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Abstract. In this paper, we consider the problem of estimating an extreme quantile of a Weibull
tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more
classical ones proposed in the literature. It is based on an exponential regression model that was
introduced in Diebolt et al. (2008). The asymptotic normality of the extreme quantile estimator
is established. We also introduce an adaptive selection procedure to determine the number of
upper order statistics to be used. A simulation study as well as an application to a real data set
are provided in order to prove the efficiency of the above mentioned methods.
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1 Introduction

Let X1, ...,Xn be a sequence of independent and identically distributed (i.i.d.) random
variables with distribution function F. In the present paper, we assume that F is a
Weibull tail-distribution, which means that

1 − F(x) = exp(−H(x)) with H−1(x) := inf{t : H(t) ≥ x} = xθℓ(x), (1)

where θ > 0 denotes the Weibull tail-coefficient and ℓ is a slowly varying function at
infinity satisfying

ℓ(λx)

ℓ(x)
−→ 1, as x→∞, for allλ > 0. (2)

Based on the limited sample X1, ...,Xn, the question is how to obtain a good estimate
for a quantile of order 1 − pn, pn → 0 defined by

xpn = inf{y : F(y) ≥ 1 − pn},
such that the quantile to be estimated is situated on the border of or beyond the range of
the data. Extrapolation outside the sample occurs for instance in reliability (Ditlevsen,
1994), hydrology (Smith, 1991), andfinance (Embrechts et al., 1997). Beirlant et al. (1996)
investigated this estimation problem and proposed the following estimator of xpn :

x̃pn = Xn−kn+1,n

(
log(1/pn)

log(n/kn)

)θ̃n
, (3)

where X1,n ≤ ... ≤ Xn,n denote the order statistics associated to the original sample and

θ̃n is an estimator of θ. One can use for instance the estimator introduced in Diebolt et
al. (2008):

θ̃n =
1

kn

kn∑

i=1

i log(n/i)
(
log(Xn−i+1,n) − log(Xn−i,n)

)
. (4)

We refer toGardes andGirard (2005) for a study of the properties of (3). In the preceding
equations, kn denotes an intermediate sequence, i.e. a sequence such that kn → ∞ and
kn/n → 0 as n → ∞. See Broniatowski (1993), Beirlant et al. (1995, 1996), Girard
(2004), and Gardes and Girard (2006,2008) for other contributions to the estimation of θ
and Beirlant et al. (2006) for Local Asymptotic Normality (LAN) results. Denoting
τn = log(1/pn)/ log(n/kn), the estimator (3) can be rewritten as

x̃pn = Xn−kn+1,n τ
θ̃n
n .

It appears that the extreme quantile of order 1 − pn is estimated through an ordinary

quantile of order 1 − kn/n with a multiplicative correction τθ̃nn .
It will appear in the next section that x̃pn exhibits a bias depending on the rate of
convergence to 1 of the ratio of the slowly varying function ℓ in (2). In order to quantify
this bias, a second-order condition is required. This assumption can be expressed as
follows:
Assumption (Rℓ(b, ρ)). There exists a constant ρ < 0 and a rate function b satisfying b(x)→ 0
as x→∞, such that for all ε > 0 and 1 < A < ∞, we have

sup
λ∈[1,A]

∣∣∣∣∣∣
log(ℓ(λx)/ℓ(x))

b(x)Kρ(λ)
− 1

∣∣∣∣∣∣ ≤ ε, for x sufficiently large,
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with Kρ(λ) =
∫ λ
1
tρ−1dt.

It can be shown that necessarily |b| is regularly varying with index ρ (see e.g. Geluk
and de Haan, 1987). In this paper, we focus on the case where the convergence (2) is

slow, and thus when the bias term in θ̃n and therefore in x̃pn is large. This situation is
described by the following assumption:

x|b(x)| → ∞ as x→∞, (5)

which is fulfilled by Gamma, Gaussian and D distributions, see Table 1. The D
distribution is an adaptation of Hall’s class (Hall and Welsh, 1985) to the framework
of Weibull tail-distributions, see the appendix for its definition. The methodology that
we propose in order to reduce the bias of x̃pn is to use the following regression model
proposed by Diebolt et al. (2008) for the log-spacings of upper order statistics:

Z j := j log
(
n/ j
) (
log(Xn− j+1,n) − log(Xn− j,n)

)

=

(
θ + b

(
log (n/kn)

) ( log(n/kn)
log(n/ j)

))
f j + oP

(
b
(
log (n/kn)

))
, (6)

for 1 ≤ j ≤ kn, where ( f1, ..., fkn) is a vector of independent and standard exponen-
tially distributed random variables and the oP−term is uniform in j. This exponential
regression model is similar to the ones proposed by Beirlant et al. (1999, 2002) and
Feuerverger and Hall (1999) in the case of Pareto-type distributions. The model (6)

allows us to generate bias-corrected estimates θ̂n for θ through a Least-Square (LS)
estimation of θ and b(log(n/kn)). The resulting LS estimates are then the following:



θ̂n = Zkn − b̂
(
log(n/kn)

)
xkn

b̂
(
log(n/kn)

)
=

kn∑

j=1

(x j − xkn)Z j

/ kn∑

j=1

(x j − xkn)
2

where x j = log(n/kn)/log(n/ j), xkn =
1
kn

∑kn
j=1 x j and Zkn =

1
kn

∑kn
j=1 Z j. The asymptotic

normality of the LS-estimator θ̂n is established in Diebolt et al. (2008). Now, in order
to refine x̃pn , we can use the additional information about the slowly varying function
ℓ that is provided by the LS-estimates for θ and b. To this aim, condition (Rℓ(b, ρ)) is
used to approximate the ratio F−1(1 − pn)/Xn−kn+1,n, noting that

Xn−kn+1,n
d
= F−1(Un−kn+1,n),

with U1,n ≤ ... ≤ Un,n the order statistics of a uniform (0, 1) sample of size n,

xpn
Xn−kn+1,n

d
=

F−1(1 − pn)

F−1(Un−kn+1,n)

=
(− log(pn))θ

(− log(1 −Un−kn+1,n))
θ

ℓ(− log(pn))
ℓ(− log(1 −Un−kn+1,n))

d
=

(− log(pn))θ
(− log(Ukn,n))

θ

ℓ(− log(pn))
ℓ(− log(Ukn,n))
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≃
(
log(1/pn)

log(n/kn)

)θ
exp


b
(
log(n/kn)

)
(
log(1/pn)

log(n/kn)

)ρ
− 1

ρ


.

The last step follows by replacing Ukn,n with kn/n. Hence, we arrive at the following
estimator for extreme quantiles

x̂pn = Xn−kn+1,n

(
log(1/pn)

log(n/kn)

)θ̂n
exp


b̂
(
log(n/kn)

)
(
log(1/pn)

log(n/kn)

)ρ̂n − 1

ρ̂n


,

or equivalently,

x̂pn = Xn−kn+1,n τ
θ̂n
n exp

(̂
b(log(n/kn))Kρ̂n(τn)

)
.

Here, ρ̂n is an arbitrary estimator of ρ. It will appear in the next section (see Theo-
rem 1(ii)) that, if τn converges to a constant value τ > 1, one can even choose ρ̂n = ρ

# a
constant value, for instance the canonical value ρ# = −1, as suggested by Feuerverger
and Hall (1999). Note that the estimator (3) can be seen as a particular case of x̂pn ob-
tained by neglecting the bias-term. In the following, we use the LS-estimators of θ and
b defined previously. The study of the asymptotic properties of the extreme quantile
estimators x̂pn and x̃pn is the aim of Section 2. An adaptive selection procedure for kn is
also proposed. A simulation study as well as a real data set are provided in Sections 3
and 4. Proofs are postponed to Section 5.

2 Bias-reduced extreme quantile estimator

The asymptotic normality of our bias-reduced extreme quantile estimator x̂pn is estab-
lished in the following theorem.

Theorem 1 Suppose (1) holds together with (Rℓ(b, ρ)) and (5). We assume that

kn →∞,
√
kn

log(n/kn)
b
(
log(n/kn)

) → λ ∈ R, (7)

and if λ = 0, √
kn

log(n/kn)
→∞ and

log2(kn)

log(n/kn)
→ 0. (8)

Under the additional condition that

|ρ̂n − ρ| log(τn) = OP(1), (9)

we have

(i) if τn →∞ √
kn

log(n/kn) log(τn)

(
log(̂xpn) − log(xpn)

)
d−→ N(0, θ2),

(ii) if τn → τ, τ > 1, and if we replace ρ̂n by a canonical choice ρ
# < 0, then

√
kn

log(n/kn)

(
log(̂xpn) − log(xpn)

)
d−→ N

(
λµ(τ), θ2σ2(τ)

)
,
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with

σ2(τ) =
(
Kρ#(τ) − log(τ)

)2
,

and
µ(τ) =

(
Kρ#(τ) − Kρ(τ)

)
.

In the following remark we provide some possible choices for the sequences (kn) and
(pn).

Remark 1 Suppose (1) holds together with (Rℓ(b, ρ)) and (5). Then, choosing

kn =

(
λ

log(n)

b(log(n))

)2
, λ , 0, pn = n−τ, τ > 1, and ρ̂n = ρ

# < 0,

Theorem 1(ii) applies and thus

1

b(log(n))

(
log(̂xpn) − log(xpn)

)
d−→ N

(
µ(τ),

(
θ

λ

)2
σ2(τ)

)
.

Clearly, the faster b converges to 0, the faster x̂pn converges to xpn .

As a comparison, one can establish similar results for x̃pn .

Theorem 2 Suppose (1) holds together with (Rℓ(b, ρ)) and (5). We assume that

kn →∞,
√
knb(log(n/kn))→ λ ∈ R, lim inf τn > 1,

and if λ = 0, log(kn)/ log(n)→ 0, we have:

√
kn

log(τn)

log(x̃pn) − log(xpn) − b(log(n/kn))



log(τn)

kn

kn∑

j=1

(
log(n/ j)

log(n/kn)

)ρ
− Kρ(τn)





d−→ N(0, θ2).

The next corollary allows an asymptotic comparison of x̂pn and x̃pn .

Corollary 1 Under the assumptions of Theorem 2, we have

(i) if τn →∞ √
kn

log(τn)

(
log(x̃pn) − log(xpn)

)
d−→ N(λ, θ2),

(ii) if τn → τ, τ > 1, then
√
kn
(
log(x̃pn) − log(xpn)

)
d−→ N

(
λµ̃(τ), θ2σ̃2(τ)

)
,

with
σ̃2(τ) = log2(τ),

and
µ̃(τ) =

(
log(τ) − Kρ(τ)

)
.

In the situation where τn → ∞, clearly log(̂xpn) is asymptotically unbiased whereas
log(x̃pn) is biased. When τn → τ, τ > 1 both estimates are asymptotically biased but the
bias of log(̂xpn) can be smaller than the one of log(x̃pn) if ρ

# is close to ρ.
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Let us now introduce the empirical adapted Asymptotic Mean Squared Error (AMSE∗)
of x̃pn defined as

AMSE∗(x̃pn) = AsymptoticE
(
log(x̃pn) − log(xpn)

)2
.

Note that we use an adapted version of the AMSE since it takes into account the
fact that the distribution of the quantile estimators is found to be closer to a lognormal
distribution than to the asymptotic normal distribution. This is classical in the literature,
see for instance Matthys et al. (2004). As a consequence of Theorem 2, we have

AMSE∗(x̃pn) = θ
2
log2(τn)

kn
+ b2(log(n/kn))


log(τn)

kn

kn∑

j=1

(
log(n/ j)

log(n/kn)

)ρ
− Kρ(τn)



2

. (10)

We can now take benefit of the estimation of b(log(n/kn)) by estimating the AMSE∗

given in (10) by:

ÂMSE∗(x̃pn) = (θ̂n)
2
log2(τn)

kn
+ (̂b(log(n/kn)))

2


log(τn)

kn

kn∑

j=1

(
log(n/ j)

log(n/kn)

)−1
+ τ−1n − 1



2

.

Note that, in the latter formula, we replaced ρ by a canonical choice (ρ = −1) instead of
estimating this parameter. In fact, this second-order parameter is difficult to estimate in
practice, and we can easily check by simulations that fixing its value does not influence
much the result (see e.g. Beirlant et al., 1999, 2002 or Feuerverger andHall, 1999). Then,
the intermediate sequence kn can be selected by minimizing the previous quantity:

k̂n = argmin
kn

ÂMSE∗(x̃pn).

This adaptive procedure for selecting the number of upper order statistics is in the
same spirit as the one proposed by Matthys et al. (2004) in the case of the Weissman
estimator (Weissman, 1978). In order to illustrate the usefulness of the bias reduction
and of the selection procedure, we provide a simulation study in the next section.

3 A small simulation study

First, the finite sample performance of the estimators x̃pn and x̂pn are investigated on 4
different distributions: |N(0, 1)|, Γ(0.25, 0.25), D(1, 0.5) andW(0.25, 0.25). It is shown
in Gardes and Girard (2005) that x̃pn gives better results than the other approaches
(Hosking andWallis, 1987; Breiman et al., 1990; Beirlant et al., 1995). This explains why
x̂pn is only compared to the estimator x̃pn . In the following, we take pn := pn(τ) = n−τ

with τ = 2 and 4 and we choose ρ̂n = −1. We simulate N = 500 samples (Xn,i)i=1,...,N of
size n = 500. On each sample (Xn,i), the estimates x̂pn(τ),i, are computed for τ = 2, 4 and
for kn = 2, . . . , 360. We present the plots obtained by drawing the points

(kn,medi(log(̂xpn(τ),i))) for τ = 2 and 4,

where medi(log(̂xpn(τ),i)) is the median value of log(̂xpn(τ),i), i = 1, . . . ,N. We also present
the associated MSE plots


kn,

1

N

N∑

i=1

(
log(̂xpn(τ),i) − log(xpn(τ))

)2

 for τ = 2 and 4.
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The sameprocedure is achieved for the estimator x̃pn . Results are presented onfigures 1–
4. For the |N(0, 1)|, Γ(0.25, 0.25) andD(1, 0.5) distributions, the bias of log(̂xpn) is smaller
than the one of log(x̃pn). Let us highlight that, for the latter distribution, a significant bias
reduction is obtained although ρ̂n , ρ. Moreover, bias reduction is usually associated
with an increase in variance. However, as illustrated in panel (b) of figures 1–4,
our estimator x̂pn is still competitive in an adapted MSE sense. Note that for the
W(0.25, 0.25) distribution, Theorem 1 does not apply since xb(x) = 0. In this case, the
behavior of log(x̃pn) is slightly better.
Second, we investigate the behavior of the adaptive procedure for selecting the number
of upper order statistics in x̃pn . For i = 1, . . . ,N and τ = 2, 4, we denote by

k̂esti
n,i
= arg min

kn∈[1,n]
ÂMSE∗(x̃pn(τ),i),

the value selected on the sample (Xn,i). As a comparison, we introduce the value that
would be obtained by minimizing the true AMSE∗:

k
opt
n = arg min

kn∈[1,n]
AMSE∗(x̃pn(τ)).

Figures 5–8 contain the paired boxplots of the log-quantile estimators log(x̃pn(τ),i) at the

adaptively selected values k̂esti
n,i

on the right and at the sample fraction k
opt
n with smallest

AMSE∗ on the left. The horizontal line indicates the true value of log(xpn). The method
proposed for the adaptive choice of kn, while not achieving the goal of minimizing
the MSE, does lead to quantile estimators that exhibit good bias properties while the
variance is inflated in comparison to the asymptotically optimal values.

4 Real data

Here, the good performance of the adaptive selection procedure is illustrated through
the analysis of extreme events on the Nidd river data set. This data set is standard
in extreme value studies (see e.g. Hosking and Wallis, 1987, or Davison and Smith,
1990.) It consists in 154 exceedances of the level 65 m3s−1 by the river Nidd (Yorkshire,
England) during the period 1934-1969 (35 years). In environmental studies, the most
common quantity of interest is the N-year return level, defined as the level which is
exceeded on average once in N years. Here, we focus on the estimation of the 50- and
100- year return levels. According to Hosking and Wallis (1987), the Nidd data may
reasonably be assumed to come from a distribution in the Gumbel maximum domain
of attraction. This result was confirmed in Diebolt et al. (2008) who have shown that
one could consider Weibull tail-distributions as a possible model for such data. The
Weibull tail-coefficient is estimated at 0.91. We obtained 321.5m3s−1 as an estimation
of the 50-year return level and 359m3s−1 as an estimation of the 100-year return level.
Note that these results are in accordance with the results obtained by profile-likelihood
or Bayesian methods, see Diebolt et al. (2005) or Davison and Smith (1990).

5 Proofs

Proof of Theorem 1. We decompose our quantile estimator as follows:

log(̂xpn) − log(xpn) = log(Xn−kn+1,n) + θ̂n log(τn)
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+ b̂
(
log(n/kn)

)
Kρ̂n(τn) − log

(
(− log(pn))θℓ(− log(pn))

)

d
= θ

{
log
(− log (Ukn,n

)) − log log(n/kn)
}

+

(
θ̂n − θ

)
log(τn)

+
{
log ℓ

(− log (Ukn,n

)) − log ℓ
(
log(n/kn)

)}

+

{
log ℓ

(
log(n/kn)

) − log ℓ
(− log(pn)

)
+ b
(
log(n/kn)

)
Kρ(τn)

}

+

(̂
b
(
log(n/kn)

) − b
(
log(n/kn)

))
Kρ̂n(τn)

+ b
(
log(n/kn)

) {
Kρ̂n(τn) − Kρ(τn)

}

:=

6∑

j=1

B j,kn .

We successively discuss each of the terms B j,kn , j = 1, ..., 6. First concerning B1,kn , remark
that

log
(− log(Ukn,n)

) − log log(n/kn)
d
= log

(
Tn−kn+1,n

log(n/kn)

)
,

where T j,n denotes the order statistics from an i.i.d. standard exponential sample of
size n. Since it is well known that

√
kn
(
Tn−kn+1,n − log(n/kn)

) d−→ N(0, 1), (11)

we clearly have
√
kn

log(n/kn) log(τn)
B1,kn = OP

(
1

log2(n/kn) log τn

)
= oP(1). (12)

Remark now that
√
kn

log(n/kn) log(τn)
B2,kn =

√
kn

log(n/kn)

(
θ̂n − θ

)
d−→ N(0, θ2), (13)

by Theorem 3.1 in Diebolt et al. (2008). Next, using (Rℓ(b, ρ)) and (11), we get

B3,kn

d
= log

(
ℓ(Tn−kn+1,n)

ℓ(log(n/kn))

)

= Kρ

(
Tn−kn+1,n

log(n/kn)

)
b(log(n/kn))(1 + oP(1))

=

(
Tn−kn+1,n

log(n/kn)
− 1

)
b(log(n/kn))(1 + oP(1))

= OP



b(log(n/kn))√
kn log(n/kn)


 , (14)

so that under (7),
√
kn

log(n/kn) log(τn)
B3,kn = OP




1√
kn log(n/kn) log(τn)


 = oP(1). (15)
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Next, under (Rℓ(b, ρ)) one has (for a suitably chosen b) that for all ǫ > 0 (see Drees, 1998,
Lemma 2.1)

sup
t>1

t−(ǫ+ρ)
∣∣∣∣∣
log ℓ(tx) − log ℓ(x)

b(x)
− Kρ(t)

∣∣∣∣∣ −→ 0.

Hence, we conclude, choosing ǫ < −ρ, that
∣∣∣∣∣

B4,kn

b(log(n/kn))

∣∣∣∣∣ =
∣∣∣∣∣∣
log ℓ

(
log(n/kn)

) − log ℓ(τn log(n/kn))

b(log(n/kn))
+ Kρ(τn)

∣∣∣∣∣∣ −→ 0, (16)

which implies that, under (7), we have
√
kn

log(n/kn) log(τn)
B4,kn = o

(
1

log(τn)

)
= o(1). (17)

Next, we can check that, according to (6),

B5,kn = Kρ̂n(τn)
1

kn

kn∑

j=1

β j,n( f j − 1),

where

β j,n :=
(x j − xkn)(θ + b(log(n/kn))x j)

1
kn

∑kn
i=1(xi − xkn)

2
.

A direct application of Lyapounov’s theorem, combined with Lemma 7.3 in Diebolt et
al. (2008) yields

√
kn

log(n/kn)

1

kn

kn∑

j=1

β j,n( f j − 1)
d−→ N(0, θ2).

Therefore
√
kn

log(n/kn) log(τn)
B5,kn =

Kρ̂n(τn)

log(τn)
ξ1,n with ξ1,n

d−→ N(0, θ2). (18)

Finally, following the method of proof of Lemma 1 in de Haan and Rootzén (1993), we
find that ∣∣∣∣∣

∫ τn

1

sρ−1 (sρ̂n−ρ − 1) ds − (ρ̂n − ρ)
∫ τn

1

sρ−1 log(s) ds

∣∣∣∣∣

≤ |ρ̂n − ρ|
∫ τn

1

sρ−1 log(s) (s|ρ̂n−ρ| − 1) ds

≤ |ρ̂n − ρ|
(∫ τn

1

sρ−1 log(s) ds

) (
τ
|ρ̂n−ρ|
n − 1

)
,

where the first inequality comes from the fact that
∣∣∣ ex−1

x
− 1
∣∣∣ ≤ e|x| − 1. Hence

√
kn

log(n/kn) log(τn)
B6,kn =

√
kn

log(n/kn)
b
(
log(n/kn)

)

× (
ρ̂n − ρ

)
∫ τn
1

xρ−1 log(x) dx

log(τn)

{
1 +O

(
τ
|ρ̂n−ρ|
n − 1

)}
.
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If τn →∞, this implies that ρ̂n
P→ ρ by the assumption (9) and therefore
√
kn

log(n/kn) log(τn)
B6,kn = oP(1). (19)

Combining (12), (13) and (15) with (17)-(19), Theorem 1(i) follows. If τn → τ, τ > 1,
then the normalization factor log(τn)→ log(τ) , 0 can be omitted in (12), (15) and (17)
while preserving the negligeability of these terms. Besides, we can replace ρ̂n with any
canonical choice, for instance ρ# < 0, and therefore

√
kn

log(n/kn)
B6,kn =

√
kn

log(n/kn)
b
(
log(n/kn)

) (
Kρ#(τn) − Kρ(τn)

)

−→ λµ(τ) := λ
(
Kρ#(τ) − Kρ(τ)

)
. (20)

The limiting distribution is then given by (13) and (18) with a bias term due to (20).
To conclude with the second part of our Theorem 1, we have to establish the limiting
distribution of

Un :=

√
knKρ#(τn)

log(n/kn)

(̂
b
(
log(n/kn)

) − b
(
log(n/kn)

))
+

√
kn log(τn)

log(n/kn)

(
θ̂n − θ

)
.

To this aim, remark that

Un =
k
− 1

2
n

log(n/kn)

kn∑

j=1

ω j,n( f j − 1) + oP(1),

where
ω j,n = β j,nKρ#(τn) + α j,n log(τn)

and

α j,n =
(
θ + b

(
log(n/kn)

)
x j

) 1 −
x j − xkn

1
kn

∑kn
i=1(xi − xkn)

2
xkn


 .

Using Lemma 7.3 in Diebolt et al. (2008), direct computations lead to

kn∑

j=1

Var
(
ω j,n( f j − 1)

)
=

kn∑

j=1

ω2
j,n ∼ θ2

(
log(n/kn)

)2
kn σ

2(τ)

and

kn∑

j=1

E

(
ω j,n( f j − 1)

)4
= 9

kn∑

j=1

ω4
j,n ∼ Ckn

(
log(n/kn)

)4
,

where C is a suitable constant. Therefore a direct application of Lyapounov’s theorem
yields

Un
d−→ N

(
0, θ2σ2(τ)

)
,

which achieves the proof of the second part of Theorem 1. ⊔⊓
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Proof of Theorem 2. We have:

log(x̃pn) − log(xpn) − b(log(n/kn)) log(τn)
1

kn

kn∑

j=1

(
log(n/ j)

log(n/kn)

)ρ
+ b(log(n/kn))

τ
ρ
n − 1

ρ

= θ{log(− log(Ukn,n)) − log log(n/kn)}

+


θ̃n − θ − b(logn/kn)

1

kn

kn∑

j=1

(
log(n/ j)

log(n/kn)

)ρ log(τn)

+ {log ℓ(− log(Ukn,n)) − log ℓ(log(n/kn))}

+

{
log ℓ(log(n/kn)) − log ℓ(− log(pn)) + b(log(n/kn))

τ
ρ
n − 1

ρ

}

:= B1,kn + B7,kn + B3,kn + B4,kn .

From (12), we have
√
kn

log(τn)
B1,kn = OP

(
1

log(n/kn) log(τn)

)
= oP(1),

and Theorem 2.2 in Diebolt et al. (2008) states that
√
kn

log(τn)
B7,kn

d−→ N(0, θ2).

From (14), we have

B3,kn = OP



b(log(n/kn))√
kn log(n/kn)


 ,

and thus
√
knb(log(n/kn))→ λ ∈ R entails

√
kn

log(τn)
B3,kn = OP




1√
kn log(n/kn) log(τn)


 = oP(1).

Finally, (16) implies that
B4,kn = oP(b(log(n/kn))),

which, combined with
√
knb(log(n/kn))→ λ ∈ R yields
√
kn

log(τn)
B4,kn = oP

(
1

log(τn)

)
= oP(1),

which achieves the proof of Theorem 2. ⊔⊓

Appendix

Diebolt et al. (2008) introduced the class of distributions D(α, β) with distribution
function given by

1 − F(x) = exp(−H(x)) where H−1(x) := x1/α(1 + x−β),

α and β being two parameters such that 0 < α, 0 < β < 1 and αβ ≤ 1. Under these
conditions, the above class of distributions fulfill assumptions (1) with (Rℓ(b, ρ)) and

11



(5) where θ = 1/α, ρ = −β, ℓ(x) = 1 + x−β and b(x) = −βx−β. It is thus possible to obtain
distributions with arbitrary θ > 0 and −1 < ρ < 0. These results are summarized in
Table 1.
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Distribution θ b(x) ρ

Absolute Gaussian |N|(µ, σ2) 1/2
1

4

log x

x
−1

Gamma Γ(α , 1, β) 1 (1 − α)
log x

x
−1

WeibullW(α, λ) 1/α 0 −∞

D(α, β) 1/α −βx−β −β

Table 1: Parameters θ, ρ and the function b(x) associated to some distributions
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Figure 1: Comparison of log(x̃pn) (τ = 2: continuous line, τ = 4: + + +) and log(̂xpn) (τ = 2:
dashed line, τ = 4: ⋆ ⋆ ⋆) for the |N(0, 1)| distribution. The horizontal lines on the left panel
represent the true values of log(xpn) (thin line: τ = 2, thick line: τ = 4).
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Figure 2: Comparison of log(x̃pn) (τ = 2: continuous line, τ = 4: + + +) and log(̂xpn) (τ = 2:
dashed line, τ = 4: ⋆ ⋆ ⋆) for theW(0.25, 0.25) distribution. The horizontal lines on the left
panel represent the true values of log(xpn) (thin line: τ = 2, thick line: τ = 4).
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Figure 3: Comparison of log(x̃pn) (τ = 2: continuous line, τ = 4: + + +) and log(̂xpn) (τ = 2:
dashed line, τ = 4: ⋆⋆⋆) for the Γ(0.25, 0.25) distribution. The horizontal lines on the left panel
represent the true values of log(xpn) (thin line: τ = 2, thick line: τ = 4).
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Figure 4: Comparison of log(x̃pn) (τ = 2: continuous line, τ = 4: + + +) and log(̂xpn) (τ = 2:
dashed line, τ = 4: ⋆ ⋆ ⋆) for the D(1, 0.5) distribution. The horizontal lines on the left panel
represent the true values of log(xpn) (thin line: τ = 2, thick line: τ = 4).
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Figure 5: |N(0, 1)| distribution. Boxplots of log(x̃pn) at the optimal value of kn obtained by
minimizing the true AMSE∗ (left), and at the value of kn obtained by minimizing the estimated
AMSE∗ (right). The horizontal line indicates the true value of log(xpn).
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Figure 6:W(0.25, 0.25) distribution. Boxplots of log(x̃pn) at the optimal value of kn obtained by
minimizing the true AMSE∗ (left), and at the value of kn obtained by minimizing the estimated
AMSE∗ (right). The horizontal line indicates the true value of log(xpn).
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Figure 7: Γ(0.25, 0.25) distribution. Boxplots of log(x̃pn) at the optimal value of kn obtained by
minimizing the true AMSE∗ (left), and at the value of kn obtained by minimizing the estimated
AMSE∗ (right). The horizontal line indicates the true value of log(xpn).
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Figure 8: D(1, 0.5) distribution. Boxplots of log(x̃pn) at the optimal value of kn obtained by
minimizing the true AMSE∗ (left), and at the value of kn obtained by minimizing the estimated
AMSE∗ (right). The horizontal line indicates the true value of log(xpn).
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