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Abstract. We present a theoretical description of the thermal fluctuations in a solid-supported stack of
lipid bilayers, for the case of vanishing surface tension γ = 0 and in the framework of continuous smectic
elasticity. The model is successfully used to model the reflectivity profile of a thin (16 bilayers) DMPC
sample under applied osmotic pressure and the diffuse scattering from a thick (800 bilayers) stack. We
compare our model to previously existing theories.

PACS. 61.10.Kw X-ray reflectometry (surfaces, interfaces, films) – 87.16.Dg Membranes, bilayers, and
vesicles – 87.15.Ya Fluctuations

1 Introduction

Lipid bilayer systems have been extensively studied us-
ing X-ray techniques, including small-angle scattering and
reflectivity measurements [1]. Among the various experi-
mental configurations employed, the case of solid-support-
ed stacks of bilayers is very important from a practical
point of view, as these samples are amenable to power-
ful, interface-sensitive scattering techniques (specular and
nonspecular scattering, grazing incidence difraction) avoid-
ing the ambiguities associated with powder averaging [2,
3].

Besides the fundamental physical problems they raise,
such as the molecular forces responsible for the inter-bi-
layer interaction potential (steric, electrostatic, van der
Waals etc.); the influence of static defects; the loss of long-
range order in low-dimensional systems and the role of the
fluctuations, these systems can also serve as testing ground
for the interaction of the cell membrane with membrane
active molecules, such as antimicrobial peptides [4]. It is
then of paramount importance to understand the differ-
ent parameters influencing the scattering signal in order to
achieve a comprehension of the spectra before the (some-
times subtle) effect of the included molecules can be con-
fidently assessed.

One of the most characteristic hallmarks of lamellar
systems (exhibiting one-dimensional order) is the Landau-
Peierls effect, whereby the long-range order is destroyed
by thermal fluctuations. Ever since the seminal paper of
Caillé [5], this phenomenon has been studied in great de-
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tail, first in the bulk [6–12] and subsequently in thin films
[13–16], mainly under the influence of extensive experi-
mental studies on freely-suspended films of thermotropic
smectics (see [17] for a review). Recently, theoretical mod-
els were developed for the study of fluctuations in smectic
films on solid substrates [18,19], taking into account both
the surface tension at the free surface and the boundary
conditions imposed by the substrate.

In this paper we describe the thermal fluctuations in a
solid-supported stack of lipid bilayers, concentrating on
the (experimentally relevant) case of vanishing surface
tension at the top of the stack. The influence of the sub-
strate is only considered inasmuch as it limits the fluctu-
ations of the bilayers, neglecting direct interactions (e. g.
van der Waals, electrostatic) which can become important
in the case of very thin films.

The paper is structured as follows : in section 2 we
discuss the positional fluctuations of the layers in a solid-
supported stack in the framework of continuous smectic
elasticity, taking however into account the discrete nature
of the system by the limitation of the number of modes
along the normal direction. In contrast with (free-standing
or supported) films of thermotropic smectics, for fully hy-
drated lipid multilayers the surface tension at the free sur-
face vanishes. This greatly simplifies the theoretical treat-
ment of the fluctuations. We conclude this section by a
discussion of the in-plane variation of the correlation func-
tion.

Section 3 starts with a discussion of the specular struc-
ture factor S(qz). We then consider the influence on S
of the coverage rate, which can vary due to the prepara-
tion technique or to partial dewetting upon hydration. We
compare our model with experimental data on the spec-
ular scattering and then with an estimate of the in-plane
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correlation function obtained from the diffuse scattering
signal.

2 Smectic elasticity

We consider in the following a solid-supported sample with
periodicity d, of thickness L = Nd and extending over a
surface S in the plane of the layers. We take the origin of
the z axis on the substrate, so that z = L gives the position
of the free surface. The in-plane position is denoted by
r⊥ = (x, y).

2.1 Model and fluctuations

The simplest description of smectic elasticity is provided
by the continuous smectic hamiltonian :

F =
1

2

∫

V

dr

[

B

(

∂u(r⊥, z)

∂z

)2

+K (∆⊥u(r⊥, z))
2

]

+
γ

2

∫

S

dr⊥ (∇⊥u(r⊥, L))
2
.

(1)

Following the treatment of Poniewierski and Ho lyst
[20], we shall decompose the deformation over independent
modes; first, we take the Fourier transform of u(r⊥, z) in
the plane of the bilayer :

u(r⊥, z) =
1√
S

∑

q⊥

exp(−iq⊥r⊥)u(q⊥, z) , (2)

The free energy (1) can now be written as the sum F =
∑

q⊥
Fq⊥

, with :

Fq⊥
=

1

2
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∣
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2
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]

+
γ

2
q2
⊥
|u(q⊥, L)|2 .

(3)

The boundary conditions for the u(q⊥, z) components are :

u(q⊥, 0) = 0 (4a)

γq2
⊥
u(q⊥, L) +B

∂u(q⊥, z)

∂z

∣

∣

∣

∣

z=L

= 0 . (4b)

The first condition (4a) simply states that the fluctuations
go to zero at the substrate; the second one (4b) is neces-
sary in order to write Fq⊥

in (3) as a quadratic form [14].
Physically, it expresses the continuity across the interface
of the σzz component of the stress tensor.

The correlation function of the fluctuations can be de-
fined as :

C(r⊥, z, z
′) = 〈u(r⊥, z)u(0, z′)〉 , (5)

where 〈·〉 denotes the ensemble average. From the Wiener-
Khinchin theorem, its Fourier transform is :

C(q⊥, z, z
′) = 〈u(q⊥, z)u(−q⊥, z

′)〉 . (6)

We then expand u(q⊥, z) over the orthonormal set of har-
monic functions fn(z), chosen to fulfill the boundary con-
ditions (4) :

u(q⊥, z) =

N
∑

n=1

δun(q⊥)fn(z) (7)

where the summation goes from 1 to N , instead of ∞,
because only N components are required to describe the
position of the N bilayers (this amounts to restricting the
summation to the first Brillouin zone). Keep in mind, how-
ever, that the index n denotes here a particular deforma-
tion mode and not an individual bilayer.

Finally, the free energy can be written as a sum of inde-

pendent modes : F = 1
2

∑

q⊥

∑N
n=1A(n,q⊥) |δun(q⊥)|2,

where the ”stiffness” A(n,q⊥) associated to each mode
depends on the elastic constants B, K and γ. The equipar-
tition theorem yields :

〈δun(q⊥)δum(−q⊥)〉 = δmn

〈

|δun(q⊥)|2
〉

= δmnkBT/A(n,q⊥) ,
(8)

with δmn the Kronecker symbol. Plugging (7) in (6), one
has :

C(q⊥, z, z
′) =

N
∑

n=1

fn(z)fn(z′)
〈

|δun(q⊥)|2
〉

. (9)

We can now Fourier transform back to the real space do-
main :

C(r, z, z′) =
1

2π

N
∑

n=1

fn(z)fn(z′)

∫

∞

0

q⊥dq⊥J0(q⊥r)
〈

|δun(q⊥)|2
〉

.

(10)

where r = |r⊥| is the in-plane distance (the ⊥ symbol can
safely be omitted).

2.2 The case of vanishing surface tension (γ = 0)

Until now we have presented the general formalism; in
each case, we must find the orthonormal set of functions
fn(z), which are selected by the boundary conditions, and

then determine the amplitude of each mode
〈

|δun(q⊥)|2
〉

(or, equivalently, the stiffness A(n,q⊥)). This is what we
shall now do for the case when γ = 0, which is not only
the simplest, but also the one relevant for systems of fully
hydrated membranes [21].
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The boundary conditions (4) are in this case : u(q⊥, 0) =

0 and ∂u(q⊥,z)
∂z

∣

∣

∣

z=L
= 0, so the set of fn(z) is :

fn(z) =

√

2

L
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(
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2
π
z

L

)

. (11)

The amplitudes are given by :

〈
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〉

=
kBT

B
(
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2

π
L

)2
+Kq4

⊥

=
kBT

B

4L2
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1

1 + (ξnq⊥)4

(12)

where ξ2n =
2Lλ

(2n− 1)π
, with λ =

√

K/B. We also define

the dimensionless parameter η =
π

2

kBT

Bλd2
, first introduced

by Caillé [5].
Finally, from equation (10) we have :

C(r, z, z′) = η

(

d

π

)2 N
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sin
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)
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)
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(
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,

(13)
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Fig. 1. The M(x) function

where the function M can be expressed in terms of the
Meijer G function1 :

M (x) =

∫

∞

0

dq q
J0(qx)

1 + q4
=

1

4
G0 4

0 1

(

x4
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∣

∣

∣ 0, 1
2
, 1
2
,0

)

(14)

A first observation is that the fluctuation amplitude

C(0, z, z) =
〈

|u(0, z)|2
〉

is always finite; the physical rea-

son is that the presence of the substrate sets a lower
boundary on the value of the wave vector in the z direc-
tion : from equation (11), qz ≥ π/2L, thus forbidding the

1 It can be represented in Mathematica by the sequence :
1
4
MeijerG

[

{{} , {}} ,
{{

0, 1
2
, 1

2

}

, {0}
}

,
(

x

4

)4
]

soft mode with qz → 0 and suppressing the Landau-Peierls
instability. Hence, there is no need for a lower cutoff in the
integral in equation (10).

It is immediately obvious that M(0) = π/4, so the
correlation function for r⊥ = 0 reduces to the simple for-
mula :

C(0, z, z′) = η

(

d

π

)2 N
∑

n=1

1

2n− 1

sin

(

2n− 1

2
π
z

L

)

sin

(

2n− 1

2
π
z′

L

)

,

(15)

which we shall use in determining the specular scattering
of the sample (subsection 3.1). It is noteworthy that this
function varies as C(0, z/d, z′/d) ∼ η(d/π)2 for a fixed
number of layers, so that any change in the thermody-
namic parameter η only results in a scale factor. This is
very convenient for fitting the scattering spectrum of the
system (see section 3), since the time-consuming calcula-
tion of the correlation matrix between the layers must only
be performed once, and adjusting the η and d parameters
only changes a prefactor.

As an illustration, we present in Figure 2 the values of
the correlation function in a stack of 100 bilayers; in (a),
C(0, z, z) represents the fluctuation amplitude for each bi-
layer, while in (b) C(0, z, L/2) represents the correlation
of each bilayer with the one in the middle of the stack.
Note the sigmoidal shape of the function in the first case
and the very sharp peak in the second one.

Although for any finite number of layers N the fluc-
tuation amplitude of the top layer C(0, Nd,Nd) remains
finite, it should diverge in the bulk limit N → ∞. From
formula (15) one obtains :

C(0, Nd,Nd)

η(d/π)2
=

N
∑

n=1

1

2n− 1

=
1

2

[

γ + ln 4 + ψ

(

N − 1

2

)]

(16)

where γ = 0.5772 . . . is Euler’s constant and the digamma
function ψ(z) is the logarithmic derivative of the gamma
function, given by : ψ(z) = Γ ′(z)/Γ (z). C(0, Nd,Nd)
diverges logarithmically, ψ (N − 1/2) being indistinguish-
able from lnN as soon as N > 3.

The same divergence spuriously appears even for a fi-
nite L when the stack is treated as a completely continuous
medium, without limiting the number of qz modes to N
(formally, this amounts to letting N → ∞ and d → 0 at
fixed L = Nd). In this case, after summing over the qz

modes, an artificial lower cutoff has to be introduced in
the integral over q⊥, as in reference [14]. A comparison
between our results and those obtained by this method is
presented in the Appendix.

2.3 In-plane variation

We shall now consider the r variation of the correlation
function. At this point, it is convenient to introduce the
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Fig. 2. The correlation function (scaled by η(d/π)2) in a 100
layer film a) C(0, z, z) b) C(0, z, L/2).

correlation of the height difference g(r, z, z′) defined by :

g(r, z, z′) =
〈

(u(r⊥, z) − u(0, z′))
2
〉

= C(0, z, z) + C(0, z′, z′) − 2C(r, z, z′) .
(17)

which has the advantage of remaining finite (for finite val-
ues of r) even in unbound systems. We shall further write
the argument of the M function in equation (13) as :
√

(2n− 1)π

2N

r

ξ
, where ξ =

√
λd emphasizing that, for a

given number of layers, the r variable in C(r, z, z′) and
g(r, z, z′) scales with the correlation length ξ. The phys-
ical significance of this quantity can be seen as follows
[22] : for distances less than ξ, the layers fluctuate inde-
pendently, while for distances greater than ξ the fluctua-
tions are coherent from layer to layer. For an unbounded
medium (translation invariance along z) it was shown [15]
that, for z = z′ the g(r) function behaves as

g

(

r

ξ

)

= η

(

d

π

)2
1

2

(

r

ξ

)2 [

1 − γ + ln 2 − ln

(

r

ξ

)]

(18)

if r < ξ and as

g

(

r

ξ

)

= η

(

d

π

)2 [

ln

(

r

ξ

)

+ γ

]

(19)

if r > ξ. In the limit r → ∞, g(r) diverges logarithmically,
as it is well-known from the continuum theory [5].

We present in Figure 3 the height difference self-corre-
lation function g(r/ξ, z, z), computed from equations (17)
and (13) for a stack of 800 bilayers.

0.001

0.01

0.1

1

0.01 0.1 1 10 100

g
(r
/ξ
,z
,z
)

r/ξ

Fig. 3. The height difference self-correlation function
g(r/ξ, z, z) scaled by η(d/π)2 in an 800 layer film, for z = 100d
(triangles) and z = 800d (circles). At small values of r/ξ, both
curves are well described by the asymptotic form (18) deter-
mined by Lei [15] (solid line), with no adjustable parameters.
Also shown is the average value gavg(r) (dotted line).

In the low r limit we find that, for all values of z, g(r) is
very well described by the asymptotic form (18). For high
values of r/ξ, the divergence (19) is replaced by saturation
to a value of g(r → ∞) = 2C(0).

As we shall see in subsection 3.5, the self-correlation
function g(r) can be extracted from the diffuse scattering
signal; however, when g also depends on z this signal will
be an average over the positions in the stack. For com-
parison with the experimental data we calculate gavg(r)
(shown in Figure 3 as dotted line) as an average over
g(r, z, z) for eight different values of z, equally spaced from
100d to 800d.

3 Scattering

As discussed in the Introduction, notable differences ap-
pear between the scattering signal from bulk smectic phases
and from solid-supported films. Even if the latter contain
thousands of bilayers, the clear separation between spec-
ular and diffuse scattering shows that the Landau-Peierls
effect is suppressed [23].

3.1 Specular scattering

In specular reflectivity studies, the incidence and reflection
angles are equal : αi = αf , corresponding to q⊥ = 0. As
we shall see below, in this case only the correlation at
zero in-plane distance (given by formula (15)) is relevant.
For simplicity and to emphasize the discrete nature of the
stack we shall use the notation C(0, nd,md) ≡ C(n,m).

The specular scattering factor of the lamellar stack
(without taking into account the substrate) S(qz,q⊥ = 0)



Doru Constantin et al.: Solid-Supported Lipid Multilayers : Structure Factor and Fluctuations 5

can be written as [29,15] :

S(qz) =

N
∑

m,n=1

cos[qzd(m− n)] e−
q
2
z

2
(C(m,m)+C(n,n)) (20)

The spectra are corrected for the diffuse scattering by
subtraction of an offset scan [2].
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Fig. 4. Specular structure factor for a stack of 1000 bilayers,
with d = 62 Å, for different values of the Caillé parameter
(from top to bottom, η = 0, 0.1, 0.2, and 0.3). Curves vertically
shifted for clarity.

3.2 Accounting for partial dewetting

Fully-hydrated lipid multilayers differ from freely-suspend-
ed smectic films in that their thickness is not constant;
partial dewetting leads to a variation in thickness over the
area of the sample [24]. Notably, this leads to an obliter-
ation of the Kiessig fringes, due to interference between
the external interfaces of the system. We take this ef-
fect into account by introducing a coverage rate for each
layer, f(n), which is 1 at the substrate and decreases on
approaching the free surface. The structure factor then
reads :

S(qz) =

N
∑

m,n=1

f(n)f(m) · cos[qzd(m− n)] (21)

· exp

[

−q
2
z

2
(C(m,m) + C(n, n))

]

.

For the coverage function we chose the convenient an-

alytical form f(n) =
[

1 −
(

n
N

)α]2
, where α is an empiri-

cal parameter controlling the degree of coverage. This is
a convenient method, but not a very precise one, insofar
as the fluctuation spectrum is still calculated for a fixed
number of layers, N . In the limit where the size of the
domains with a given thickness is larger than the X-ray
coherence length, an alternative approach would be to in-
coherently (no cross-terms between domains) average over
a distribution depending on the total layer number P (N).

3.3 Describing the reflectivity profile

In order to model the reflectivity profile of our system,
besides the structure factor of the stack one needs the form
factor of the bilayers. Furthermore, the presence of the
substrate must be taken into account. This is done using
a semi-kinematic approximation, where the reflectivity of
a rough interface is expressed by the master-formula of
reflectivity [25] :

R(qz) = RF(qz) ·
∣

∣

∣

∣

1

ρ12

∫

∞

0

dρ(z)

dz
eiqzzdz

∣

∣

∣

∣

2

(22)

where RF denotes the Fresnel reflectivity of the sharp in-
terface and ρ(z) is the intrinsic electron density profile
whereas ρ12 is the total step in electron density between
the two adjoining media (silicon and water, in our case).

For the electronic density profile of the bilayer we use
a parameterization in terms of Fourier components [2],
which has the advantage of describing the smooth pro-
file of lipid bilayers using only a few coefficients. For one
bilayer we have :

ρ bl(z) = ρ0 +

N comp
∑

k=1

ρkvk cos

(

2πkz

d

)

(23)

where ρ bl(z) is defined between −d/2 and d/2, N comp is
the total number of Fourier components, ρk is the ampli-
tude of the k-th component and vk the associated (com-
plex) phase factor, which in our case can be shown to
reduce to ±1 only, due to the mirror symmetry of the
bilayers. The bilayer form factor is given by the Fourier
transform of ρ bl(z).

The total density profile is given by the density pro-
files of the N bilayers (weighted by the coverage factors f
described in subsection 3.2) to which is added the profile
of the substrate, described by an error function of width
the rms roughness of the Si wafer (this quantity can be in-
dependently determined from the reflectivity of the blank
wafer and is typically worth 8 − 10 Å for all our measure-
ments).

Effects related to the finite instrumental resolution and
sample absorption are completely negligible in thin sam-
ples and were not implemented.

3.4 Comparison with experimental data

Lipid films partially hydrated in humid atmosphere ex-
hibit many well-defined Bragg peaks, indicative of very
low fluctuation amplitudes, so they are not a good test-
ing ground for our model. On the other hand, samples hy-
drated in excess pure water sometimes have too few Bragg
peaks. We thus chose to test our model against spectra ob-
tained on samples that are in excess solvent, but under an
osmotic pressure imposed by PEG (polyethylene glycol)
solutions [26]. Fig. 5 shows the X-ray reflectivity of 16
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bi-
layers on a silicon substrate measured in an aqueous PEG
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solution of 3.6 wt. % concentration. The temperature was
maintained at 40 ◦C, at which the lipids are in the fluid Lα

phase. The continuous line shows a full q-range fit to the
data using the structure factor (21). From the position of
the Bragg peaks one can determine a periodicity of 59.5 Å.
The suppression of the higher-order Bragg peaks clearly
indicates the influence of the fluctuations. The fit yielded
the parameters: η = 0.065 for the Caillé parameter and
α = 1.7 for the coverage exponent in 21. The correspond-
ing fluctuation amplitudes σ2(n) = C(n, n) and coverage
function f(n) are also shown. Further details on the re-
sults of these measurements will be presented elsewhere
[26].

Experimental details : The curve in Fig. 5 was mea-
sured at the bending magnet beamline D4 at the HASY-
LAB/Desy in Hamburg, Germany. After the beam passed
a Rh-Mirror to reduce high energy flux, a photon en-
ergy of 19.92 keV was chosen using a single Si(111) crys-
tal monochromator. The beam was collimated with sev-
eral motorized vertical and horizontal slits. The reflected
intensity was measured with a fast scintillation counter
(Cyberstar, Oxford).

Sample preparation: The lipid 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) was bought from A-
vanti and used without further purification. 16 bilayers
were prepared on a commercial silicon substrate using the
spin-coating method as described in [27]. The substrate
was cut to a size of 15 × 25 mm2 and carefully cleaned
in an ultrasonic bath with methanol for ten minutes and
subsequently rinsed with methanol and ultrapure water
(Milli-Q, Millipore). The lipid was dissolved in chloroform
at a concentration of 10 mg/ml. An amount of 100µl of
the solution was pipetted onto the cleaned and dried sub-
strate which was then accelerated to 3000 rpm using a
spin-coater. After rotation for 30 seconds, the sample was
exposed to high vacuum over night in order to remove all
remaining traces of solvent. The sample was refrigerated
until the measurement. For the measurement the sample
was mounted in a stainless steel chamber with kapton win-
dows which can be filled and in situ flushed with fluids
such as water or polymer solutions. PEG of molar weight
20.000 was bought from Fluka and used without further
purification. A concentration of 3.6 wt. % corresponds to
an osmotic pressure of about 104 Pa [28].

3.5 Diffuse scattering

It is well-known that the diffuse scattering signal from
a surface can be expressed in terms of the height dif-
ference self-correlation function g(r) of the surface [29].
For a multilayer system, one must also take into account
the cross-correlation function g(r, i, j) [30] and the calcu-
lations become much more complicated. However, it can
be shown that by integrating the diffuse signal in qz over
a Brillouin zone, the cross-correlation terms i 6= j cancel
and one is left with a curve corresponding to a transform
of an average self-correlation function [31].

We compare our model to recent experimental data
obtained on stacks of 800 fully-hydrated DMPC bilayers,

where the experimental self-correlation function gexp(r)
was obtained by inverting the integrated diffuse scattering
[32]. In Figure 6 we present gexp(r) (open dots), as well
as the gavg(r) function defined in subsection 2.3, with two
different sets of fitting parameters η and ξ.
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Fig. 6. Experimental values for the self-correlation function
gexp(r) (open dots) and gavg(r) for two sets of fitting param-
eters : η = 0.071 and ξ = 20 Å (solid line) and η = 0.09 and
ξ = 40 Å (dashed line). Inset : the same graph in log-log scal-
ing.

The theoretical curve can be scaled to the experimen-
tal data, either by adjusting both parameters, yielding
η = 0.071 for the Caillé parameter and ξ =

√
λd = 20 Å

(solid line in Fig. 6) or with a fixed parameter ξ = 40 Å
(from the analysis of the half width of the diffuse Bragg
sheets [32]), and an open parameter η which is adjusted
to η ' 0.09. Note that the present expression for g(r)
can give better account of the experimental data than the
bulk correlation function used before [15,32]. In particu-
lar, it reproduces the observed saturation regime at high
r, while the bulk correlation function diverges logarithmi-
cally. However, systematic discrepancies between data and
theory should not be overlooked. We note that the func-
tional form of g(r) for small r � ξN is not well captured,
in particular it can not explain the exponent g(r) ∝ r0.7

of the algebraic regime in the data. The possible reasons
for this discrepancy can be manifold: contributions of non-
bending modes to the diffuse scattering, a length scale de-
pendent bending rigidity κ, residual tension in the bilayers
due to edge effects, or nonlinearities in the Hamiltonian.
This needs to be investigated in future studies. Finally, a
more detailed treatment of the z-dependence is needed,
since the experimental analysis determines a correlation
function which is averaged over the scattering volume.

4 Conclusion

The presence of a substrate dramatically changes the ther-
mal fluctuations in lipid multilayers. Most noticeably, the
Landau-Peierls instability is suppressed. We present a the-
oretical model taking into account this feature and show
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Fig. 5. X-ray reflectivity curve of 16 DMPC bilayers on a Si substrate measured under osmotic pressure (symbols) fitted with
a full q-range semi-kinematic model [2] using the structure factor (21) (solid line). Inset : (top) fluctuation amplitude σ2(n) for
a Caillé parameter η = 0.065 obtained from the fit and (bottom) coverage function f(n) with α = 1.7 deduced from the fit.

that it describes very well the experimental reflectivity
data. Reasonable agreement is also obtained for the dif-
fuse scattering. Our result is a first step towards a unitary
interpretation of the global (specular and diffuse) scatter-
ing signal of solid-supported lipid multilayers.

Appendix. Comparison with previous results

In order to assess the validity of our method, we compared
our results with those obtained by Romanov and Ul’yanov
by a rigorous treatment of the discrete model [19]. How-
ever, they only show data for smectic films with a rather
high surface tension (γ = 30 mN/m). Thus, we chose their
thickest film (21 layers) and only compared the values of
C for the bottom half (close to the substrate), where the
surface tension plays a lesser role. As shown in Figure 7,
the agreement is quite good.

We also compared our results to those obtained by
Shalaginov and Romanov [14], who also used a continuous
model, but without restricting the number of modes. For
a solid substrate and a vanishing surface tension at the
top, their equations (18a) and (22) lead to :

C(m,n) =
kBT

8π
√
BK

∫ 2π

a0

0

dx

x cosh(xN)

[sinh[x(n+m−N)] + sinh(xN) cosh[x(n−m)]

− cosh(xN) sinh(x |n−m|)]

(24)

In Figure 8 we present our results for C(n, n) in a
film with 61 layers, with d = 30 Å and η = 0.14 (solid
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Fig. 7. Comparison between the results of the present method,
for γ = 0 (in full symbols and solid line) and the values ob-
tained by Romanov and Ul’yanov [19] for γ = 30 mN/m (open
symbols, dotted line) for the correlation function in a film com-
prising 21 layers (with d = 30 Å and η = 0.14). Values only
shown for the bottom half of the stack.

dots) as well as the values obtained using the formula (24),
for different values of the cutoff parameter a0 (from top
to bottom, 1.5, 4, 10, 30, 85, and 200 Å). Clearly, the
fluctuation amplitude is very sensitive to the value of a0,
with an approximately logarithmic dependence, and gives
the same results as our method for a0 = 85 Å. We remind
that neither in our method, nor in the one of Romanov
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and Ul’yanov is there any need for a cutoff, due to mode
number limitation (see the discussion in subsection 2.2).
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Fig. 8. Comparison between the results of the present method
(solid dots) and the values obtained by the method of Shalagi-
nov and Romanov [14] (lines), for a film comprising 61 layers.
From top to bottom, the values of the cutoff parameter a0 in
equation (24) are : 1.5, 4, 10, 30, 85, and 200 Å.
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