting that X n-k n +1,n d = F -1 (U n-k n +1,n ), with U 1,n ≤ ... ≤ U n,n the order statistics of a uniform (0, 1) sample of size n, x p n X n-k n +1,n d = F -1 (1 -p n ) F -1 (U n-k n +1,n ) = (-log(p n )) θ (-log(1 -U n-k n +1,n )) θ ℓ(-log(p n )) ℓ(-log(1 -U n-k n +1,n )) d = (-log(p n )) θ (-log(U k n ,n )) θ ℓ(-log(p n )) ℓ(-log(U k n ,n )) ≃ log(1/p n ) log(n/k n ) θ exp          b log(n/k n ) log(1/p n ) log(n/k n ) ρ -1 ρ          .
The last step follows by replacing U k n ,n with k n /n. Hence, we arrive at the following estimator for extreme quantiles

x p n = X n-k n +1,n log(1/p n ) log(n/k n ) θ n exp            b log(n/k n ) log(1/p n ) log(n/k n ) ρ n -1 ρ n            ,
or equivalently,

x p n = X n-k n +1,n τ θ n n exp b(log(n/k n ))K ρ n (τ n ) .
Here, ρ n is an arbitrary estimator of ρ. It will appear in the next section (see Theorem 1(ii)) that, if τ n converges to a constant value τ > 1, one can even choose ρ n = ρ # a constant value, for instance the canonical value ρ # = -1, as suggested by [START_REF] Feuerverger | Estimating a Tail Exponent by Modelling Departure from a Pareto Distribution[END_REF]. Note that the estimator (3) can be seen as a particular case of x p n obtained by neglecting the bias-term. In the following, we use the LS-estimators of θ and b defined previously. The study of the asymptotic properties of the extreme quantile estimators x p n and x p n is the aim of Section 2. An adaptive selection procedure for k n is also proposed. A simulation study as well as a real data set are provided in Sections 3 and 4. Proofs are postponed to Section 5.

Bias-reduced extreme quantile estimator

The asymptotic normality of our bias-reduced extreme quantile estimator x p n is established in the following theorem.

Theorem 1 Suppose (1) holds together with (R ℓ (b, ρ)) and [START_REF] Beirlant | Practical analysis of extreme values[END_REF]. We assume that

k n → ∞, √ k n log(n/k n ) b log(n/k n ) → λ ∈ R, (7 
)

and if λ = 0, √ k n log(n/k n ) → ∞ and log 2 (k n ) log(n/k n ) → 0. ( 8 
)
Under the additional condition that

| ρ n -ρ| log(τ n ) = O P (1), ( 9 
)
we have

(i) if τ n → ∞ √ k n log(n/k n ) log(τ n ) log( x p n ) -log(x p n ) d -→ N(0, θ 2 ), (ii) if τ n → τ, τ > 1, and if we replace ρ n by a canonical choice ρ # < 0, then √ k n log(n/k n ) log( x p n ) -log(x p n ) d -→ N λµ(τ), θ 2 σ 2 (τ) , with σ 2 (τ) = K ρ # (τ) -log(τ) 2 , and 
µ(τ) = K ρ # (τ) -K ρ (τ) .
In the following remark we provide some possible choices for the sequences (k n ) and (p n ).

Remark 1 Suppose (1) holds together with (R ℓ (b, ρ)) and [START_REF] Beirlant | Practical analysis of extreme values[END_REF]. Then, choosing

k n = λ log(n) b(log(n)) 2
, λ 0, p n = n -τ , τ > 1, and ρ n = ρ # < 0, Theorem 1(ii) applies and thus

1 b(log(n)) log( x p n ) -log(x p n ) d -→ N µ(τ), θ λ 2 σ 2 (τ) .
Clearly, the faster b converges to 0, the faster x p n converges to x p n .

As a comparison, one can establish similar results for x p n .

Theorem 2 Suppose (1) holds together with (R ℓ (b, ρ)) and [START_REF] Beirlant | Practical analysis of extreme values[END_REF]. We assume that

k n → ∞, k n b(log(n/k n )) → λ ∈ R, lim inf τ n > 1,
and if λ = 0, log(k n )/ log(n) → 0, we have:

√ k n log(τ n )        log( x p n ) -log(x p n ) -b(log(n/k n ))         log(τ n ) k n k n j=1 log(n/j) log(n/k n ) ρ -K ρ (τ n )                d -→ N(0, θ 2 ).
The next corollary allows an asymptotic comparison of x p n and x p n .

Corollary 1 Under the assumptions of Theorem 2, we have

(i) if τ n → ∞ √ k n log(τ n ) log( x p n ) -log(x p n ) d -→ N(λ, θ 2 ), (ii) if τ n → τ, τ > 1, then k n log( x p n ) -log(x p n ) d -→ N λ μ(τ), θ 2 σ2 (τ) , with σ2 (τ) = log 2 (τ), and 
μ(τ) = log(τ) -K ρ (τ) .
In the situation where τ n → ∞, clearly log( x p n ) is asymptotically unbiased whereas log( x p n ) is biased. When τ n → τ, τ > 1 both estimates are asymptotically biased but the bias of log( x p n ) can be smaller than the one of log(

x p n ) if ρ # is close to ρ.
Let us now introduce the empirical adapted Asymptotic Mean Squared Error (AMSE * ) of x p n defined as

AMSE * ( x p n ) = Asymptotic E log( x p n ) -log(x p n ) 2 .
Note that we use an adapted version of the AMSE since it takes into account the fact that the distribution of the quantile estimators is found to be closer to a lognormal distribution than to the asymptotic normal distribution. This is classical in the literature, see for instance [START_REF] Matthys | Estimating catastrophic quantile levels for heavy-tailed distributions[END_REF]. As a consequence of Theorem 2, we have

AMSE * ( x p n ) = θ 2 log 2 (τ n ) k n + b 2 (log(n/k n ))        log(τ n ) k n k n j=1 log(n/j) log(n/k n ) ρ -K ρ (τ n )        2 . (10) 
We can now take benefit of the estimation of b(log(n/k n )) by estimating the AMSE * given in [START_REF] Diebolt | Bias-reduced estimators of the Weibull-tail coefficient[END_REF] by:

AMSE * ( x p n ) = ( θ n ) 2 log 2 (τ n ) k n + ( b(log(n/k n ))) 2        log(τ n ) k n k n j=1 log(n/j) log(n/k n ) -1 + τ -1 n -1        2 .
Note that, in the latter formula, we replaced ρ by a canonical choice (ρ = -1) instead of estimating this parameter. In fact, this second-order parameter is difficult to estimate in practice, and we can easily check by simulations that fixing its value does not influence much the result (see e.g. [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF][START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF][START_REF] Feuerverger | Estimating a Tail Exponent by Modelling Departure from a Pareto Distribution[END_REF]. Then, the intermediate sequence k n can be selected by minimizing the previous quantity:

kn = arg min k n AMSE * ( x p n ).
This adaptive procedure for selecting the number of upper order statistics is in the same spirit as the one proposed by [START_REF] Matthys | Estimating catastrophic quantile levels for heavy-tailed distributions[END_REF] in the case of the Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF]. In order to illustrate the usefulness of the bias reduction and of the selection procedure, we provide a simulation study in the next section.

A small simulation study

First, the finite sample performance of the estimators x p n and x p n are investigated on 4 different distributions: |N(0, 1)|, Γ(0.25, 0.25), D(1, 0.5) and W(0.25, 0.25). It is shown in [START_REF] Gardes | Estimating extreme quantiles of Weibull taildistributions[END_REF] that x p n gives better results than the other approaches [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF][START_REF] Breiman | Robust confidence bounds for extreme upper quantiles[END_REF][START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF]. This explains why x p n is only compared to the estimator x p n . In the following, we take p n := p n (τ) = n -τ with τ = 2 and 4 and we choose ρ n = -1. We simulate N = 500 samples (X n,i ) i=1,...,N of size n = 500. On each sample (X n,i ), the estimates x p n (τ),i , are computed for τ = 2, 4 and for k n = 2, . . . , 360. We present the plots obtained by drawing the points

(k n , med i (log( x p n (τ),i ))) for τ = 2 and 4,
where med i (log( x p n (τ),i )) is the median value of log( x p n (τ),i ), i = 1, . . . , N. We also present the associated MSE plots

       k n , 1 N N i=1 log( x p n (τ),i ) -log(x p n (τ) ) 2        for τ = 2 and 4.
The same procedure is achieved for the estimator x p n . Results are presented on figures 1-4. For the |N(0, 1)|, Γ(0.25, 0.25) and D(1, 0.5) distributions, the bias of log( x p n ) is smaller than the one of log( x p n ). Let us highlight that, for the latter distribution, a significant bias reduction is obtained although ρ n ρ. Moreover, bias reduction is usually associated with an increase in variance. However, as illustrated in panel (b) of figures 1-4, our estimator x p n is still competitive in an adapted MSE sense. Note that for the W(0.25, 0.25) distribution, Theorem 1 does not apply since xb(x) = 0. In this case, the behavior of log( x p n ) is slightly better. Second, we investigate the behavior of the adaptive procedure for selecting the number of upper order statistics in x p n . For i = 1, . . . , N and τ = 2, 4, we denote by

k esti n,i = arg min k n ∈[1,n] AMSE * ( x p n (τ),i ),
the value selected on the sample (X n,i ). As a comparison, we introduce the value that would be obtained by minimizing the true AMSE * :

k opt n = arg min k n ∈[1,n] AMSE * ( x p n (τ) ).
Figures 5-8 contain the paired boxplots of the log-quantile estimators log( x p n (τ),i ) at the adaptively selected values k esti n,i on the right and at the sample fraction k opt n with smallest AMSE * on the left. The horizontal line indicates the true value of log(x p n ). The method proposed for the adaptive choice of k n , while not achieving the goal of minimizing the MSE, does lead to quantile estimators that exhibit good bias properties while the variance is inflated in comparison to the asymptotically optimal values.

Real data

Here, the good performance of the adaptive selection procedure is illustrated through the analysis of extreme events on the Nidd river data set. This data set is standard in extreme value studies (see e.g. Hosking and Wallis, 1987, or [START_REF] Davison | Models for exceedances over high thresholds[END_REF].) It consists in 154 exceedances of the level 65 m 3 s -1 by the river Nidd (Yorkshire, England) during the period 1934-1969 (35 years). In environmental studies, the most common quantity of interest is the N-year return level, defined as the level which is exceeded on average once in N years. Here, we focus on the estimation of the 50-and 100-year return levels. According to [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF], the Nidd data may reasonably be assumed to come from a distribution in the Gumbel maximum domain of attraction. This result was confirmed in [START_REF] Diebolt | Bias-reduced estimators of the Weibull-tail coefficient[END_REF] who have shown that one could consider Weibull tail-distributions as a possible model for such data. The Weibull tail-coefficient is estimated at 0.91. We obtained 321.5m 3 s -1 as an estimation of the 50-year return level and 359m 3 s -1 as an estimation of the 100-year return level. Note that these results are in accordance with the results obtained by profile-likelihood or Bayesian methods, see [START_REF] Diebolt | Quasi-conjugate Bayes estimates for GPD parameters and application to heavy tails modelling[END_REF] or [START_REF] Davison | Models for exceedances over high thresholds[END_REF].

Proofs

Proof of Theorem 1. We decompose our quantile estimator as follows:

log( x p n ) -log(x p n ) = log(X n-k n +1,n ) + θ n log(τ n ) + b log(n/k n ) K ρ n (τ n ) -log (-log(p n )) θ ℓ(-log(p n )) d = θ log -log U k n ,n -log log(n/k n ) + θ n -θ log(τ n ) + log ℓ -log U k n ,n -log ℓ log(n/k n ) + log ℓ log(n/k n ) -log ℓ -log(p n ) + b log(n/k n ) K ρ (τ n ) + b log(n/k n ) -b log(n/k n ) K ρ n (τ n ) + b log(n/k n ) K ρ n (τ n ) -K ρ (τ n ) := 6 j=1 B j,k n .
We successively discuss each of the terms B j,k n , j = 1, ...,

6. First concerning B 1,k n , remark that log -log(U k n ,n ) -log log(n/k n ) d = log T n-k n +1,n log(n/k n ) ,
where T j,n denotes the order statistics from an i.i.d. standard exponential sample of size n. Since it is well known that

k n T n-k n +1,n -log(n/k n ) d -→ N(0, 1), (11) 
we clearly have

√ k n log(n/k n ) log(τ n ) B 1,k n = O P 1 log 2 (n/k n ) log τ n = o P (1). (12) 
Remark now that

√ k n log(n/k n ) log(τ n ) B 2,k n = √ k n log(n/k n ) θ n -θ d -→ N(0, θ 2 ), (13) 
by Theorem 3.1 in Diebolt et al. (2008). Next, using (R ℓ (b, ρ)) and ( 11), we get

B 3,k n d = log ℓ(T n-k n +1,n ) ℓ(log(n/k n )) = K ρ T n-k n +1,n log(n/k n ) b(log(n/k n ))(1 + o P (1)) = T n-k n +1,n log(n/k n ) -1 b(log(n/k n ))(1 + o P (1)) = O P       b(log(n/k n )) √ k n log(n/k n )       , (14) 
so that under [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF],

√ k n log(n/k n ) log(τ n ) B 3,k n = O P       1 √ k n log(n/k n ) log(τ n )       = o P (1). ( 15 
)
Next, under (R ℓ (b, ρ)) one has (for a suitably chosen b) that for all ǫ > 0 (see Drees, 1998, Lemma 2.1)

sup t>1 t -(ǫ+ρ) log ℓ(tx) -log ℓ(x) b(x) -K ρ (t) -→ 0.
Hence, we conclude, choosing ǫ < -ρ, that

B 4,k n b(log(n/k n )) = log ℓ log(n/k n ) -log ℓ(τ n log(n/k n )) b(log(n/k n )) + K ρ (τ n ) -→ 0, (16) 
which implies that, under [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF], we have

√ k n log(n/k n ) log(τ n ) B 4,k n = o 1 log(τ n ) = o(1). ( 17 
)
Next, we can check that, according to (6),

B 5,k n = K ρ n (τ n ) 1 k n k n j=1 β j,n ( f j -1),
where

β j,n := (x j -x k n )(θ + b(log(n/k n ))x j ) 1 k n k n i=1 (x i -x k n ) 2
.

A direct application of Lyapounov's theorem, combined with Lemma 7.

3 in Diebolt et al. (2008) yields √ k n log(n/k n ) 1 k n k n j=1 β j,n ( f j -1) d -→ N(0, θ 2 ). Therefore √ k n log(n/k n ) log(τ n ) B 5,k n = K ρ n (τ n ) log(τ n ) ξ 1,n with ξ 1,n d -→ N(0, θ 2 ). ( 18 
)
Finally, following the method of proof of Lemma 1 in de Haan and Rootzén (1993), we find that

τ n 1 s ρ-1 (s ρ n -ρ -1) ds -( ρ n -ρ) τ n 1 s ρ-1 log(s) ds ≤ | ρ n -ρ| τ n 1 s ρ-1 log(s) (s | ρ n -ρ| -1) ds ≤ | ρ n -ρ| τ n 1 s ρ-1 log(s) ds τ | ρ n -ρ| n -1 ,
where the first inequality comes from the fact that e x -1

x -1 ≤ e |x| -1. Hence √ k n log(n/k n ) log(τ n ) B 6,k n = √ k n log(n/k n ) b log(n/k n ) × ρ n -ρ τ n 1 x ρ-1 log(x) dx log(τ n ) 1 + O τ | ρ n -ρ| n -1 .
If τ n → ∞, this implies that ρ n P → ρ by the assumption (9) and therefore

√ k n log(n/k n ) log(τ n ) B 6,k n = o P (1). (19) 
Combining ( 12), ( 13) and ( 15) with ( 17)- [START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF], Theorem 1(i) follows. If τ n → τ, τ > 1, then the normalization factor log(τ n ) → log(τ) 0 can be omitted in ( 12), ( 15) and ( 17) while preserving the negligeability of these terms. Besides, we can replace ρ n with any canonical choice, for instance ρ # < 0, and therefore

√ k n log(n/k n ) B 6,k n = √ k n log(n/k n ) b log(n/k n ) K ρ # (τ n ) -K ρ (τ n ) -→ λµ(τ) := λ K ρ # (τ) -K ρ (τ) . (20) 
The limiting distribution is then given by ( 13) and ( 18) with a bias term due to [START_REF] De Haan | On the estimation of high quantiles[END_REF].

To conclude with the second part of our Theorem 1, we have to establish the limiting distribution of

U n := √ k n K ρ # (τ n ) log(n/k n ) b log(n/k n ) -b log(n/k n ) + √ k n log(τ n ) log(n/k n ) θ n -θ .
To this aim, remark that

U n = k -1 2 n log(n/k n ) k n j=1 ω j,n ( f j -1) + o P (1),
where

ω j,n = β j,n K ρ # (τ n ) + α j,n log(τ n )
and

α j,n = θ + b log(n/k n ) x j        1 - x j -x k n 1 k n k n i=1 (x i -x k n ) 2 x k n        .
Using Lemma 7.3 in Diebolt et al. (2008), direct computations lead to

k n j=1 Var ω j,n ( f j -1) = k n j=1 ω 2 j,n ∼ θ 2 log(n/k n ) 2 k n σ 2 (τ)
and

k n j=1 E ω j,n ( f j -1) 4 = 9 k n j=1 ω 4 j,n ∼ Ck n log(n/k n ) 4 ,
where C is a suitable constant. Therefore a direct application of Lyapounov's theorem yields

U n d -→ N 0, θ 2 σ 2 (τ) ,
which achieves the proof of the second part of Theorem 1.

⊔ ⊓

Proof of Theorem 2. We have:

log( x p n ) -log(x p n ) -b(log(n/k n )) log(τ n ) 1 k n k n j=1 log(n/j) log(n/k n ) ρ + b(log(n/k n )) τ ρ n -1 ρ = θ{log(-log(U k n ,n )) -log log(n/k n )} +         θ n -θ -b(log n/k n ) 1 k n k n j=1 log(n/j) log(n/k n ) ρ         log(τ n ) + {log ℓ(-log(U k n ,n )) -log ℓ(log(n/k n ))} + log ℓ(log(n/k n )) -log ℓ(-log(p n )) + b(log(n/k n )) τ ρ n -1 ρ := B 1,k n + B 7,k n + B 3,k n + B 4,k n .
From [START_REF] Drees | On smooth statistical tail functionals[END_REF], we have 

√ k n log(τ n ) B 1,k n = O P 1 log(n/k n ) log(τ n ) = o P (
√ k n log(τ n ) B 7,k n d -→ N(0, θ 2 ).
From ( 14), we have

B 3,k n = O P       b(log(n/k n )) √ k n log(n/k n )       ,
and thus

√ k n b(log(n/k n )) → λ ∈ R entails √ k n log(τ n ) B 3,k n = O P       1 √ k n log(n/k n ) log(τ n )       = o P (1).
Finally, [START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF] 

implies that B 4,k n = o P (b(log(n/k n ))), which, combined with √ k n b(log(n/k n )) → λ ∈ R yields √ k n log(τ n ) B 4,k n = o P 1 log(τ n ) = o P (1),
which achieves the proof of Theorem 2. ⊔ ⊓

(5) where θ = 1/α, ρ = -β, ℓ(x) = 1 + x -β and b(x) = -βx -β . It is thus possible to obtain distributions with arbitrary θ > 0 and -1 < ρ < 0. These results are summarized in Table

Distribution θ b(x) ρ Absolute Gaussian |N|(µ, σ 2 ) 1/2 1 4 log x x -1 Gamma Γ(α 1, β) 1 (1 -α) log x x -1 Weibull W(α, λ) 1/α 0 -∞ D(α, β) 1/α -βx -β -β
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0 



---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0 



Figure 1 :

 1 Figure 1: Comparison of log( x p n ) (τ = 2: continuous line, τ = 4: + + +) and log( x p n ) (τ = 2: dashed line, τ = 4: ⋆ ⋆ ⋆) for the |N(0, 1)| distribution. The horizontal lines on the left panel represent the true values of log(x p n ) (thin line: τ = 2, thick line: τ = 4).



Figure 2 :

 2 Figure 2: Comparison of log( x p n ) (τ = 2: continuous line, τ = 4: + + +) and log( x p n ) (τ = 2: dashed line, τ = 4: ⋆ ⋆ ⋆) for the W(0.25, 0.25) distribution. The horizontal lines on the left panel represent the true values of log(x p n ) (thin line: τ = 2, thick line: τ = 4).
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Figure 4 :

 4 Figure 4: Comparison of log( x p n ) (τ = 2: continuous line, τ = 4: + + +) and log( x p n ) (τ = 2: dashed line, τ = 4: ⋆ ⋆ ⋆) for the D(1, 0.5) distribution. The horizontal lines on the left panel represent the true values of log(x p n ) (thin line: τ = 2, thick line: τ = 4).

Figure 5 :

 5 Figure 5: |N(0, 1)| distribution. Boxplots of log( x p n ) at the optimal value of k n obtained by minimizing the true AMSE * (left), and at the value of k n obtained by minimizing the estimated AMSE * (right). The horizontal line indicates the true value of log(x p n ).

Figure 6 :

 6 Figure 6: W(0.25, 0.25) distribution. Boxplots of log( x p n ) at the optimal value of k n obtained by minimizing the true AMSE * (left), and at the value of k n obtained by minimizing the estimated AMSE * (right). The horizontal line indicates the true value of log(x p n ).

Figure 7 :

 7 Figure 7: Γ(0.25, 0.25) distribution. Boxplots of log( x p n ) at the optimal value of k n obtained by minimizing the true AMSE * (left), and at the value of k n obtained by minimizing the estimated AMSE * (right). The horizontal line indicates the true value of log(x p n ).

Figure 8 :

 8 Figure 8: D(1, 0.5) distribution. Boxplots of log( x p n ) at the optimal value of k n obtained by minimizing the true AMSE * (left), and at the value of k n obtained by minimizing the estimated AMSE * (right). The horizontal line indicates the true value of log(x p n ).

Table 1 :

 1 Parameters θ, ρ and the function b(x) associated to some distributions

		2.2 2.2						
		2.1 2.1						
		2.0 2.0						
	Median Median	1.9 1.9						
		1.8 1.8						
		1.7 1.7						
		1.6 1.6						
		0 0	50 50	100 100	150 150	200 200	250 250	300 300	350 350
					k k			

  Figure 3: Comparison of log( x p n ) (τ = 2: continuous line, τ = 4: + + +) and log( x p n ) (τ = 2: dashed line, τ = 4: ⋆ ⋆ ⋆) for the Γ(0.25, distribution. The horizontal lines on the left panel represent the true values of log(x p n ) (thin line: τ = 2, thick line: τ = 4).
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Appendix

 [START_REF] Diebolt | Bias-reduced estimators of the Weibull-tail coefficient[END_REF]introduced the class of distributions D(α, β) with distribution function given by 1 -F(x) = exp(-H(x)) where H -1 (x) := x 1/α (1 + x -β ), α and β being two parameters such that 0 < α, 0 < β < 1 and αβ ≤ 1. Under these conditions, the above class of distributions fulfill assumptions (1) with (R ℓ (b, ρ)) and