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Abstract

We study a discrete-time approximation for solutions of systems of decoupled
forward-backward stochastic differential equations with jumps. Assuming that the
coefficients are Lipschitz-continuous, we prove the convergence of the scheme when
the number of time steps n goes to infinity. When the jump coefficient of the first
variation process of the forward component satisfies a non-degeneracy condition
which ensures its inversibility, we obtain the optimal convergence rate n=1/2. The
proof is based on a generalization of a remarkable result on the path-regularity
of the solution of the backward equation derived by Zhang [28, 29] in the no-
jump case. A similar result is obtained without the non-degeneracy assumption
whenever the coeflicients are C,} with Lipschitz derivatives. Several extensions of
these results are discussed. In particular, we propose a convergent scheme for the

resolution of systems of coupled semilinear parabolic PDE’s.

Key words : Discrete-time approximation, forward-backward SDE’s with jumps, Malli-

avin calculus.
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1 Introduction

In this paper, we study a discrete time approximation scheme for the solution of a
system of decoupled Forward-Backward Stochastic Differential Equations (FBSDE in
short) with jumps of the form

(1.1)

{ Xi = Xo+ [ib(X))dr+ [T o(X)dW, + [) [ B(X,—, e)ii(de, dr)
Y, = oXp)+ [Sh(©)dr — [ Z, - dW, — [ [, U,(e)ji(de, dr)

where © = (X,Y,Z.T) with I' := [, p(e)U(e)A(de). Here, W is a d-dimensional
Brownian motion and i an independent compensated Poisson measure fi(de,dr) =
w(de,dr) — A(de)dr. Such equations naturally appear in hedging problems, see e.g.
Eyraud-Loisel [13], or in stochastic control, see e.g. Tang and Li [26] and the recent
paper Becherer [4] for an application to exponential utility maximisation in finance. Un-
der standard Lipschitz assumptions on the coefficients b, o, 3, g and h, existence and
uniqueness of the solution have been proved by Tang and Li [26], thus generalizing the

seminal paper of Pardoux and Peng [21].

The main motivation for studying discrete time approximations of systems of the above
form is that they provide an alternative to classical numerical schemes for a large class
of (deterministic) PDE’s of the form

—Lu(t,z) + h(t,x,u(t,x),o(t,z)Vou(t,x), Z[u|(t,z)) = 0, u(T,z) = g(z), (1.2)
where

Lu(t,z) := %(t,m) + Vu(t, x)b(z) + % Z(Ja*(x))ij 83;:(:1 (t,x)

ij=1

+ [ {ulta+ B, e) = ult, ) = Vault.a) e b Alde)
Tlul(t,x) := /E{u(t,a: + B(z,e)) —u(t,x)} p(e) N(de) .

Indeed, it is well known that, under mild assumptions on the coefficients, the component
Y of the solution can be related to the (viscosity) solution u of (1.2) in the sense that
Y; = u(t, Xy), see e.g. [2]. Thus solving (1.1) or (1.2) is essentially the same. In the so-
called four-steps scheme, this relation allows to approximate the solution of (1.1) by first
estimating numerically u, see [11] and [18]. Here, we follow the converse approach. Since
classical numerical schemes for PDE’s generally do not perform well in high dimension,
we want to estimate directly the solution of (1.1) so as to provide an approximation of

u.



In the no-jump case, i.e. § =0, the numerical approximation of (1.1) has already been
studied in the literature, see e.g. Zhang [29], Bally and Pages [3], Bouchard and Touzi
[6] or Gobet et al. [15]. In [6], the authors suggest the following implicit scheme. Given
a regular grid m# = {t; = iT'/n, i = 0,...,n}, they approximate X by its Euler scheme
X™ and (Y, Z) by the discrete-time process (Y;", ZT );<, defined backward by

(3

ZZT = nkE |:}_/t7r IAVVZ‘+1 | ftl:|
Yro= E|YT, IR+ E (X5 Z)

where Y™ := g(X[ ) and AW,y := W,,,, — W,,. In the no-jump case, it turns out that

the discretization error

z+l %
Err, (Y, Z) := { max sup E[|Y; - Y/|? +Z/ E[|Z, — Z7*] dt

<N e[ty tiga]

is intimately related to the quantity

n—1 tiv1 B
> / E (% — Z,
i=0 Yt

Under Lipschitz continuity conditions on the coefficients, Zhang [27] was able to prove
1

B tit1
’ldt  where Z, :=nE {/ Zydt | ]:tz} .
t;

that the later is of order of n=*. This remarkable result allows to derive the bound

Err,(Y,Z) < Cn~'/2, ie. the above approximation achieves the optimal convergence

rate n= /2,

In this paper, we extend the approach of Bouchard and Touzi [6] and approximate the

solution of (1.1) by the backward scheme

Zr = nE|V7 AWZ-H|E}

7 = nE|YT [yp(e)i(de, (titi1]) | fti]
vro= B[V, | R+ L e (X5 27T

where Y/ := ¢g(X] ). By adapting the arguments of Gobet et al. [15], we first prove

that our discretization error

7,+1 _ _

Err, (Y, Z,U) := {max sup E[|Y; — V/? +Z/ E(|Z — ZI > + Ty — 7|7 dt}
<n te(titiv] ‘ '

converges to 0 as the discretisation step T'/n tends to 0. We then provide upper bounds

on

tz+1

+Z/ E[|Z — Z|* + T

— Ty *] dt,

max sup E[|Y; — Y|

ST e[t i)

[N



where Ty, :=n E [ ftti“ [ydt | fti] We first show that

i

n—1 tii1 B
max sup E[|Y; —Y,[*] + Z/ E[|l,—T,ldat < Cn™t
1<n tE[ti,ti+1] i—0 t
whenever the coefficients are Lipschitz continuous. Under some additional conditions on
the inversibility of V3 + I;, see Hy, or on the regularity of the coefficient, see Hy, we
then prove that

n—1 tiv1 B
Z/ E(|Z— Z,)}]dt < Cn'.
i=0 Yti

This extends to our framework the remarkable result derived by Zhang [28, 29] in the
no-jump case and allows us to show that our discrete-time scheme achieves the optimal

convergence rate n~ /2.

Observe that, in opposition to algorithms based on the approximation of the Brownian
motion by discrete processes taking a finite number of possible values (see [1], [8], [9], [10]
and [17]), our scheme does not provide a fully implementable numerical procedure since
it involves the computation of a large number of conditional expectations. However, the
implementation of the above mentioned schemes in high dimension is questionable and,
in our setting, this issue can be solved by approximating the conditional expectation
operators numerically in an efficient way. In the no-jump case, Bouchard and Touzi
[6] use the Malliavin calculus to rewrite conditional expectations as the ratio of two
unconditional expectations which can be estimated by standard Monte-Carlo methods.
In the reflected case where h does not depend on Z, Bally and Pages [3] use a quantization
approach. Finally, Gobet et al. [15] have suggested an adaptation of the so-called
Longstaff and Schwartz algorithm based on non-parametric regressions, see [16], which
also works in the case where § # 0 but the driver does not depend on U.

Since this is not the main issue of this paper, we leave the theoretical study and numerical

implementation of such methods in our setting for further research.

The rest of the paper is organized as follows. In Section 2, we describe the approxi-
mation scheme and state our main convergence result. We also discuss several possible
extensions. In particular, we propose a convergent scheme for the resolution of systems
of coupled semilinear parabolic PDE’s. Section 3 contains some results on the Malliavin
derivatives of Forward and Backward SDE’s. Applying these results in Section 4, we
derive some regularity properties for the solution of the backward equation under ad-
ditional smoothness assumptions on the coefficients. We finally use an approximation

argument to conclude the proof of our main theorem.



Notations : Any element z € R? will be identified to a column vector with i-th
component x' and Euclidian norm |z|. For z; € R%, i < n and d; 6 N, we define

(z1,...,2,) as the column vector associated to (zl,..., 2%, ...zl ... 2%). The scalar

product on R is denoted by z - y. For a (m x d)—dlmensional matrix M, we note
|M| :=sup{|Mz|; z € R, |z| = 1}, M* its transpose and we write M € M? if m = d.
Given p € N and a measured space (4, A, i), we denote by LP(A, A, ua; R?), or simply
LP(A, A) or LP(A) if no confusion is possible, the set of p-integrable R%valued measur-
able maps on (A, A, p14). For p = 0o, L®(A, A, ua; R?) is the set of essentially bounded
R?-valued measurable maps. The set of k-times differentiable maps with bounded deriv-
atives up to order k is denoted by CF and Cf° := My>1CF. For a map b : R — R* we
denote by Vb is Jacobian matrix whenever it exists.

In the following, we shall use these notations without specifying the dimension when it

is clearly given by the context.

2 Discrete time approximation of decoupled FBSDE

with jumps

2.1 Decoupled forward backward SDE’s

Let (Q,F,F = (Fi)i<r,P) be a stochastic basis such that Fy contains the P-null sets,
Fr = F and F satisfies the usual assumptions. We assume that F is generated by a
d-dimensional standard Brownian motion W and an independent Poisson measure g
on [0,7] x E where E = R™ for some m > 1. We denote by FV = (FV),<7 (resp.
F = (F}")i<r) the P-augmentation of the natural filtration of W (resp. p).

We assume that the compensator v of p has the form v(dt,de) = A(de)dt for some
finite measure A\ on E, endowed with its Borel tribe £, and denote by i := u — v the

compensated measure.

Given K > 0, two K-Lipschitz continuous functions b : R?* — R? and ¢ : R? — M¢,
and a measurable map 3 : R? x E — R? such that

sup |3(0,e)] < K and sup|B(z,e) — B(2',e)| < K|z —2/| Vaz, o/ €R?,(2.1)

eckE eckE

we define X as the solution on [0,77] of

X, = X0+/Otb(X)dr+/ »)dW, +/ /ﬁ —,e)p(de,dr),  (2.2)

for some initial condition X, € R?. The existence and uniqueness of such a solution is



well known under the above assumptions, see e.g. [14] and the Appendix for standard

estimates for solutions of such SDE.

Before introducing the backward SDE, we need to define some additional notations.
Given s < t and some real number p > 2, we denote by S[I; 1 the set of real valued
adapted cadlag processes Y such that

Wlsy, = E|swp 1P| < .
[s-1] s<r<t
H’[JS q is the set of progressively measurable R%valued processes Z such that
b 1
t s|P
2, = & |([12Par) | < o,
LY (s, 18 the set of P ® & measurable maps U : 2 x [0,T] x E2 — R such that

1
t »
Uz, = E [/ / IUS(e)\pA(de)ds} < o0
et s E
with P defined as the o-algebra of F-predictable subsets of Q2 x [0,T]. The space

D R /4 14 P
B[s,t] = S[Sﬂ X H[s,t] X LA,[s,t]

is endowed with the norm

[un

10720y, = (W, + 120, + 10T )"

In the sequel, we shall omit the subscript [s,?] in these notations when (s,t) = (0,7).

For ease of notations, we shall sometimes write that an R"-valued process is in Sfi g Or

Li[& 1 meaning that each component is in the corresponding space. Similarly an element
p

of M™ is said to belong to HI[JS q if each column belongs to H[s q The norms are then

naturally extended to such processes.

The aim of this paper is to study a discrete time approximation of the triplet (Y, Z,U)

solution on [0, 77 of the backward stochastic differential equation
T T T
E/t = g(XT) + / h (G'r) dr — / Z'r ' dW’r - / / U7'<€>/7“(d67 d?“) ) (23>
t ¢ t JE
where © := (X, Y, Z,T') and I is defined by
ro— / p(e)U()A(de) |
E

6



for some measurable map p : £ — R™ satisfying

sup|p(e)] < K. (2.4)

eeE o

By a solution, we mean an F-adapted triplet (Y, Z,U) € B? satisfying (2.3).

In order to ensure the existence and uniqueness of a solution to (2.3), we assume that
the map g : R? — R and h : R? x R x R? x R™ — R are K-Lipschitz continuous (see
Lemma 5.2 in the Appendix).

For ease of notations, we shall denote by ), a generic constant depending only on p
and the constants K, A(E), b(0), ¢(0), h(0), g(0) and T.. We write C if it also depends

on Xy. In this paper, p will always denote a real number greater than 2.

Remark 2.1 For the convenience of the reader, we have collected in the Appendix
standard estimates for the solutions of Forward and Backward SDE’s. In particular,

they imply
IX, Y Z, Ui < Cp (1+1X0) , p22. (2.5)

The estimate on X is standard, see (5.4) of Lemma 5.1 in the Appendix. Plugging this
in (5.8) of Lemma 5.2 leads to the bound on ||(Y, Z,U)||z,. Using (5.5) of Lemma 5.1,
we also deduce that

E [Sup |Xu—XS|p} < C, (14+|XoP) |t —s|, (2.6)

s<u<t

while the previous estimates on X combined with (5.9) of Lemma 5.2 implies

E{mﬂ%—mﬂS%{OH&WH—W+M%“+WM%J- (2.7)

s<u<t

2.2 Discrete time approximation

We first fix a regular grid 7 := {t; :=iT/n, i =0,...,n} on [0,T] and approximate X
by its Euler scheme X™ defined by

X=X (2.8)
Xg o o= X{+ %b(Xtﬁ> + o (X)) AW + [, B(XT, e)fi(de, (t;, ti11])

tit1

where AW, 1 :=W;,_, — W,,. It is well known that

i1

max [E
rsn tE[tistig1]

sup | X; — Xt’;|2] < CInt. (2.9)



We then approximate (Y, Z,T') by (Y™, Z™,T'™) defined by the backward implicit scheme

77 = nE YtHAWHLE}
7 = nE |7 [ ple)ilde, (t tin)) | ]—"ti] (2.10)
vro= BV, | A4 h(sz?,Zz;Tm

on each interval [t;,t;11), where Y;" := g(X[ ). Observe that the resolution of the last
equation in (2.10) may involve the use of a fixed point procedure. However, h being
Lipschitz and multiplied by 1/n, the approximation error can be neglected for large
values of n.

Remark 2.2 The above backward scheme, which is a natural extension of the one
considered in [6] in the case § = 0, can be understood as follows. On each interval
[ti,tit1), we want to replace the arguments (X,Y, Z,T') of h in (2.3) by F;,-measurable
random variables (Xti, ﬁi, Zti, f‘tl) It is natural to take Xti = X[ . Taking conditional
expectation, we obtain the approximation

1 -
Y;fi = E [}/1;7;—0—1 |EJ + ﬁh (Xg7nivztwrti) :

This leads to a backward implicit scheme for Y of the form

(3

_ 1 L
vro= E[Vr, | A +—h (X7 ¥, 2T (2.11)

It remains to choose Z;, and Ty, in terms of Y,

7" . By the representation theorem, there
i+1”

exist two processes Z™ € H? and U™ € L3 satisfying

_ tH—l i+1
}Q?+1_E[t+1|]:t} = / z7 - dW+/ /U7r a(ds, de) .
ti

Observe that they do not depend on the way YZT is defined and that Z™ and I'™ defined
in (2.10) satisfy

B tir1 _ tit1
Zi = nE [/ Z7ds | .7-}} and I} = nE [/ [Tds | .7-}} (2.12)
t; t;

and therefore comc1de with the best H[t 1,y -@pproximations of (Z7)s,<i<t,,, and (I ) <e<t .y
= ([gzple JA(de))s<t<t, ., bY Fr measurable random variables (viewed as constant

processes on [t“tl_i_l)), ie.

tit1 B tit1
E [/ |z — Zmzdt} = inf E [/ |Z — ZZ-Ith]
t; v ZiELQ(Q,}—ti) t

ti+1 -~ ti+1
E U ITT — Pf_|2dt} = inf E U ITT — Fi|2dt} :
ti ¢ FiELQ(Q,fti) t;

8



Thus, it is natural to take (Z,,,I';,) = (Z7,I7) in (2.11), so that

(3

t7,+1 i+1
VS o= VT 4 h(Xt”,Yt”,Zf,F”) / Z AW, — / /U“ fi(ds, de) .
t

i

Finally, observe that, if we define Y™ on [t;,¢;11) by setting
Y7 o= Y[ = (t—t;) h(X], YT, 2T, TT) + / ZTdW, +/ /U7T i(ds,de)
we obtain
tit1 1 _ _ —
b | [y | = E [V VR (Y 2T = V=Y
t;

Thus, in this scheme, Yt’r is the best H[Qtl 1,1 @Pproximation of Y™ on [t;,t;11) by Fi,-
measurable random variables (viewed as constant processes on [t;,t;11)). This explains
the notation Y™ which is consistent with the definition of Z™ and I'".

Remark 2.3 One could also use an explicit scheme as in e.g. [3] or [15]. In this case,
(2.10) has to be replaced

7Zr == nE }QHAWH\]—}]
Ir = nE|Y], [pole)n(de, (ti7ti+1])|-/fti} (2.13)
Vo= B[V, yft]+5ﬂ<:[h (X077, 27.77) | 7

with the terminal condition Y;* = g(X7 ). The advantage of this scheme is that it does
not require a fixed point procedure. However, from a numerical point of view, adding
a term in the conditional expectation defining 17;” makes it more difficult to estimate.
We therefore think that the implicit scheme may be more tractable in practice. The

convergence of the explicit scheme will be discussed in Remarks 2.6 and 2.8 below.

2.3 Convergence of the approximation scheme

In this subsection, we show that the approximation error

1
2
t<T

Em, (Y, Z,U) = {SHPEUYt VP +11Z = 275 + T — F”Hm}

converges to 0. Before to state this result, let us introduce the processes (Z,I') defined

on each interval [t;, t;11) by

) tiin B tit1
Z,:=nE {/ Zsds |.7:t1} and I'y:=nE [/ L d5|]:tz} :
t; ti



Remark 2.4 Observe that Z;, and I';, are the counterparts of ZZ: and f‘g for the original
backward SDE. They can also be interpreted as the best H[Qtl tiH]—approximations of
(Zi)t;<t<tsry and (I't)y,<t<t,,, by Fr-measurable random variables (viewed as constant

processes on [t;,t;11)), i.e.

tiy1 _ tit1
E [/ \Z, — Zti|2dt} ~  if E [/ 2, — Zi]th}
t; ZiELQ(Q,]:ti) ti

tir1 _ tit1
E U T, —Fti|2dt] — if E U T, —Fi|2dt} .
t; F»;ELQ(Q,fti) t;

Proposition 2.1 We have
n—1 tit1 B -
> / E[|Y; — Y, [?]dt <OYn™' and ||Z — Z|jge + |0 — Tllmz < e(n) (2.14)
i=0 Vi

where €(n) — 0 as n — 0.

Moreover,
Err, (Y,Z,U) < CY (0 '?+(|Z = Z||u=z + T — Tla2) (2.15)
so that

Err, (Y, Z,U) — 0.

n—oo

Proof. We adapt the arguments of [6]. Recall from Remark 2.2 that

t t
Y[ = Yt?—(t—ti)h(ng,Yt?,Zzz,Fg)Jr/ Z;r-dWSJr/ /U;(e),z(ds,de)
t; t; E

on [t;,t;41) and that V;" = Y;". For L=Y,Z or U, we set 0L := L — L™ . It follows from
the definition of Z™ and U™ in (2.12), Jensen’s inequality and the bound on p that

E[|Z, - ZF] +E [T, —T7 ] < czn(uéznaﬁw+H<5UHi§[t ).<2.16>

Jtgatigal

For t € [t;,t;11), we deduce from Itd’s Lemma, the Lipschitz property of h, (2.9) and
(2.16) that

tiv1
E(6ViP)+ 1021, +16UIE; < E[oYi.Fl+a / E[|5Y;|)ds
ttiy [ttt t
CS -2 >, ™
+ 2 (n7+ B+ BY) (2.17)

where « is some positive constant to be chosen later, and (B;, BF) is defined as

tit1
Bio= [ E[V.-Yil) (12, - 2] +E [T, - L)) ds
t;

Br = n'E[|6Y.)Y + ||5ZH%IE.¢.+11 +(|6U|13.

Asltgotiq]

10



Using Gronwall’s Lemma, it follows that
C9 _
Eanf;(mm@fh~im*+&+Bn)wv (2.18)
o

Plugging this inequality in (2.17) and taking a and n large enough leads to

CD
ﬂ+n(wm%@uﬂ+wvmhﬁﬂj < (14 22)E[oY;, [ (2.19)

+ O3 (n 2+ B +n'E[|0Y,[]) .

E[|oYy,

with n > 0. For n large enough, combining the last inequality with the identity 0Y;, =
g(Xr) — g(X7T) and the estimate (2.9) leads to

E[l5Y,

’l < C9(n"'+B) where B := i (2.20)

which plugged into (2.19) implies

E[l5Y,

B _
40 (H(SZH%[QWM] + HéUHii,[ti, ) < E[|§Y;,., "]+ CY (n2 + . + B¢> .

tit1]
Summing up over i and using (2.18) and (2.20) , we finally obtain

Err, (Y, Z,U)? <CY (n™' + B) . (2.21)

Since Y solves (2.3),

E[Y, - Y,

t
< 0y /t E[|h(XT,}/,,,Zr,FT)|2 + |Z,]* + /]ElUT(e)|2)\(de)} dr .

Combining the Lipschitz property of h with (2.5), it follows that

n—l gy 0
Z/JrEUYt_Ytint < %
i=0 7t

n

This is exactly the first part of (2.14) which combined with (2.21) leads to (2.15). It
remains to prove the second part of (2.14). Since Z is F-adapted, there is a sequence of
adapted processes (Z"), such that Z] = Z' on each [t;,t;41) and Z" converges to Z in
H?. By Remark 2.4, we observe that

1Z=Zlf < 122",

and applying the same reasoning to I' concludes the proof. a

11



Remark 2.5 If 0 = 0, which implies Z = 0, or A does not dependent on Z, the term

B, in the above proof reduces to
tit1 B
B, = / (E[|Y; - Y,|*] + E [Ty — L%]) ds .
t;
In this case, the assertion (2.15) of Proposition 2.1 can be replaced by
Err, (Y, Z,U) < CF (™2 + |0 — Tja2) - (2.22)

Remark 2.6 In this Remark, we explain how to adapt the proof of Proposition 2.1 to
the explicit scheme defined in (2.13). First, we can find some Z™ € H? and U™ € L3
such that

- it tig1 R
Yi, = ]E[YJH Iftl] + / ZT - dW, + / / U™ (e)ji(de, ds) .
t t; E

We then define Y™ on [ti,tit1] by

t t
V7 = Y7 —(t—t)E [h (Xg;,ngl,zgmg) \Ei] +/ Z;r-dWS—l—/ /Ug(e)g(de,ds).
t; t; E

Observe that }A/;’L L= Y7 and

tit1

~ tit1 . ~ tit1 R
Zy = RE{/ Z;rd$|.7:ti} , If = n]E[/ ngslfti} ,
ti t;

for all 7+ < n. Moreover

h(Xw}/TSaZ&FS) = ]E [h(Xtiv}/tiJrl)Ztiaf‘ti) ’ ftl]
+ E [h(Xt“ Ytia Ztm th) - h(Xtiu Y;i+17 Ztia th) | th]
+ (WX, Ys, Zo, D) — WXy, Yaro 24, T4,))

where by the Lipschitz continuity of ~ and (i) of Theorem 2.1 below
]E |:(]E [h(Xtia}/;prti)fti) - h(Xtia}/;fi+172ti;1:‘ti) | EJ)Q] S Cg/n )
and

tit1 L
]E |:/ (h<XS7§/;7Z57Fs> _h(Xti7}/;i7Zt¢7Fti>)2dS:|
t

t;
< CY (n2 + / "E [1Zs = Z,|*] + E [Ty — T, |°] ds)
t

by (i) of Theorem 2.1 and (2.6). Using these remarks, the proof of Proposition 2.1 can
be adapted in a straightforward way. This implies that the approximation error due to
the explicit scheme is also upper-bounded by C§ (n™V2 + || Z — Z|jg2 + ||T' — T||m2) -

12



2.4 Path-regularity and convergence rate under additional as-

sumptions

In view of Proposition 2.1, the discretization error converges to zero. In order to control
its speed of convergence, it remains to study ||Z — Z||2. + [T’ — T|%.. In this section,

we shall appeal to one of the additional assumptions :

H, : For each e € E, the map z € R? — ((z,e) admits a Jacobian matrix V3(z,e)
such that the function

(2,6) € R x R = a(x, & e) == £'(VB(x, ) + [a)§
satisfies one of the following condition uniformly in (z,¢) € R? x R?
a(z,§e) > [EPKT" or a(z,§e) < KT

H, : o, b, 8(-,¢e), h and g are C}} functions with K-Lipschitz continuous derivatives,

uniformly in e € F.

Remark 2.7 Observe for later use that the condition H; implies that, for each (z,e) €
R? x E, the matrix V3(x,e) + I is invertible with inverse bounded by K. This ensure
the inversibility of the first variation process VX of X, see Remark 3.2. Moreover, if ¢
is a smooth density on R? with compact support, then the approximating functions ¥,
k € N, defined by

Be) = [ 5@ e)alhle ~ al)da
R4
are smooth and also satisfy Hj.

We can now state the main result of this paper.

Theorem 2.1 The following holds.
(i) For alli <n

E| sup [V,

te[ti,ti+ﬂ

< Cin ' and E| sup I, —T,/?

te[ti,tiH]

< CInt (2.23)

so that [T — T2, < CIn~' and |0 — T3, < CIn~t.

(ii) Assume that Hy holds. Then

n—looatig
> / E[|Z: — Z,
i=0 Yt

13
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so that || Z — Z||}. < CYn~t.

(iii) Assume that Hy holds. Then, for alli <mn and t € [t;,t;11],

E []Zt — Zy,

1< ognt, (2.25)
so that || Z — Z||}, < C9n~".

This regularity property will be proved in the subsequent sections. Combined with
Proposition 2.1 and Remark 2.5, it provides an upper bound for the convergence rate of

our backward implicit scheme.

Corollary 2.1 Assume that either Hy holds, or Hy holds, or o = 0, or h is independent
of Z. Then,

Err, (Y,Z,U) < CIn~Y/2.

Remark 2.8 In view of Remark 2.6, the result of Corollary 2.1 can be extended to the
explicit scheme defined in (2.13).

2.5 Possible Extensions

(i) It will be clear from the proofs that all the results of this paper hold if we let the
maps b, o, 3, and h depend on ¢ whenever these functions are 1/2-Hélder in ¢ and the
other assumptions are satisfied uniformly in ¢. In this case, the backward scheme (2.10)
is modified by setting

YT o= B[V

tiy1

1 L
| Fu + i, X7V, 2,T7)

(ii) The Euler approximation X7 of X could be replaced by any other adapted approx-
imation satisfying (2.9).

(iii) Let M be the solution of the SDE

t t
M= Mok [ o) [ [ B e, dr)
0 0 E

where by, : R¥ — R¥ and By(-,e) : R¥ +— R* k > 1, are Lipschitz continuous uniformly
in e € E with |8)/(0, )| bounded, and consider the system

{Xt = Xo+fotb(MT,X,,)dT+fOtU(Mer)dWr+fotfEﬁ(MT—’X”_’e)’a(de’dr)(z%)

Yo = g(Mp, Xp)+ [ (M, 0,)dr — [ Z,-dW, = [ [, Up(e)a(de, dr)

14



where b, o, ((-,e) and h are K-Lispchitz, uniformly in e € E and |3(0, -)| is bounded.

Here, the discrete-time approximation of Y is given by

Vo= gMELXT) L Y = B[V, LR b (XYL 2T

where (M™, X™) is the Euler scheme of (M, X). Considering (M, X) as an R*"¢ dimen-
sional forward process, we can clearly apply the results of Proposition 2.1. Moreover,
we claim that Theorem 2.1 (i) holds as well as (ii) (resp. (iii)) if H; (resp. Hy) holds
for b(m,-), a(m,-), B(m,-), g(m,-) and h(m,-) as functions of (z,y, z,7) uniformly in
m € R¥. This comes from the fact that the dynamics of M are independent of X and
that the Malliavin derivative of M with respect to the Brownian motion equals zero.
This particular feature implies that the proofs of Section 3.3 and Section 4 work without

any modification in this context.

(iv) In [22], see also [25], the authors consider a system of the form

{ Xi = Xo+ [y b(My, X, )dr + [y o(M,, X,)dW, (2.27)

Ve = g(Mp, Xp)+ [T h(M,,0,)dr — [ Z, - dW, — [ [, U,(e)ji(de, dr)

where M is an F#-adapted purely discontinuous jump process. In [22], it is shown that
a large class of systems of (coupled) semilinear parabolic partial differential equations
can be rewritten in terms of systems of BSDE of the form (2.27), where the backward
components are decoupled. However, their particular construction implies that b, o, h
and ¢ are not Lipschitz in their first variable m. In this remark, we explain how to
consider this particular framework.

Hereafter, we assume that the path of M can be simulated exactly, which is the case in
[22]. Then, recalling that \(E) < oo so that p has a.s. only a finite number of jumps on
[0, T, we can include the jump times of M in the Euler scheme X™ of X. Thus, even if
b and o are not Lipschitz in their first variable m, we can still define an approximating
scheme X™ of X such that

E

sup |Xt - XZ:lQ S Cg |ti+1 - tz|
te[ti,ti+1]

whenever b(m,-) and o(m,-) are Lipschitz in z and |[b(m,0)| + |o(m,0)| is bounded,
uniformly in m. We now explain how to construct a convergent scheme for the backward
component even when g and h are not Lipschitz in m. We assume that h(m, -) is Lipschitz

and h(m,0) is bounded, uniformly in m. We make the same assumption on g(m, -). The
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approximation is defined as follows:

Zi = nE |V, AW | 7]
Ff = nE V5, fyp@nde. (b, tin]) | 5] (225)
V7 = E [ngﬂ \fti] L E [fff“ h(m,Xg;,}@ﬂ,Zg,Fg) ds | }}i]

for ¢ € [t;,t;4+1), with the terminal condition Y;" = g(M,,, X[ ). With this scheme the
proof of Proposition 2.1 can be modified as follows. We keep the same definition for Z™

and U™ but we now define Y™ as

tit1?

t t
+ /Z;-dWS+/ /U;f(e)/z(ds,de).
t; t; FE

Let us introduce the processes (H;);<r and (Hy)i<7 defined, for t € [t;,t;41], by

_ tit1 _ _
yr = Y;;—(t—ti)IE[n/ n (M, x5, Y7 z;;,r;;)dsmi
t;

_ _ tiy1 o
Ht = h<Mt7Xti7}/t¢7Zti7Fti)7 Ht = ]E |:n / h (MS7Xt¢7}/;iJZti7Fti> dS | ft1:| .
t;
Observe that h(M,;, 0;) —E [n ftim h (MS, XY, Zs,, fti) ds | ‘Ftii| can be written as

_ _ tit _
h‘(Mt7@t)_Ht+Ht_Hti+Hti —E |:7’L / h(MS7Xti7Y;fi+17Zti>Fti) ds | ft1:| .
t;

Recall from (iii) of this section that (i) of Theorem 2.1 holds for (2.27). Following the

arguments of Remark 2.6, we get

E i1 n

B tit1 e
'th‘ —E {n / h (MS’XWY; thFti) ds ’ }—tl}
t;

2
By (i) of Theorem 2.1 and (2.6),

tiv1 tit1 _ _
/ E [|W(M, ©p) — Hi[?] dt < C3 (n2+/ E[|Z: — Z,| + Ty — [, ] dt) .
t t

@ i

We then deduce from the same arguments as in the proof of Proposition 2.1 that
Err, (Y, 2,U) < C3(n" 2+ 1Z = Zllwe + T = Ullwe + | H — Hl|u2) |
where
1Z = Z|luz + [|IT = Tllgz + |1 H — Hllwz < e(n)

for some map € such that €(n) — 0 when n — oo. This shows that the approximation
scheme is convergent. Recall from (iii) of this section that the results of Theorem 2.1
for this system. Since here 3 = 0, it follows that ||Z — Z||g2 + ||I — gz < C9n2, see
(iii) of this section. We leave the study of |H — H||g2 to further research.
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3 Malliavin calculus for FBSDE

In this section, we prove that the solution (Y, Z,U) of (2.3) is smooth in the Malliavin

sense under the additional assumptions

C{ : b, o and B(-,e) are C} uniformly in e € E
CY : gand h are C}.

We shall also show that their derivatives are smooth under the stronger assumptions

C§ : b, o and (-, e) are C} with second derivatives bounded by K, uniformly in e € E
Cy : gand h are C? with second derivatives bounded by K.

This will allow us to provide representation and regularity results for Y, Z and U in
Section 4. Under C;*-CY, these results will immediately imply (i) of Theorem 2.1,
while (ii) of Theorem 2.1 will be obtained by adapting the arguments of [29] under the
additional assumption H;. Under C5-CY, these results will also directly imply (iii) of
Theorem 2.1. The proof of Theorem 2.1 will then be completed by appealing to an
approximation argument.

This section is organized as follows. First we derive some properties for the Malliavin
derivatives of stochastic integrals with respect to ji. Next, we recall some well known
results on the Malliavin derivatives of the forward process X. Finally, we discuss the
Malliavin differentiability of the solution of (2.3).

3.1 Generalities

We start by introducing some additional notations. We denote by D the Malliavin
derivative operator with respect to the Brownian motion and by ID'? the space of random
variables H € L*(Q2, Fr,P;R) such that D;H exists for all ¢ < T and satisfy

T
IH| e = E[HQ}—FE{/O \DSH\st} < 0.

As usual we extend these notations to vector or matrix valued processes by taking the

Malliavin derivative componentwise and by considering the suitable norm.

We then define H2(ID'?) as the set of elements ¢ € H? such that & € ID™* for almost

all t < T and such that, after possibly passing to a measurable version,

T
€l = 1€+ [ ID&lnds < oo
0
We also define L2 (ID"?) as the completion of the set

L2(ID"?) := Vect {w =& e (DY FY), 0 € LY(F"), [Wllpz o2y < oo}
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for the norm
T
[Wlgsy = W0l + | IDalEds

Here, H?(ID"* FW) (resp. L2(F*)) denotes the set of F"-adapted (resp. F“-adapted)
elements of H2(ID"?) (resp. L?). Moreover, we extend the definition of || - |g2 and ||- L2

to processes with values in M? and R? in a natural way.

The two following Lemmas are generalizations of Lemma 3.3 and Lemma 3.4 in [22]
which correspond to the case where E is finite, see also Lemma 2.3 in [21] for the case

of Ito integrals.

Lemma 3.1 Assume that ¢ € L3(ID"?). Then,

//zpt fi(de,dt) € ID“?

// Doy (e)fi(de, dt) for alls <T .

and

Proof. Assume that ¢ = &J where ¢ € H2(ID"? FV), ¢ € L2(F#) and [¥]lL2 12y < oo.

Then,
//zpt fi(de, dt) —//&tf}t pi(de, dt) /gt/ﬁt

Since A(E) < oo, we obtain by conditioning by p that

D//g,ﬂ?t (de, dt) //D@q?t u(de, dt)
while, see [20],
D, / 1 / Jy()A(de)dt — /0 D, [E (A (de)dt — /0 ' /E (Do) 0s(e)M(de)dt

This proves the required result when ¢ € L2(ID'?). For the general case, we con-
sider a sequence (™), in LZ(ID"?) which converges in L3(ID"?) to 1. Then H" :=
fo [z ¥r(e)fi(de, dt) is a Cauchy sequence in ID"* which converges to H. Thus, H €
ID'2, Slnce (DSH )s<7 converges in H? to ( fo [ Dsti(e)fi(de, dt)))s<r, this proves the

required result. a
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Lemma 3.2 Fiz (¢,v) € H? x L% and assume that

/ gt th+/ /wt d€ dt € ID1’2 .

Then, (&,%) € H2(ID"?) x L2(ID"?) and

T d
DH = &+ / > D& AW + / / Dgy(e)ji(de, dt)
0 =1

where £ denotes the transpose of €.

Proof. Let S(W) denote the set of random variables of the form

¢(/()Tfl(t)-th,...,/OTf"‘(t)-th>

with K > 1, ¢ € C° and f : [0,T] — R? is a bounded measurable map for each i < k.
Then, the set

H = Vect {HVH" : HV € SW), H" € L=(Q,F}) , E[HVH"] =0}

is dense in ID"* N {H € L*Q,F,P) : E[H] = 0} for || - ||pr2. Thus, it suffices to
prove the result for H of the form HY H* where HY € S(W), H* € L>(Q,F}) and
E [H wH ‘_‘} = 0. By the representation theorem, there exists ¢ € L3 such that

H* = E[HY]+ //wt fi(de, dt)

and by Ocone’s formula, see e.g. Proposition 1.3.5 in [19],
T
oV = E[H"] +/ E[DH"Y | F'] dw, .
0
Thus it follows from It6’s Lemma that
T T
| e | w2 aw [ [ mF et
0 0o JE

where Hf' = E[H" | 7] and H)Y = E[H" | 7]. Furthermore the two integrands
belong respectively to H?(ID'?) and L%(ID"?). Thus, Lemma 3.1 above and (1.46) in
[20] conclude the proof. 0
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3.2 Malliavin calculus on the Forward SDE

In this section, we recall well-known properties concerning the differentiability in the
Malliavin sense of the solution of a Forward SDE. In the case where 8 = 0 the following
result is stated in e.g. [19]. The extension to the case § # 0 is easily obtained by
conditioning by u, see e.g. [24] for explanations in the case where E is finite, or by
combining Lemma 3.1 with a fixed point procedure as in the proof of Theorem 2.2.1. in

[19], see also Proposition 3.2 below.

From now on, given a matrix A, we shall denote by A’ its i-th column. For k < d, we

denote by D¥ the Malliavin derivative with respect to W*.

Proposition 3.1 Assume that Cf( holds, then X, € D2 forallt <T. Foralls <T
and k < d, D*X admits a version x** which solves on [s, T

t
= oM (X)) + / Vb(X, ) x5 dr+ Z Vo! (X, )x2* dW] + / / VB(X,—, e)xi  fi(dr, de) .
If moreover C§ holds, then Dth e ID'? forall s,t <T and k < d. For allu <T and
¢ <d, D!DEX admits a version x*“5** which solves on [uV s, T)
W = T e (X
t
+ / (Vb ufsk_l_Zv Vb z uf( )z) dr

d

+ / tZ (vﬂ(xq«)x%’f + D V(Yo (X)X (x ff’“)i> AW (3.1)

=1
+ //(Vﬁ e xif_““rzv VB(X,_, ))ZX?Z(X?E)") p(dr, de) .

Remark 3.1 Fixp>2andr <s <t <wu <7T. Under C{(, it follows from Lemma 5.1
applied to X and yx® that

IClls, < Cp (1+]Xof”) (3.2)
Elbe =X < Gy lu—1t] (1 +[Xof”) (3.3)
IX* = Xler < Cpls =r[ (L+[Xof") . (3-4)

If moreover Cy holds then similar arguments show that

IX™s < G (1+1X0]™) (3-5)

where Xr,s — (Xr,é,s,k)g,kgd.
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Remark 3.2 Under C{¥, we can define the first variation process VX of X which solves
on [0, 7]

t
VX, = I+ / Vb(X,)VX,dr + / ZVUJ VX, AW
0

/0 t /E VB(X,_,e)VX,_ i(dr,de) . (3.6)

Moreover, under Hy, see Remark 2.7, (VX)™! is well defined and solves on [0, T
t
(VX)[P = I, — / (VX)) Zvaﬂ Vel (X,) | dr
0
+ / (VX)- / VB(X,, e)\(de)dr —/ Z VX)) Vol (X,)dW?

- /O /E (VX)H(VB(X,_,e) + 1) VB(X,_, e)u(de, dr) . (3.7)

This can be checked by simply applying It6’s Lemma to the product VX (VX)™!
[19] p. 109 for the case where 5 = 0.

Remark 3.3 Fix p > 2. Under H;-C¥, it follows from Remark 2.7 and Lemma 5.1
applied to VX and (VX)™! that

IVXlsr + [(VX)Hlse < Cp (3.8)

Remark 3.4 Assume that H;-C;* holds and observe that x* = (x**),<4 and VX solve
the same equation up to the condition at time s. By uniqueness of the solution on [¢, T,
it follows that

P = VX (VX, ) lo(X, )1, foralls,r <T. (3.9)

3.3 Malliavin calculus on the Backward SDE

In this section, we generalize the result of Proposition 3.1 in [22]. Let us denote by
B2(ID?) the set of triples (Y, Z,U) € B? such that ¥; € ID'? for all t < T and (Z,U) €
H2(ID"?) x L2(ID"?).

Proposition 3.2 Assume that CX-CY holds.
(i) The triples (Y, Z,U) belongs to B2(ID*?). For each s < T and k < d, the equation

TiF = Vg(Xr)xs* /Vh 0,) b5 dr— / CEk-dW, //VS’“ i(de,dr) (3.10)



with ®F = (x> Yok 5k T k) and T5F .= [ p(e)V*F(e)A(de), admits a unique solu-
tion. Moreover, (Tfk,g‘fk, VtS )s.i<T 8 a version of (DXY;, D*Z,, D*U,) 1<

(ii) Assume further that C¥-CY holds. Then, for eachs < T andk < d, (D*Y, D*Z, D*U)
belongs to B2(ID"?). For each u < T and ¢ < d, the equation

Tt = () He (X + V(X

T
- / [Vh(@r)ci)“’e’s’k +(Dte,) [Hh](@r)Df@r} dr
t

T T
o / Cu!,s,k . dWr . / ‘/ru,ﬁ,s,k(e)ﬂ(de’ d?") (311)
t

t

where (I)u,Z,s,k = (Xu,é,s,k’Tu,@,s,k,cu,f,s,k’Fu,@,s,k) with TwhHsk . pr Vufsk ))\(de),
and [Hg] (resp. [Hh]) denotes the Hessian matriz of g (resp. h), admits a unique solu-
tion. Moreover, (Yi"5%F, G005F ViboMy, (oer is a version of (DLDE(Yy, Zy, Up))use<r-

Proof. For ease of notations, we only consider the case d = 1 and omit the indexes k
and /¢ in the above notations.

(i) We proceed as in Proposition 5.3 in [12]. Combined with C%-C}, and (3.2), Lemma
5.2 implies that (Y%, ¢*, V*) is well defined for each s < T and that we have

sup ||(T%,¢%, V)|ge < Cp (14 |XolP) forall p>2. (3.12)
s<T

We now define the sequence O™ := (X, Y™, Z", ') as follows. First, weset (Y°, 2% U?) :=
(0,0,0). Then, given ©"' we define (Y™, Z™ U") as the unique solution in B? of

VA g(XT)—I—/t h(O"~ 1)dr—/t Zrdw, — / /U” ii(de, dr)

and set I = [, p(e) JA(de). From the proof of Lemma 2.4 in [26], (Y™, Z",U™),, is
a Cauchy sequence in 5’2 which converges to (Y, Z,U).

Moreover, using Lemma 3.2 and an inductive argument, one obtains that (Y™, Z" U")
€ B>(ID"?). For s < T, set

('I‘S,TL7 gs,n7 VS,n) e (DS}/n7 DSZTL, DSUTL) , (Ps,n - <X57 TS,TL’ gs,n7rs,n) ,
Es,n = (Xs7 frs,n’ Cs,n’ Us,n) and Es - (XS7TS’<-S7 Us) ’

where I'*" := [ p(e)V*"(e)A(de). By Lemma 3.2 again, we have

T T T
T = Vg(Xr)xi+ / V(O o8 dr — / AW, — / VS (e)ji(de, dr) . (3.13)
t t t
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Fix I € N to be chosen later, set § := T'/I and 7; := i for 0 < ¢ < I. By (5.10) of

Lemma 5.2, we have

G = B = 2y, < (B0, T A B (3.04)
where
A= |{RE ) ~ VRO)F
Bl .= E

)

Ti+1 4
(/ Vh(@f‘l){@—@i’”‘l}dr)] :

Recalling that p and the derivatives of h are bounded, we deduce from Cauchy-Schwartz

and Jensen’s inequality that
B < ot aint (3.15)
which combined with an inductive argument and (3.12)-(3.14) leads to

supG;" < oo forall n>0. (3.16)
s<T

Since the derivatives of h are also continuous and ©"~! converges to © in 82 x B2, we

deduce from (3.2)-(3.12) that, after possibly passing to a subsequence,

lim sup A" = 0. (3.17)

nN—=00 T

It follows from (3.14)-(3.15)-(3.17) that for I large enough there is some o < 1 such that
for any € > 0 we can find N’ > 0, independent of s, such that

G o< OE||Ts - TS’"*1|4] YetaG™ forn > N (3.18)

Ti+1 Ti+1
Since Y% = T%nfl, we deduce that fori =7 —1 and n > N’

s,n n—N’ s,N’
supG;, < e+a supG7 .
s<T s<T

By (3.16), it follows that sup,. G7"; — 0 asn — oco. In view of (3.18), a straightforward
induction argument shows that, for all i < I — 1, sup,.G;" — 0 as n — oo so that,

summing up over i, we get

sup [|(Z° — E*")|[sixps —> 0. (3.19)

s<T n—00

Since (Y™, Z", U™) converges to (Y, Z,U) in B?, this shows that (Y, Z,U) € B*(ID*?)
and that there is a version of (DY, DZ, DU) given by (Y,(, V).
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(ii) In view of (3.2)-(3.5)-(3.12) and C¥-CY | it follows from Lemma 5.2 that (T%*, s, V%)
is well defined for u,s < T and that we have

sup [[(T"%, ¢ V)| < Cp (14 |Xo??) forall p>2. (3.20)

u,s<T

Using Lemma 3.2, (3.13) and an inductive argument, we then deduce that (DY™, DZ",
DU™) € B*(ID"?) and

T
1" = xp[Hg(X7)xr + Vg(Xr)xz® + / Vh(©7 )@ " dr
t
T T T
i / © T [HA)(O] )@ dr — / G AW, — [ Vit (e)(de, dr)
t t t

Where (Tu,s,n’ Cu,s,n’ Vu,s,n’ (I)u,s,n) — Du('rs,n’ Cs,n) ‘/s,n7 @s,n)_ By (1)’ (Yn’ Zn7 Un) gOGS
to (Y, Z,U) in B? and (T*", (", V™) converges to (T°,¢*, V*) in BY. Moreover, (3.19)
implies

supsup||(TS’",CS’",VS’")||4B4 < o0, (3.21)

n>1 s<T

so that, by dominated convergence, C¥ and (3.20),

|8 [HR](©7) 8" — B [HA)(©)8 |y + [(VH(") — VA(6)) #*ys — 0,

n—oo

after possibly passing to a subsequence. The rest of the proof follows step by step the

arguments of (i) except that we now work on S? x B2 instead of S* x B*. O

Proposition 3.3 Assume that C*-CY holds. For each k < d, the equation

T
VY) = Vg(XT)VXéi—k/ Vh(©,)Vokdr —/ VZE.-aw, - / / VU (e)fi(de, dr)

t t (3.22)
with VO* = (VX* VY* VZF VT*) and VI* := [, p(e)VU*(e)A\(de), admits a unique
solution (VY* ,VZ¥ VU¥). Moreover, there is a version of ((;” ,Tf’k, Vf’k)svtST given by
{(VY;,VZ,,VU,) (VX ) to* (X )ls<i }s i< where VY, is the matriz whose k-column
is given by VY and VZ;,VU,; are defined similarly.

Proof. In view of Proposition 3.2 and (3.9), this follows immediately from the unique-
ness of the solution of (3.10). O

Remark 3.5 It follows from Lemma 5.2 and (3.8) that

VY, VZ,VU)||gpr < C, forall p>2. (3.23)
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4 Representation results and path regularity for the
BSDE

In this section, we use the above results to obtain some regularity for the solution of the
BSDE (2.3) under C{-CY-H; or C-C}. Similar results under H; or H, will then be
obtained by using an approximation argument.

Fix (u, s, t,z) € [0,T]>xR% and k, ¢ < d. In the sequel, we shall denote by X (¢, z) the so-
lution of (2.2) on [t, T'] with initial condition X (¢, z); = x, and by (Y'(¢,z), Z(t,z),U(t, z))
the solution of (2.3) with X (¢, z) in place of X. We define similarly (Y**(¢, ), (5*(¢, x),
VRt x)), (VY (t,2),VZ(t,2), VU(t,z)) and (Y5t z), (WHF(t x), Vebak(t x)).
Observe that, with these notations, we have (X (0, Xy), Y (0, Xy), Z(0, Xy), U(0, X)) =
(X,Y,Z, U).

4.1 Representation

We start this section by proving useful bounds for the (deterministic) maps defined on
[0, 7] x RY by

u(t,z) = Y(t,x),, Vu(t,z) = VY (t,x),, v**(t,z) = T*(t,z),

and wh R (t ) = TSR (),
where (u, s) € [0,T]* and k,¢ < d.
Proposition 4.1 (i) Assume that C{ and CY hold, then,
lu(t, )| + [v¥F(t, )] < Cy (L+]z]) and |Vu(t,z)| < Cy (4.1)

forall s,t <T, k <d and z € R?.
(ii) Assume that C2 and C¥ hold, then,

lw Sk (t )| < Oy (1+ |zf*) (4.2)
for all u,s,t <T, l,k <d and x € R?,

Proof. When (¢,z) = (0, Xy), the result follows from (2.5) in Remark 2.1, (3.12), (3.20)
and (3.23). The general case is obtained similarly by changing the initial condition on
X. O

Proposition 4.2 Assume that C{ and CY hold.

(i) There is a version of Z given by (T%),<r which satisfies
12l < Cp (1+[Xo]) - (4.3)
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(ii) Assume further that C¥ and CY hold, then, for each k < d, there is a version of
(C))secr given by (Y05 cq)si<r which satisfies

IISgng’kl I8 < Cp (1+]Xol™) . (4.4)

Proof. Here again we only consider the case d = 1 and omit the indexes k,¢. By
Proposition 3.2, (Y, Z,U) belongs to B2(ID"?) and it follows from Lemma 3.2 that

t t t
DYi=Z~ [ Vh©)D©dr+ [ DzydWk [ DUOpedr),  (45)

for 0 < s <t <T. Taking s = t leads to the representation of Z. Thus, after possibly
passing to a suitable version, we have Z; = D,Y; = T!. By uniqueness of the solution
of (2.2)-(2.3)-(3.10) for any initial condition in L?(Q,F;) at ¢, we have Tt = v'(t, X3).
The bound on Z then follows from Proposition 4.1 combined with (2.5) of Remark 2.1.

Under C5 and CY, the same arguments applied to (1%, (%, V?) instead of (Y, Z,U) leads
to the second claim, see (ii) of Proposition 3.2, (ii) of Proposition 4.1 and recall (2.5). O

Proposition 4.3 (i) Define U by

Ue) = u(t,X;— +B(Xi—,e)) —limu(r, X,) .

rit
Then U is a version of U and it satisfies
Isup[Ue)l s < Cp (1+|Xol") (4.6)
(i) Assume that C¥ and CY holds. Define VU by
VU,(e) = Vu(t,X,_ +5(X,_ e)) —13%1% (r, X,) .
Then VU is a version of VU and it satisfies
sup VU 5 < G - (4.7

(iii) Assume that C¥X and CY holds, then, for each k < d, there is a version of (V") 4<r
given by (V%) <1 defined as

Vite) = o (1 X+ B ) — lim o (r,X,)
It satisfies
[supsup V5| B, < Gy (14 |Xol?) 48)
ecE s<T
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Remark 4.1 We will see in Proposition 4.4 below that u is continuous under C{ and
CY so that

Ule) = u(t, X +0(Xi—,e)) —u(t, X)) .
One could similarly show that v** and Vu are continuous under C* and CY so that

ViR e) = ot (X + B(X,e)) — v (t, X))
VU,(e) = Vu(t, X, +6(Xi—,e)) = Vu(t,X;_) .

However, since this result is not required for our main theorem, we do not provide its

proof.

Proof of Proposition 4.3. By uniqueness of the solution of (2.2)-(2.3) for any initial
condition in L?(Q, F;, P; R?) at time t,

[E Ude)u(de, {t}) = Yi— Y. = /E Oe)lde, {1})

T
/.
which, by taking expectation, implies

[

The bound on U follows from (4.1) and (2.5). The two other claims are proved similarly
by using (4.1). O

Hence,

Oye) — Ut(e)r,u(de, dt) =0,

Uy(e) — Uy(e)

2/\(de)dt} =0.

4.2 Path regularity

Proposition 4.4 Assume that CX and CY hold. Then,
\u(tl,xl) — U(tQ,SL’Q)’Z < CQ {(1 + ‘LL’1’2) |t2 — tl‘ + ‘1’1 — .§L’2|2}
for all0 < t; <ty <T and (11, 7,) € R*.

Proof. For A denoting X,Y,Z or U we set A := A(t;,x;) fori = 1,2 and §A := Al — A2,
By (5.6) of Lemma 5.1, we derive

||5X||§[2 , = O {1 =z + (1 + |21t — 11} - (4.9)
to,
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Plugging this estimate in (5.10) of Lemma 5.2 leads to
1(8Y,02, 5U)\|§3[2w < Co{lmy — P+ (L4 |z ) |t2 — t4] } - (4.10)
Now, observe that
u(ty, 21) —ultz, )] = Y, =Y < G E [‘Yti ~Yal + [V - Ytiﬂ :
Plugging (4.3) and (4.6) in (2.7), we get
E|va-vif] < G (+lml)l—nl,
which, combined with (4.10), leads to the first claim. O

Corollary 4.1 Assume that C¥ and CY hold.
(i) There is a version of (Y,U) such that

E | sup [V, —Y,|*

r€(s,t]

+E [sup sup |U,(e) — Us(e)|?

e€E re(s,t]

< G (14X It =],

foralls <t <T.

(ii) If moreover C5 and CY hold, then there is a version of Z such that
E[|Z—Z] < Co(1+|Xo") [t —s|
foralls <t<T.

Proof. (i) Observe that Y; = u(t, X}) by uniqueness of the solution of (2.2)-(2.3). Thus,
plugging (2.5) and (2.6) in Proposition 4.4 gives the upper-bound on E [supre[s’t] Y, — Y,[%].
The upper-bound on E [sup, SUD,efs, |Ur(€) — Us(e)|?] is obtained similarly by using
the representation of U given in Remark 4.1.

(il) By Proposition 4.2, a version of (Z;) is given by (T%) so that

E[|1Z— ZJ*] < Cy (E[|Yi—TP]+E[Y; —73]) .
By (5.9) of Lemma 5.2, (3.2), (4.4) and (4.8), we have
E[7; - T3] < G (1+1Xol")lt—s|
By plugging (3.4) in (5.10) of Lemma 5.2, we then deduce that

E[|T; - Ti] < Co(1+|Xol)|t—s].
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Proposition 4.5 Assume that H;-C¥-CY hold. Then for all n > 1

n—1 tis1
Z/ E[|Z— 2, < Cyn'
i=0 “ti

Proof. 1. We denote by V,h (resp. Vjh, V.h, V,h) the gradient of h with respect to its
x variable (resp. y, z, 7). We first introduce the processes A and M defined by

t t
A, = exp (/ v,h(©,) dr) M, ::1+/ M, V,h(©,) - dW, .
0 0

Since h has bounded derivatives, it follows from It6’s Lemma and Proposition 4.2 that

MM Z, = E [MT (ATVg(XT)XtT + /t ' (Vuh(O,)Xk + V,h(©,)TL) A, dr) | ]—}] .
By Remark 3.4 and Proposition 3.3, we deduce that
MM Z, = E {MT (ATVg(XT)VXT + /T F. A, dr) | .7-}] (VX ) lo(Xe)
t
where the process F' is defined by
F. = Vh(©,)VX, +V,h(0,)VT, forr<T.
It follows that
ANMZ; = {E G| F] — /Ot F, A, dr} (VX ) to(Xo) (4.11)
where
T
G = My (ATVg(XT) VXT—I—/O F. A, dr) :
By (3.8) and (4.7), we deduce that
E[IGF] < C) forall p>2. (4.12)

Set m, := E[G | F.] and let (¢, V) € H? x L2 (with values in M¢ x R%) be defined such

that
ms, = G— /QdW // e)ir(de, dr)

Applying (4.12) and Lemma 5.2 to (m,(, V) implies that
[(m,{,V)|lge < CO forall p>2. (4.13)
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Using C=, (3.8), (4.7), (4.13), applying Lemma 5.1 to M ~! and using It6’s Lemma, we

deduce from the last assertion that
Z = (AM)™! (m—/ E, A, dr) (VX)!
0
can be written as

t t t
Z, = Z0+/ /]Tdr—F/ 6rdWr+/ /ﬁr(e)u(de,dr),
0 0 0 JE

where
1205 < C) forall p>2, (4.14)

and /i, o and B are adapted processes satisfying

AZ[)O,T] < C’S for all p > 2 (4.15)
where
Ay o= il 161G UGN, o s<t<T.

2. Observe that

Zt = Zt O'(Xt) P—- a.S.

since the probability of having a jump at time ¢ is equal to zero. It follows that, for all
1 S nandt € [tz‘,t“_l],

E[|Z - Z,

< G (I + 1) (4.16)
where

Ly =E[|Z - Z,Plo(X,)P| and 2, =E|lo(X) - o(X,)PIZ[]
Observing that

i, = E[E[IZ- 2, | 7] lo(X)P]

< cxl( / Uil o+ [ 13 PA@e)] ) ot

we deduce from Holder inequality, (2.5) and the linear growth assumption on o that

n—1 tiv1 T
1} ,d Cyn'E i, |* + |6, 3,(e)|*A(de) | d Xy)P?
S [t < o B[P iak @R dr) s o]

=0 t
1

30



Using the Lipschitz continuity of o, we obtain
2, < GE [|Xt - th.y2|z|2} . (4.18)
Now observe that for each k,1 < d
E|(xF - X027 < G (B |2 Z0)MXEP) + B [(XE2 - xEZL)?] ) (419)

Arguing as above, we obtain

n—1

> /t _tm E|(Zi = ZL)M(XEP| < €8 (1+ (Afp)t) n7t (4.20)

=0

Moreover, we deduce from the linear growth condition on b, o, 3 and (2.5), (4.14) and
(4.15) that X*Z! can be written as

t t t
Xtz = xkzi+ /O ikt dr + /0 AW, + /0 [E B (e)i(de, dr)

where #, 6% and ¥ are adapted processes satisfying ||| g2 + [|6%| g2 + ||Bkl||L§ < (Y.
It follows that

n—1 tiv1 ~ ~ )
S [ UE[otz-xtz) < ot (e + 1M e + 1512
i=0 Vi

which combined with (4.18), (4.19) and (4.20) leads to

n—1 tiv1 .
3 / 12 dt < CO(1+ (b)) nt (4.21)
i=0 Yt

The proof is concluded by plugging (4.17)-(4.21) in (4.16) and recalling (4.15). O

We now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. 1. We first prove (ii). Observe that the second assertion is a
direct consequence of (2.24) and Remark 2.4.
We first show that (2.24) holds under H; and CY. We consider a Cg° density ¢ on R¢

with compact support and set
(bku Uka ﬁk(a 6))(&3) = kd /d(ba g, B(? 6))(52') q (k[il? - j]) dz .
R
For large k € N, these functions are bounded by 2K at 0. Moreover, they are K-Lipschitz

and C}. Using the continuity of o, one also easily checks that o* is still invertible. By
H,; and Remark 2.7, for each ¢ € F and x € R? I; + V3%(x,e) is invertible with

31



uniformly bounded inverse. We denote by (X*, Yk Z* U*) the solution of (2.2)-(2.3)
with (b, o, 3) replaced by (b*,c%, 8%). Since (b*, 0%, 3¥) converges pointwise to (b, o, 3),
one easily deduces from Lemma 5.1 and Lemma 5.2 that (X% Y* Zk U*) converges to
(X,Y,Z,U) in 8 x B%. Since the result of Proposition 4.5 holds for (X%, Y* ZF U*)
uniformly in k, this shows that (ii) holds under H; and CY.

We now prove that (2.24) holds under Hy. Let (X, Y* Z* U*) be the solution of (2.2)-
(2.3) with h* instead of h, where h* is constructed by considering a sequence of molifiers
as above. For large k, h*(0) is bounded by 2K. By Lemma 5.2, (Y* Z* U*) converges
to (Y, Z,U) in 8 x B? which implies (ii) by arguing as above.

2. The same approximation argument shows that (i) of Corollary 4.1 holds true without
C:*-CY. Since p is bounded and A\(F) < oo, this leads to (2.23). Now observe that

E sup [Ty — Ty )?| +2E [|Ty, — Ty, |?

te[ti,tprl]

sup |Ft—f’ti|2] < 2E

te[ti,t¢+1]

where, by Jensen’s inequality and the fact that I';, is F;,-measurable,

t¢+1 2 ti+1
n/ [y, = Ty)ds| | < n/ E [T, — Fs|2] ds .
t t;

Thus, (2.23) implies [ = T2, < C§n~' and | — T, < CY nt

E “I&i'— Fn

2] f; E

3. Item (iii) is proved similarly by using (ii) of Corollary 4.1. O

5 Appendix: A priori estimates

For sake of completeness, we provide in this section some a priori estimates on solutions
of forward and backward SDE’s with jumps. The proofs being standard, we do not
provide all the details.

Proposition 5.1 Given ) € L3, let M be defined on [0, T] by M; = fo [ ¥s(e)i(ds, de).
Then, for all p > 2,

P < b < P . .
b 0l < UM, < Ky lloll, (5.1)

where k,, K, are positive numbers that depend only on p, A(E) and 7.

Proof. 1. We first prove the left hand-side. Observe that for a sequence (a;);es of

non-negative numbers we have

-1
> ar < (nilgxai)a D a; <

iel i€l

(Z ai> foralla>1. (5.2)

il
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It follows that

v
”¢||Z£‘§»[0,T] = E |:/O /Ev|ws(e)’p:u(de’d3):| <E ] )

since p/2 > 1, and the result follows from Burkholder-Davis-Gundy inequality (see e.g.
23] p. 175).

2. We now prove the right hand-side inequality for p > 1. We follow the inductive
argument of [5]. For p € [1,2], we deduce from Burkholder-Davis-Gundy inequality and

(5.2) that
(/OT/EWs(e)|2M(de,ds)> ’2’] < K,E {/OT/E|¢S<€)’pu(de’d5)

since 2/p > 1. This implies the required result.

/E [u(e) P pu(de, ds)

E[sup|Ms|p} < K,E

s<T

We now assume that the inequality is Valid from some p > 1 and prove that it is
also true for 2p. Set M, = fo [z ¥s(e)*ilde,ds) for t € [0,T]. Then, [M,M]r =
Mr + fOT [z ¥s(e)*X(de)ds.  Applying Burkholder—Davis—Gundy inequality, we obtain
E [supsST \MSFP} < E[[M, M} ] where

E[[M,M}] < KPE[,MﬂM( / /E ws<e>2A<de>dSﬂ

and K, denotes a generic positive number that depends only on p. Applying (5.1) to

M, we obtain
E “Ahgqp] < K,E {/QT(/;|¢%(6)PPA(de)dS} .

On the other hand, it follows from Hoélder inequality that

(/L/¢S Nde)ds < (/ /ﬁ% (e)[P\(de)d )(TMEni

where ¢ = p/(p — 1), recall that p > 1. Combining the two last inequalities leads to the

required result. a

We now consider some measurable maps

b Qx[0,T] x R R

& Qx[0,T] x R+ M*

3 . Qx[0,T] xR x E — R

il @ Ox[0,T]xRxRx L2(E,E,\R), i=1,2.
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Here L2(E, £, \;R) is endowed with the natural norm ([, |a(e)[?A(de))>.
Omitting the dependence of these maps with respect to w € Q, we assume that for each
t<T

bi(t,-), &'(t,-), Bi(t, -, e) and fi(t, -) are a.s. K-Lipschitz continuous

uniformly in e € E for 7. We also assume that ¢ — (fi(t,-),b'(t,-)) is F-progressively
measurable, and ¢ — (6%(t, -), B'(t,-)) is F-predictable, i = 1,2.

Given some real number p > 2, we assume that |b(-,0)|, [°(-,0)| and |fi(-,0)| are in
H?, and that |5(-,0,-)| is in L.

For t; <ty < T, X' € L*(Q, F,.,P;R?) for i = 1,2, we now denote by X’ the solution
on [t;, T] of

t t t
Xi = X [ xdis [ s xhaws [ Fse Xt atde ds) (65:3)
ti t; ti JE

Lemma 5.1

X0, < G {EIXPI 1P GO, 1000, 150}

[t1,T]

(5.4)
Moreover, for all t; < s <t <T,
E {Sup X! — Xj]p} < Cp Alt—s], (5.5)
s<u<t

where A is defined as

BIXP 4B | sup B0+ sup 600+ swp { [ 17 0.0r@}]
t1<s<T t1<s<T t1<s<T E

and, forto <t < T,

||<5XH§[,22,T] < G (E|X1_X2‘p+z4;|t2—t1|)
T p .
G \ B 0by|dt 06 |5y 3B, 5.6
i 8 < </tg | t| ) * “ OHH[tz,T] + ” ﬁHL)\,[tQ,T]> ( )

where 6X = X' — X2, 6b = (b' — b%)(-, X)) and 65, 65 are defined similarly.

Lemma 5.2 (i) Let f be equal to f' or f2. Given Y € LP(Q, Fr,P;R), the backward
SDE

Y, = Y+/ stS,Zs,U)ds+/ Ly - dW+// e)ip(de,ds)  (5.7)
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has a unique solution (Y, Z,U) in B2. It satisfies

T p
20 < 6 B |wr ([ Ifwola) | (53)
0
Moreover, if A, :==E [\Y/VJ + supy<r |f(t, O)V’} < 00, then
_vir| < _glP P p ‘ ‘
B | sup V- YP| <G, {ayle— P+ 121Gy, 101} (5.9

(i) Fiz Y and Y2 in LP(Q, Fp,P;R) and let (Y7, Z',U?) be the solution of (5.8) with
(}7", fl) in place of (}7, f), i =1,2. Then, for allt < T,
H((SY,(SZ,(SU)HZ? } < C, E {](5Y|p+ (/ |5fr|dr) } (5.10)
t,T ‘
where §Y == Y1 — Y2 §Y :=Y' = Y2 62 :=2'— 72, 6U :=U' — U? and
of = (F' =YLz

Proof of Lemma 5.1. Applying Burkholder-Davis-Gundy inequality (see e.g. [23] p
175) and using Proposition 5.1, we get

T D
up rXsrp] < G E|lXp+ ([ s xdias) |

s€[t1,T] t1

E

b Gy (186X IR )
The estimate (5.4) is then deduced by using the Lipschitz properties of b', &', B! and
Gronwall’s Lemma. The estimate (5.5) is obtained by applying the same arguments to
the process | X! — X!|P on [s,]. To obtain the last assertion (5.6), we first apply the
above argument to X = X' — X? on [ty, T]. Then, decomposing b'(-, X*) — (-, X?) as
6b + b2(-, X') — b%(-, X?) and doing the same for & and (', the Lipschitz properties of

b2, 52, 3% combined with Gronwall’s lemma leads to

T p
E | sup |(5X5]P] < G, (]E|th2 ~XP+E </ lébtldt) + 1|65+ 1108150 ) :
SE[tQ,T} to [t2,T] A [te,T]
We then conclude by using the (5.5). O

Proof of Lemma 5.2. See [26] and [2] for existence and uniqueness.
(i) We divide [0,7] in N intervals [, 7;11] of equal length ¢ := T/N. For 7; <t < s <

Ti+1

Titl
vy < E{;YMH/ Yo 20, U)ldr | |
t
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which, by Doob and Jensen’s inequalities, implies

Titl p
E[ sup mv’] < ¢ E[mm( / |f<r,m,zr,Ur>|dr)} .
t

t<s<7i11
Moreover, it follows from Burkholder-Davis-Gundy inequality (see e.g. [23] p. 175) and
Proposition 5.1 that

p p
12l + UMy

STit 641

Titl p
<G E[|Ym1|p+( / If(r,Yr,Zr,Ur)ldT) + sup \mp] .
t

t<s<Tit1
Thus, using Holder and Jensen’s inequalities, we obtain

Ti+1 p
0200y, < 6 B+ ([ vz tler) |
t

[tmiq1]
T p Tit1
c, {E[\leru(/ rf<t,o>rdt)]+ [
0 t U Tig

+ 2 (2| +IUIIg
” |’Hﬁ’7_i+1] “ ”LI/{,[t,TH_l]

by the Lipschitz continuity assumption on f. For § smaller than (2C, )~2/P, we then get

IN

T p Tit1
020y, < 6 {EMl)+ ([ o) + [Tivi, ad

(67341 (w75 41]

Using Gronwall’s Lemma, we deduce that

Vi < G {BVl)+ ([ T|f<t,o>|dt)p} .

[mimit1]

Plugging this estimate into the previous upper bound, we finally get

[mimit1]

T _ D
v zoE < cpE[lYmu( / |f<t,o>|dt)].

This leads to (5.8).
By Burkholder-Davis-Gundy inequality and Proposition 5.1, we have

E[sup m-m] <G E{(/trfv,n,zr,w)ydr)p]

s<u<t

P p
+ Gy {||Z||Hﬁ,t] +||U||L§M} .

Using the Lipschitz continuity assumption on f together with (5.8) leads to (5.9).

(ii) The estimate (5.10) is obtained by applying similar arguments to (§Y, 67, 6U). O
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