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Abstract. In this paper, we consider the problem of estimating an extreme quantile of a Weibull
tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more
classical ones proposed in the literature. It is based on an exponential regression model that
was introduced in Diebolt et al. (2005). Its asymptotic normality is established and a small
simulation study is provided in order to illustrate its efficiency.
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1 Introduction

Let Xj, ..., X, be a sequence of independent and identically distributed (i.i.d.) random
variables with distribution function F.

In the present paper, we assume that F is a Weibull tail-distribution, which means that

1 - F(x) = exp(—H(x)) with H™Y(x) := inf{t : H(t) > x} = x9€(x), (1)

where 0 > 0 denotes the Weibull tail-coefficient and ¢ is a slowly varying function at
infinity satisfying

t(Ax)

(%)

— 1, asx — oo, forall A > 0. (2)

Based on the limited sample Xj, ..., X;;, the question is how to obtain a good estimate
for a quantile of order 1 - p,,, p, — 0 defined by

xp, =infly : F(y) > 1 —p,},

such that the quantile to be estimated is situated on the border of or beyond the range of
the data. Extrapolation outside the sample occurs for instance in reliability (Ditlevsen,
1994), hydrology (Smith, 1991), and finance (Embrechts et al., 1997).

Gardes and Girard (2005) investigated this estimation problem and proposed the fol-
lowing estimator of x,,:

log(1/pa)\”
log(n/ky)

where X, < ... < X, denote the order statistics associated to the original sample and

E;pn = Xn—k,,+l,n( (3)

0, is the following estimator of the Weibull tail-coefficient proposed by Girard (2004):

n

Y (108(Xis1,0) = 108Xk, +1,))

k
i=1
k

0, = (4)

3

(loglog(n/i) — loglog(n/ky))

i=1

In the preceding equations, k, denotes an intermediate sequence, i.e. a sequence such
that k, — oo and k,/n — 0 as n — oo. We refer to Beirlant et al. (1995) and Bronia-
towski (1993) for other propositions and to Beirlant et al. (2006) for Local Asymptotic
Normality (LAN) results. Denoting 7, = log(1/p.)/log(n/k,), the estimator (3) can be
rewritten as

v 0
Xp, = Xn—kn+1,n T,

It appears that the extreme quantile of order 1 — p, is estimated through an ordinary

quantile of order 1 — k,/n with a multiplicative correction 75".



The main asymptotic properties (weak consistency and asymptotic normality) of x,,
have been established by Gardes and Girard (2005). Also, its finite sample perfor-
mances have been compared to those of classical estimators. All of them exhibit a bias
depending on the rate of convergence to 1 of the ratio of the slowly varying function
¢ in (2). In order to quantify this bias, a second-order condition is required. This
assumption can be expressed as follows:

Assumption (R(b, p)). There exists a constant p < 0 and a rate function b satisfying b(x) — 0
as x — oo, such that for all e > 0and 1 < A < oo, we have

log(£(Ax)/€(x)) _
b(x)K,(7)

1| <e¢, for x sufficiently large,

Ae[1,A]

A
with K,(A) = f tP=1dt.
1

It can be shown that necessarily |b| is regularly varying with index p (see e.g. Geluk
and de Haan, 1987).

In this paper, we focus on the case where the convergence (2) is slow, and thus when the

bias term in 6, and therefore in x,, is large. This situation is described by the following
assumption:
xb(x) — co as x — oo, (5)

which is fulfilled by Gamma and Gaussian distributions (see for instance Diebolt et
al. (2005), Table 1.) The methodology that we propose in order to reduce the bias of
Xp, is to use the following regression model proposed by Diebolt et al. (2005) for the
log-spacings of upper order statistics:

_ n
Zj =] log(7) (log(Xn_jH,n) - log(Xn_j,n))

) (6 +h (log (kz)) (lii;&/—ﬁﬁ))) fi+op (b (10g (kﬁ))) ©)

for 1 < j < k,, where (f, ..., fi,) is a vector of independent and standard exponentially
distributed random variables and the op—term is uniform in j.

This exponential regression model is similar to the ones proposed by Beirlant et al.
(1999, 2002) and Feuerverger and Hall (1999) in the case of Pareto-type distributions.

The model (6) allows us to generate bias-corrected estimates 0, for 6 through a Least-
Square (LS) estimation of 0 and b(log(n/k,)). The resulting LS estimates are then the



following:
6 = Zs, ~ b (log(n/k) i,
Y (= %, )Z;

k i
2]21 (xj — Xk, )2

b (log(n/k,)) =

log(n/ky) _ =
& = Z']Zl xjand Z;, = & Z’]‘Ql Z;.

where x; = W’ Xy = .

The asymptotic normality of the LS-estimator 0, is established in Diebolt et al. (2005).
Now, in order to refine an, we can use the additional information about the slowly
varying function ¢ that is provided by the LS-estimates for 6 and b. To this aim,
condition (R¢(b, p)) is used to approximate the ratio F'(1 — p,)/ Xy, +1.., Noting that

d p1
Xn—kn+1,n =F (un—kn+1,n)/

with Uy, < ... < U,, the order statistics of a uniform (0, 1) sample of size n,

Xpy d F'(1-py)
Xn—kn+1,n B F_l(un—knﬂ,n)
(- log(pa))° {(—1log(pn))
(= log(1 = Uy—k,+1,1))? €(—1log(l — Uk, +1,1))
4 _(Slog(pn)’  £(-log(pu)

(- log(Us,,1))? £(—log(Uk,n))

log(1/pn)\’
(122277];;) explb(log(”/kn))

log(1/pn) p
(log<n/kn>) -1

The last step follows by replacing Uy, , with k,/n. Hence, we arrive at the following
estimator for extreme quantiles

= log(1/pn) E”
_ log(L/p)\" |- (igrkg) 1
Xp, = Xn—k,+1n (log(Tkn)) exp | b (log(n/ky)) T ’

or equivalently, ~
%y, = Xucky 10 70" exp (b(log(1/ki))K, (1)

Here, p, is an arbitrary estimator of p. It will appear in the next section (see Theo-
rem 1(ii)) that, if 7, converges to a constant value 7 > 1, one can even choose p, = p* a
constant value, for instance the canonical value p* = -1, as suggested by Feuerverger
and Hall (1999). Note that the estimator (3) can be seen as a particular case of X, ob-



tained by neglecting the bias-term. In the following, we use the LS-estimators of 0 and
b defined previously. The study of the asymptotic properties of the extreme quantile
estimator is the aim of Section 2, whereas a simulation study is provided in Section 3
to illustrate its usefulness. The proof of our result is postponed to Section 4.

2 Bias-reduced extreme quantile estimator

The asymptotic normality of our bias-reduced extreme quantile estimator ¥, is estab-
lished in the following theorem.

Theorem 1. Suppose (1) holds together with (R.(b, p)) and (5). We assume that
vk,

k, — o0 log(—/k)b(log(n/k 1) = A ER, (7)
and if A =0,
2
Vi and log (k) — 0. (8)

log(n/ky) " log(n/ky)
Under the additional condition that
lon = pllog(t,) = Op(1), )
we have
(i) if 1, > o0

vk,
log(n/k,)log(t,)

(log(®,,) - log(x,,)) = N(0,6%),

(ii) if T, = T, 7T > 1, and if we replace p, by a canonical choice p* < 0, then

log(% (10g(®;,) ~ 10g(x,,)) == N (Au(x), 6%0*(1)),
with

7*(2) = (Kye(0) - log(),
and

p(t) = (Kp#(T) — KP(T)).

The proof of this theorem is postponed to Section 4. In the following remark we provide
some possible choices for the sequences (k,) and (p,,).



Remark 1. Suppose (1) holds together with (R¢(b, p)) and (5). Then, choosing

L - ( log(n)
"\ b(log(m))
Theorem 1(ii) applies and thus

2
(l0g(®,) ~ log(x,)) =5 N (o), (2) 2]
A

2
),/\>O,pn:n‘f,T>1,and@:p#<0,

1
b(log(n))
Clearly, the faster b converges to 0, the faster x,, converges to x,,.

In order to illustrate that our estimator has a reduced bias, we will provide a small
simulation study in the next section.

3 A small simulation study

The finite sample performance of the estimators X, and X, are investigated on 4
different distributions: |N(0,1)|, I'(0.25,0.25), I'(4,1) and W(0.25,0.25). It is shown
in Gardes and Girard (2005) that x,, gives better results than the other approaches
(Hosking and Wallis, 1987; Breiman et al., 1990; Beirlant et al., 1995). This explains why
X, is only compared to the estimator Xp,. In the following, we take p, := p,(1) = n"
with 7 = 1, 2 and 4 and we choose p, = —1. We simulate N = 500 samples (X, )i=1,..,
size n = 500. On each sample (X},;), the estimates Z,K(T),i(kn), T = 1,2 and 4 are computed
for k, = 2,...,360. We present the plots obtained by drawing the points

(kn, RE(xp, (1)(ky))) for T = 1,2 and 4,
where RE(x,,x)(k,)) is the median value of the relative errors

vapn(T),i(kn) — Xp,(7)

xpn(T)

The same procedure is achieved for the estimator X,, . Finally, in order to make a better
comparison of the two estimators, we draw the points

(k RE(fpn(r)(kn))
" REG, (k)
Results are presented on figures 1-4. For the |[N(0, 1)|, I'(0.25,0.25) and I'(4, 1) distribu-
tions, the relative error of X,, is smaller than the one of x,, at least for large values of k,

(k, > 100). Note that for the W(0.25, 0.25) distribution, Theorem 1 does not apply since
xb(x) = 0. In this situation ¥, performs slightly better.

) fort=1,2and 4.



4 Proofs

Proof of Theorem 1. We decompose our quantile estimator as follows:

log(%;,) — log(x,,) = 10g(Xu-k,+1,) + O log(T)

= +

0 {log (- log (Ux,»)) — loglog(n/ky)}
(6 - 0)log(t,)
{log € (—log (Uy,,x)) — log ¢ (log(n/kx))}

+ o+ +

(b (tog(n/k,)) — b (log(n/k,))) K, (1)
b (log(n/k)) {K5, (va) = Ky(T)}

6
= Z Bj,kn .
j=1

+

+

b (log(n/k,) K,(t,) — log (10 (p.)) €(~ log(p.)))

{log ¢ (log(n/ky)) — log £ (— log(ps)) + b (log(n/ky)) Ky(T,)}

We successively discuss each of the terms Bj,, j = 1, ..., 6. First concerning By s, remark

that

Tn— +1,n
log(—log(ukn,n))—10g10g(n/kn)ilog( ol )

log(n/ky,)

where T;, denotes the order statistics from an i.i.d. standard exponential sample of

size n. Since it is well known that

Vi (T 1,0 — log(n/kyn)) =5 N(O, 1),

we clearly have

vk ( 1 )
B, =0 = op(1).
log(n/ky)log(z,) "~ " log*(n/k,)log 7, Pl
Remark now that
vk, vk,

—__ yvm a _ i) 5
TogiTkn) Togten 2% = Togtnjiy (0~ 6) = NO.6°)

by Theorem 3 in Diebolt et al. (2005).

Next, using (R¢(b, p)) and (10), we get
log( K(Tn—knﬂ,n) )
{(log(n/kx))

Tn—kn+l,n
=5 (log(n/k»

=

B3k

™ n

)b(log(n/kn))(l +op(1))

7

(10)

(11)

(12)



( Tk, +1n 1) b(log(n/kn))(1 + op(1))

log(n/ky)
op | 2U0os/k)
’ vk, log(n/k,) ’
so that under (7),
VK, ) 1 )
Tog (k) log(m) " ~ O“’[ VK log(n/k,) 1ogm>] - )

Next, under (R¢(b, p)) one has (for a suitably chosen b) that for all € > 0 (see Drees, 1998,

Lemma 2.1)
log £(tx) — log €(x)

b(x)

Hence, we conclude, choosing € < —p, that

Sup t_(€+p)
t>1

— Kp(t)‘ — 0.

‘ By, _ |log £ (log(n/ky)) — log {(t, log(n/ky)) ke o
b(log(n/kyx)) b(log(n/ky)) o(Tn )
which implies that, under (7), we have
Ve, Y
Tog(/k) log(z,) % = ° (logT)) = o) (14)

Next, we can check that, according to (6),
1 &
Bs, = K5, (Tx) o Z Bin(fi—1),
n ]:1

where _
(xj — X, )(0 + b(log(n/ky))x;)

k —_
é Z,‘il (xi — Xk, )2

A direct application of Lyapounov’s theorem, combined with Lemma 5 in Diebolt et al.
(2005) yields

Bin =

vk, 1Y
st/ . D Pnlfi = 1) =2 N(O, 6%,
n n j:l

Therefore

\/E B _ Kﬁn(T”)é
log(n/k,)log(t,) ™ ~ log(t,) """

with &, -5 N(0, 62). (15)

Finally, following the method of proof of Lemma 1 in de Haan and Rootzén (1993), we

8



find that

[(or @ -nds-G-p [ ooy
1 1

< lpn— plf s*7! log(s) (5Pl — 1) ds
1

< lpn—pl (f s*7! log(s) ds) (Tf”_pl - 1),
1

where the first inequality comes from the fact that |[<=1 — 1| < el - 1.
Hence
vk, vk
I Box, = i———b(log(n/k))
og(1/ky)log(7,) log(1/ky)
f " xP~1 log(x) dx _
o~ 1 lpn—pl

X (pn—p) Tog(t) {1 +0 (Tn - 1)}

If 7, — oo, this implies that p, 5 p by the assumption (9) and therefore

vk,
I B,
Og(n/kn) log(Tn)

= op(1). (16)

Combining (11)-(16), Theorem 1 (i) follows.

If 1, — 1,7 > 1, then the normalization factor log(7,) — log(t) # 0 can be omitted in
(11), (13) and (14) while preserving the negligeability of these terms. Besides, we can
replace p, with any canonical choice, for instance p* < 0, and therefore

v, _ &
g/l 2% = Tog(nfiey’ 108(/kn) (Koo() = Ky(12))
0= 0 K00) -

The limiting distribution is then given by (12) and (15) with a bias term due to (17).
To conclude with the second part of our Theorem 1, we have to establish the limiting
distribution of

\/EKp# (Tn)

U, := ————= (b (log(n/ky)) - b (log(n/ky))) +

\/Elog(Tn) a
Tog(11/ky) (0. -0).

log(n/ky)



To this aim, remark that

1
2

log(n 5 Z wjnlfy = 1) + op(D),

where
Wijn = ﬁj,"Kp#(Tn) tajn log(Tn)

and

Xj — Xk,
é Zi{il (xi — Ekn)z
Using Lemma 5 in Diebolt et al. (2005), direct computations lead to

T |.

:(9 + b (log(n/ky)) x]‘) 1-

Ky kin
ZVar (wulfi = 1) = Z W2, ~ 0 (log(n/ky))’ Ky 0(7)
j=1

j=1

and
k

kn
Y E(0p(fi-1) =9 @k, ~ Ck, (log(n/k,))*,
=1

=1

3

where C is a suitable constant. Therefore a direct application of Lyapounov’s theorem
yields

u, - N (0,6%%(1)),

which achieves the proof of the second part of Theorem 1. O
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(a) Relative error of X, for T = 1 (straight line), 7 = 2 (b) Relative error of X, for T = 1 (straight line), T = 2
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(c) Relative error of X,, divided by the relative error of X,
for 7 = 1 (straight line), 7 = 2 (dashed line) and 7 = 4
(dotted line).

Figure 1: Comparison of the estimators X, and ,, for the [N(0, 1)| distribution.
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Figure 2: Comparison of the estimators X, and X, for the I'(0.25,0.25) distribution.
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Figure 3: Comparison of the estimators X, and x,, for the I'(4, 1) distribution.
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Figure 4: Comparison of the estimators X, and X, for the ‘W(0.25,0.25) distribution.
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