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High-frequency rheological behaviour of a multiconnected

lyotropic phase

D. Constantin(∗), J.-F. Palierne, É. Freyssingeas and P. Oswald

École Normale Supérieure de Lyon, Laboratoire de Physique, 46 Allée d’Italie, 69364

Lyon Cedex 07, France

PACS. 61.30.St – Lyotropic phases.
PACS. 82.70.Uv – Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems.
PACS. 83.80.Qr – Rheology : surfactant and micellar systems, associated polymers.

Abstract. – High-frequency (up to ω = 6 104 rad/s) rheological measurements combined with
light scattering investigations show that an isotropic and multiconnected phase of surfactant
micelles exhibits a terminal relaxation time of a few µs, much smaller than in solutions of
entangled wormlike micelles. This result is explained in terms of the local hexagonal order
of the microscopic structure and we discuss its relevance for the understanding of dynamic
behaviour in related systems, such as wormlike micelles and sponge phases.

In recent years, experimental evidence was presented as to the existence of isotropic phases
consisting of connected surfactant micelles [1–3]. It has been proposed that they provide an
intermediate structure between entangled wormlike micelles and sponge phases [4,5]. Indeed,
experimental results [4, 6, 7] show that, in some ionic wormlike micellar systems, a dramatic
decrease in both viscosity and relaxation time is induced by increasing the counterion con-
centration, feature that could be explained by the appearance of connections in the micellar
network. On the theoretical side, models for the flow behaviour of these connected phases have
been developed [5, 8], and rheology data has been interpreted according to these models in
order to characterize the appearance of connections, qualitatively [9–11] or quantitatively [12].
Throughout this body of work, however, only the relaxation modes specific to polymer sys-
tems have been considered. This approach is certainly valid in dilute phases with not too
many connections, but it must fail when the density of connections becomes important and
in concentrated systems, where the micelles begin to interact (sterically or otherwise). How
does the system behave then and which are the relevant concepts ?

In this Letter, we try to answer these questions by investigating a concentrated and highly
connected isotropic phase of a nonionic surfactant/water mixture. We argue that, in the
absence of reptation (suppressed by the connections), it can be short-range order (for a con-
centrated system) that dominates the rheological behaviour.

We employ high-frequency rheology and dynamical light scattering (DLS) to study the
isotropic phase in the C12EO6/H2O lyotropic mixture, where C12EO6 is the non-ionic sur-
factant hexa-ethylene glycol mono-n-dodecyl-ether, or CH3(CH2)11(OCH2CH2)6OH (for the
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Fig. 1 – Storage (G′) and loss (G′′) moduli as a function of ω at different temperatures. Solid curves
are guides for the eye. Only values above 1Pa (solid horizontal line) are relevant.

phase diagram see [13]). Its dynamic behaviour has already been investigated by measuring
the shear viscosity [14, 15], sound velocity and ultrasonic absorption [15] as well as NMR
relaxation rates [16], all pointing to the presence of wormlike micelles (at least above 10 %
surfactant concentration by weight [15]). In previous experiments [17, 18] we have shown
that, for 50 % wt surfactant concentration, above the hexagonal mesophase, the isotropic
phase has a structure consisting of surfactant cylinders that locally preserve the hexagonal
order over a distance d that varies from about 40 nm at 40 ◦C to 25 nm at 60 ◦C. Between
the cylinders there is a large number of thermally activated connections (with an estimated
density n ∼ 106 µm−3) [18].

We prepared the C12EO6/H2O mixture with 50.0 % C12EO6 weight concentration. The
surfactant was purchased from Nikko Chemicals Ltd. and used without further purification.
We used ultrapure water from Fluka Chemie AG. The mixture was carefully homogenized by
repeatedly heating, stirring and centrifuging and then allowed to equilibrate at room temper-
ature over a few days.

Rheology measurements were performed in a piezorheometer, the principle of which has
been described in reference [19] : the liquid sample of thickness 60µm is contained between two
glass plates mounted on piezoelectric ceramics. One of the plates is made to oscillate vertically
with an amplitude of about 1 nm by applying a sine wave to the ceramic. This movement
induces a squeezing flow in the sample and the stress transmitted to the second plate is
measured by the other piezoelectric element. The shear is extremely small : γ ≤ 10−4, so the
sample structure is not altered by the flow. The setup allows us to measure the storage (G′)
and loss (G′′) shear moduli for frequencies ranging from 1 to 6 104 rad/s with five points per
frequency decade. The entire setup is temperature regulated within 0.05 ◦C and hermetically
sealed to avoid evaporation.

Ten temperature points in the isotropic phase have been investigated, from 38.85 ◦C (tran-
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Fig. 2 – Typical data fit (T=40 ◦C) : thick lines, power–law fit (G′
∝ ω2 and G′′ = η0ω). The curves

cross at a frequency ω = 1/τ , where τ is the terminal relaxation time. Dotted curves, Maxwell model
fit (eq. 1) with the parameters η0 and τ .

sition temperature from the hexagonal phase) up to 48 ◦C. The results are displayed in figure
1. For clarity, only curves corresponding to 40, 42, 44, 46, and 48 ◦C are plotted. Values
below 1Pa (solid horizontal line) are not reliable, as the signal/noise ratio becomes poor. At
low frequencies, the response is purely viscous; it is only above ω = 103 rad/s that there is a
noticeable increase in the value of the storage modulus G′.

On general grounds, the low-frequency behaviour of the storage and loss moduli in a fluid
is [20] : G′ ∝ ω2 and G′′ ∝ ω. The slope of G′ vs. ω yields the ”zero-shear viscosity” η0 and
the two curves cross at a frequency ω = 1/τ , where τ is the terminal relaxation time. The
ratio η0/τ defines a shear modulus. If τ is the only relevant time scale in the system, the
complex modulus G∗(ω) = G′+ iG′′ has a simple analytical expression, known as the Maxwell
model [20] :

G∗(ω) =
iωη0

1 + iωτ
. (1)

The relaxation time τ separates two regimes : for ωτ � 1, the system can be considered as a
viscous fluid with viscosity η0, while for ωτ � 1 it exhibits elasticity, with a shear modulus
G∞ = η0/τ .

As shown in 2, we obtain robust results for the static viscosity η0 and for the relaxation
time τ (plotted vs. temperature in figure 3).

The temperature variation of the parameters η0 and τ can be described by Arrhenius laws;
for the viscosity :

η0(T ) = η0(T
∗) exp

[

Eη

kB

(

1

T
−

1

T ∗

)]

, (2)

yielding an activation energy Eη = 35±1 kBT (solid curve in figure 3). For comparison, contin-
uous shear measurements in a Couette rheometer (Haake, model RS100), give an activation
energy Eη = 31 kBT [21]. The relaxation time has an activation energy Eτ = 38 ± 6 kBT
(solid curve in figure 3). Within experimental precision, Eη = Eτ . The high-frequency elastic
modulus is therefore constant in temperature :

G∞ = η0/τ = 44 ± 6 103 Pa . (3)

The DLS setup uses an Ar laser (λ = 514 nm), delivering up to 1.5W, a thermostated bath
of an index matching liquid (decahydronaphthalene, n = 1.48), a photomultiplier and a PC-
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Fig. 3 – Static viscosity η0 and relaxation time τ as a function of temperature. Solid line is an
Arrhenius law fit (see text). The curves start at 38.85 ◦C, the transition temperature from the
hexagonal phase.

controlled 256 channel Malvern correlator with sample times as fast as 0.1µs. The scattering
vector q varies in the range 4 106 – 3 107 m−1. The signal is monoexponential over the whole
range. In figure 4 we show the relaxation rate Ω(q) vs. q2 for temperatures between 40 and
49 ◦C . The data fit well to a diffusion law (although there is a slight indication of super-
diffusive behaviour). Since the scattered intensity is related to the variations in refractive
index produced by concentration fluctuations, we obtain the collective diffusion constant for
the concentration field; its temperature variation can be described by an Arrhenius fit (solid
curve in figure 4 – inset) with an activation energy ED ' 4 kBT . The average value :

D = 1.65 10−10 m2/s (4)

is in good agreement with the one previously obtained from directional-growth experiments
[22] : D = 1.2 10−10 m2/s at the transition temperature (38.85 ◦C).

In unconnected wormlike micellar systems [5,24,25], the relevant relaxation process is rep-
tation, the micelle gradually disengaging from its initial deformed environment and adopting a
stress-free configuration. The typical reptation time is given by : τrep ' L2

m/Dc, with Lm the
average length of a micelle and Dc the curvilinear diffusion constant. However, if the micelles
can break up (with a lifetime τbr) this provides an additional pathway for disengagement,
the two resulting ends being free to recombine in a different environment. For τbr � τrep,
the terminal relaxation time is given by : τ = (τbrτrep)1/2 [24]. As an illustration, in the
CTAB/H20/KBr system the typical micelle length is Lm ' 1µm, while τ varies between 0.1
and 1 s depending on the surfactant concentration [26].

Let us now consider the effect of connections; following Drye and Cates [5], we will in-
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Fig. 4 – Relaxation frequency Ω versus q2 for different temperature values. Lines are linear fits through
the origin. The inset shows the values of D (in units of 10−10 m2/s) as a function of temperature.
Solid curve is an Arrhenius fit.

troduce a typical micelle length between cross-links Lc. The effect of the connections is that
reptation occurs on distances of the order of Lc, instead of the much larger Lm [25]. This ex-
plains the fact (counterintuitive at first sight) that connecting the network does in fact reduce
the viscosity. If Lc is small enough, the network is saturated, and the concept of entanglement
is no longer applicable; neither is the reptation mechanism. The system we investigate is well
in the saturated case, since the typical distance between connections on a micelle is only four
times the mean distance between micelles [18].

What is then the origin of viscoelasticity ? We begin the discussion of our results with the
very general observation that, when a system is dynamically correlated over a typical distance
L, one can only observe elastic behaviour by probing the system on scales smaller than the
correlation distance [27]. The time τ needed to relax the stress can then be estimated as :

τ ∼ L2/(2δD) , (5)

where δ is the space dimension and D is the diffusion constant associated to the relaxation
process (a classical example is provided by the Nabarro–Herring creep in solids [23]). The
system under investigation is very concentrated so, in contrast with the semi-dilute wormlike
micellar solutions usually studied, the micelle-micelle interaction plays an important role in
the dynamics of the phase. This interaction locally induces hexagonal order as mentioned
above; the relevant correlation length is the distance d over which the micelles preserve local
order. A pictorial representation is given in figure 5 : consider a material with short-range
order confined between two plates. The system can be seen as consisting of elasticity-endowed
units of typical size d, the correlation distance. After applying an instantaneous shear γ by
moving the upper plate to the left, one such unit (represented in thick line) has been advected
from point 1 to point 2. At time t = 0+ after the deformation, the stress on the upper plate
is σ = G∞γ. Since there is no long-range restoring force, once the particles equilibrate their
internal configuration (over a distance d), the elastic stress is completely relaxed; thus, after
a time τ given by eq. 5, σ = 0.

Does this mechanism account for the observed behaviour ? In light of the previous discus-
sion, let us estimate the relaxation time for our system. With the value of d obtained from
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Fig. 5 – Schematic representation of shear in a material consisting of units of typical size d. One such
unit (thick line contour) has been displaced between points 1 and 2. The instantaneous elastic stress
is σ = G∞γ; it relaxes over a typical time τ given by equation 5.

X-ray scattering and the DLS collective diffusion coefficient (eq. 4), one has :

τ ' d2/(6D) ∼ 10−6 s , (6)

in good agreement with the experimental results (figure 3).
A rough estimate of G∞ can be obtained by noticing that at short range (less than d), the

structure of the phase resembles that of the hexagonal one, so it should exhibit a similar shear
modulus when probed on very short scales. The shear modulus of the hexagonal phase can be
estimated as Ghex = kBT/a3 ' 2 104 Pa (with a = 6nm the lattice parameter), in agreement
with our result (eq. 3). This value can also be compared with preliminary measurements of
the shear modulus in the hexagonal phase of C12EO6 [28] yielding :

Ghex ' 2 105 Pa (7)

at room temperature, of the same order of magnitude as our result. The shear modulus of the
hexagonal phase should vary very little with temperature, in agreement with our experimental
findings.

However, our very simple model does not accurately describe the temperature variation
of the physical parameters in equation 6. An Arrhenius fit of d(T ) (from the X-ray data of
reference [18]) yields an activation energy Ed = 7±1 kBT . From equation (7) we would expect
that :

Eτ = 38 ± 6 kBT ∼ 2Ed + ED = 18 ± 2 kBT (8)

which is clearly off by a factor of two.
A tentative explanation involves the possible anisotropy of the correlated domains; in this

case, the value obtained from the X-ray diffractogram is an average between a transverse
correlation length d = d⊥ (which is the one relevant for the relaxation) and a d‖ (which
need not exhibit the same temperature variation). The same observation applies for D : we
measure an average value, but at small scale the structure is anisotropic.

A more detailed comparison with theory requires additional data on unsaturated struc-
tures. We are currently investigating the same isotropic phase at lower surfactant concentra-
tion, where preliminary experiments show rather complicated rheological behaviour.

Finally, we suggest that this approach can also be applied to sponge phases, the charac-
teristic distance being ξ, the correlation length. These phases are equally very fluid and, at
low frequency (up to at least 102 s−1), display pure Newtonian behaviour [29, 30]. Within
the framework of the same highly simplified model (equation 5), we predict a relaxation time
of order τ ∼ ξ2/(6D). For instance, in the C12EO5/hexanol/water system at 5.3 % volume
fraction of membrane, where ξ ' 0.1µm and D ' 2 10−12 m2/s [31], we expect τ ∼ 10−3 s.
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In conclusion, we study the dynamics of the isotropic (micellar) phase in the C12EO6/H2O
mixture at high concentration, where it is highly connected. We show that the observed
viscoelastic behaviour can be related to the local hexagonal order of the system.
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