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Abstract. An extension of the level set representation is proposed for the reconstruc-
tion of the unknown cross-section of multiple phase material obstacles embedded in an
homogeneous medium and illuminated by time-harmonic electromagnetic line sources.
The a priori information assumed therein is that the scatterers are homogeneous by
parts and of known characteristics. Two types of approaches are discussed with their
pros and cons. In the first approach, a single level set enables to represent the dif-
ferent material phases. In the second approach, the material properties are coded on
a binary basis and several level sets are combined, one for each bit of binary coding.
Theoretical and numerical details are provided for both approaches, using synthetic
and experimental measurements obtained in the anechoic chamber of Institut Fresnel.
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1. Introduction

In inverse scattering problems, the goal is to retreive constitutive parameters of unknown

scatterers from their electromagnetic signature. As this problem is highly nonlinear and

ill-posed, all a priori information is of importance to reduce illposedness and therefore

the range of plausible solutions.

We restrict ourself to a two-dimensional transmission problem where the unknown

scatterers are embedded in an homogeneous background such as air. Measurements

of the scattered fields at several sensors locations around the obstacle and for several

locations and/or frequencies of time-harmonic E-polarized sources placed nearby are

available. In particular, an experimental database has been obtained in the anechoic

chamber of Institut Fresnel for several obstacles.

Additional a priori information is introduced as we assume that the dielectric

properties of the obstacles are known and that they are constant by parts. Therefore,

this inverse scattering problem is reduced to a shape optimization problem where the

contour of the different scatterers is looked for. No further assumption on the connexity

or the size of the objects is introduced. This configuration is an extension of the so-

called binary obstacle case to n-ary obstacles, where the obstacles are made of different

types of known material phases.

A significant work now exists on the retreival of binary obstacles. Some of

them include this binarity by discretizing the test domain into black and white pixels

[Souriau et al 1996]. Others are interested by the contour of the obstacle and its

representative coefficients [Rozier et al 1997] [Bonnard et al 1998] and provide iterative

schemes which perturbate the contour. Finally, the level-set representation has proved

to be one of the most suitable representation for binary objects when no additionnal

topological information is available, such as connexity for example. This level-set

approach is been now used widely in various domains of inverse problem [Santosa 1996]

[Litman et al 1998] [Dorn et al 2000], [Ramananjaona et al 2001], [Burger 2004] or

shape optimization [Allaire et al 2004]. This level-set representation requires the

computation of the shape derivative of the cost functional which links the difference

between the measured and simulated scattered field. Shape derivative and topological

derivative can also be mixed in order to accelerate the apparition of inclusions in the

iterative process [Burger et al 2004].

The idea of the present paper is to extend the notion of level-set from binary

obstacles to n-ary ones in order to benefit from the advantages of the level-set

representation. These advantages consist for example in keeping a fixed mesh

during the entire iterative process, in handling in a natural way merging and

splitting of the obstacles. Several ways of representing n-ary obstacles by means

of level-sets have already been done, for example in contour recognition for image

analysis [Zhao et al 1996] [Samson et al 2000] [Osher and Paragios 2003]. But to our

knowledge, these schemes have not been extended to inverse scattering configurations.

Two approaches are analysed in the present paper. The first idea is to use a single
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level-set for representing all the obstacles. The computational changes introduced by

the n-ary aspect are then minimal compared to a binary case. The second idea is to

use several level-sets. One could attach a level-set to each material phase as done in

[Zhao et al 1996]. Overlapping areas become then an issue as they are not physically

possible. Instead of introducing a penalty term to prevent those overlapping areas, as

done in [Samson et al 2000] [Osher and Paragios 2003], we prefer to follow the ideas of

[Vese and Chan 2002]. The material phases are coded on a binary basis and a level-set

is attached to each coding bit. The computational changes are more complex in that

case but the results are improved as will be shown in the following numerical examples.

The paper is organized as follows. In section 2, the formulation of the problem is

introduced. In section 3, we discuss different ways of representing an obstacle by means

of level-sets, taking into account that the obstacle is homogeneous by part. These

representations can rely on a single level-set or on several ones which are combined in

a suitable way in order to fully represent the obstacle. In section 4, the minimization

scheme based on a single level-set representation is presented in detail. In section 5, a

second scheme based on a ’color’ level-set evolution is proposed and analyzed. Numerical

results based on a synthetic configuration are presented in section 6. Reconstructions

from the new database measurements of Institut Fresnel are shown in section 7. In

section 8 concludings remarks are made. In the appendices, complementary elements

are introduced, in particular the adjoint field computation for the single level-set

representation and the ’color’ level-set one.

2. Transmission problem

The model is the following : a set of z-oriented cylindrical obstacles, of cross-section

Ωi, i = 1, . . . , n, is embedded in an homogeneous space denoted by Ω0 = IR2 \ ⋃n
i=1 Ωi

(figure 1). Each obstacle is assumed to be linear, isotropic, non-magnetic and penetrable

and to have a sufficiently smooth boundary Γi. Each obstacle is characterized by a

unique material property (εi, σi, µ0) and is homogeneous. The set Θ of all those obstacles

defined below is therefore homogeneous by part :

Θ =
n⋃

i=1

Ωi and Ωi

⋂
i�=j

Ωj = ∅ (1)

Each exterior normal to the boundary Γi is denoted by �ni. The wave numbers ki(ω)

(Im(ki(ω)) ≥ 0) of the different materials are assumed to be known for each frequency

ω and to be independent of the position (the time dependance exp(−jωt) is chosen and

dropped out from now on). An incident wave ui of same cylindrical dependance (line

source) illuminates the obstacle. We restrict ourselves to a Transverse Magnetic (TM)

or E-polarization configuration. The total field u satisfies the following set of equations:

∆u + k2
i u = 0 in Ωi, ∀i = 0, . . . , n (2a)

u− = u+ on Γi, ∀i = 1, . . . , n (2b)

∂u

∂�ni

+

=
∂u

∂�ni

−
on Γi, ∀i = 1, . . . , n (2c)
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where u+(u−) denotes the limit of u from the exterior (interior) of Ωi. The scattered

field us = u − ui satisfies the Sommerfeld radiation condition

lim
r→∞

√
r(

∂us

∂r
− jk0u

s) = 0 (3)

where r = |x| and j2 = −1. It has been shown that this transmission problem has a

unique solution u ∈ H1
loc(IR

2) for a given set Θ.

The inverse problem consists in finding the shapes Ωi, i = 1, . . . , n, corresponding

to each material phase which minimize the error on the data fit. If we denote by L2(M)

the set of the measured scattered fields, where M is the probing line, the cost functional

to minimize is of the following form:

J(Θ) = 1
2
‖ us(Θ) − g ‖2

L2(M) (4)

where g corresponds to the data and Θ is our collection of shapes of known properties.

The inverse problem can then be written as:

Find Θ∗ such that J(Θ∗) = min
Θ

1
2
‖ us(Θ) − g ‖2

L2(M) (5)

3. Shape representation

As stated above, the problem to tackle is reduced to a shape optimization problem. One

of the main issue now is to correctly represent the shapes.

In the case of binary obstacles, one of the most suitable representation is made via

the use of a level-set function [Santosa 1996]. Indeed, when using such representation,

no apriori information is needed on the number of obstacles as well as the position of

their centers. Furthermore topological changes such as merging or splitting are easily

handled.

In the case of n-ary obstacles, the representation is less obvious. In the following,

we will focus on two types of representations, both of them being based on the level-sets

functions in order to keep the advantages of such implicit description.

3.1. Unique level set representation

For a single homogeneous obstacle Ω, the associated level set function φ ∈ C1(BR) is

defined by (figure 2):

Γ = {x ∈ BR | φ(x) = 0} (6)

Ω = {x ∈ BR | φ(x) < 0} (7)

With this representation, the definition of the contour is implicit and made in a

geometrical fashion.

Let us therefore assume that we have several obstacles Ωi of known characteristics,

all of them being homogeneous. The idea is to simply extend the previous level set

function to the n-ary case with φ defined by (figure 3):

Γi = {x ∈ BR | φ(x) = ci} (8)

Ωi = {x ∈ BR | ci+1 < φ(x) < ci} (9)
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where the values ci are predefined level values. Therefore, each truncation plane at

the prescribed height ci will correspond to a contour Γi. This representation is very

simple and again implicit for each obstacle. The whole structural body Θ will then be

partitionned by

Θ =
n⋃

i=1

{x ∈ BR | ci+1 < φ(x) < ci} (10)

and such partition will keep the properties that Ωi
⋂

Ωj = ∅, i �= j.

To simplify the notation, let us introduce the one-dimensional Heaviside function

H such that

H(x, c) =

{
1 if x < c

0 if x > c
(11)

The characteristic function of an obstacle Ωi is then described by

χΩi
(x) = H(φ(x), ci+1) − H(φ(x), ci) (12)

where the limit levels are set to c0 = +∞ and cn+1 = −∞.

As described in section 4, the minimization process for a single phase obstacle

[Litman et al 1998] can easily be extended to several phases with this description.

Unfortunately this approach suffers from some topological constraints that will be

highlighted by the numerical results. Therefore it might be interesting to look for

another description.

3.2. Vector level set representations

3.2.1. Vector level set An other idea is to provide a level set description for each

material phase [Zhao et al 1996], i.e.,

Γi = {x ∈ BR | φi(x) = 0} (13)

Ωi = {x ∈ BR | φi(x) < 0} (14)

where the level set functions φi are all defined on C1(BR).

This will necessitate in the minimization process to evolve each level set

simultaneously and the extension from a single to a multi-phase object is not that

obvious. Moreover, it can happened that the level-sets overlap during the iterative

process defining therefore a region of multiple values which is not physically possible.

This means that the property of (1) is not preserved by this level set representation.

Usually, an additionnal constraint is introduced in the cost function with a Lagrange

multiplier in order to minimize the overlap area [Zhao et al 1996] [Samson et al 2000]

[Osher and Paragios 2003] but this constraint is difficult to maintain accurately.

Moreover, the complexity of the algorithms increases drastically with the number of

material phases.
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3.2.2. ’Color’ level set A different approach has been proposed in [Vese and Chan 2002]

[Wang and Wang 2004]. Here, the use of multiple level sets is still being done. The main

difference is the way the association is done from the material phases Ωi to the level

sets. In order to reduce the need of a mixing phase procedure, they have introduced m

level sets functions to represent a structure of (n+1) = 2m different material phases, in

a principle similar to combining colors from primary colors.

Suppose that we have n different types of material phases and each phase index is

denoted by i. The idea is to code in a binary fashion those indexes. For n phases, there

will be m = log2(n + 1) coding bits and therefore m associated level sets. The level set

φb associated to the bit b is such that :

γb = {x ∈ BR | φb(x) = 0} (15)

ωb = {x ∈ BR | φb(x) < 0} (16)

The domain ωb will then define the places where the b bit of the phases indexes i is

nonzero.

To simplify the notation, let us use again the Heaviside function notation. Let Bj
i

a function which provides the j bit of index i. Let us introduce the function H̃ :

H̃b(y) =

{
H(y, 0) if b = 1

1 − H(y, 0) if b = 0
(17)

With these notations, an obstacle Ωi has a characteristic function defined by

χΩi
(x) =

m∏
b=1

H̃Bb
i (φb(x)) (18)

Let us illustrate this on an example with 3 different material phases apart from air,

which means four different wavenumbers {k0, k1, k2, k3}. Only m = 2 coding bits and

associated level set functions are required (figure 4) and the characteristics functions

are described by:

χΩ0 = H̃B1
00(φ1)H̃

B2
00(φ2) = (1 − H(φ1, 0)) (1 − H(φ2, 0)) (19)

χΩ1 = H̃B1
01(φ1)H̃

B2
01(φ2) = H(φ1, 0) (1 − H(φ2, 0)) (20)

χΩ2 = H̃B1
10(φ1)H̃

B2
10(φ2) = (1 − H(φ1, 0)) H(φ2, 0) (21)

χΩ3 = H̃B1
11(φ1)H̃

B2
11(φ2) = H(φ1, 0) H(φ2, 0) (22)

This representation enables to reduce drastically the number of level-sets that will

evolve during the minimization process. Furthermore, the mixing parts are avoided

with such representation and no extra constraint terms in the cost function is needed.

Section 5 will provide the insights of the velocity computations for each level set and

some numerical examples.

4. Evolution of a unique level-set

The inverse problem of finding the set Θ∗ of material phases Ωi which satisfy (4) is solved

by using an iterative scheme. A family of shapes Θt is constructed by perturbating an
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initial shape Θ0, for 0 ≤ t ≤ T , where t is a fictitious parameter which described the

iterative process. The deformation are done in order to reduce the cost function at each

step.

In the case of a representation by a unique level-set, this iterative scheme is reduced

to the deformation of this single level set φ(t, x).

4.1. The Hamilton-Jacobi equation

The fisrt question is to describe the deformation process for this specific level-set. If

we differentiate one level contour ci which corresponds to Γi, according to t, we get

[Santosa 1996] :

∂

∂t
φ(t, x) + �V (t, x) · �n |∇φ(t, x)| = 0 (23)

as ∂x/∂t = �V (t, x) and �n = ∇φ/|∇φ|. Indeed, the level contour value ci does not evolve

with time. Therefore, for each level ci, the evolution of the level set will be governed

by the same equation. This equation is a Hamilton-Jacobi type equation, where the

velocity �V plays an important role [Osher and Sethian 1988] [Sethian 1999].

By using a unique level-set representation of the obstacles, the evolution of the

level-set does not change from the case of a single material phase.

4.2. Fréchet derivative

The next question is to compute the Fréchet derivative of the cost functional for a given

deformation of the obstacle Θt. It can be shown, (see Appendix A), that the Eulerian

derivative of the cost functional (4) for a given velocity field �V (t, x) along the normal

direction can be expressed by

dJ(Θt, �V ) = − Re
n∑

i=0

k2
i

∫
BR

[δ(φ, ci+1) − δ(φ, ci)] u(x)p(x)V (t, x) | ∇φ(t, x) | dx (24)

where δ(x, ci) is a Dirac delta function concentrated on the interface Γi and the adjoint

state p is defined by

∆p + k2
i p = −(us − g) δM in Ωi, ∀i = 0, . . . , n (25a)

p− = p+ on Γi, ∀i = 1, . . . , n (25b)

∂p

∂�n

+

=
∂p

∂�n

−
on Γi, ∀i = 1, . . . , n (25c)

where δM denotes the Kronecker symbol on the probing line M . The adjoint problem

is equivalent to the direct problem when the emitters and the receivers positions are

exchanged. This comes from the reciprocity principle satisfied by the electromagnetic

fields in this configuration. Both direct and adjoint problem will be solved numerically

by a method of moments based on a domain integral representation of the fields.
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4.3. Velocity choice

The velocity controls the evolution of the scheme and an appropriate choice is

thus essential in order to provide a decrease of the cost function. Since both the

Fréchet derivative (24) and the Hamilton-Jacobi equation (23) only require the normal

component of the velocity, we restrict ourselves to velocities which are in the normal

direction :

�V (t, x) = V (t, x)�n(t, x) (26)

As done in [Litman et al 1998], an empirical choice of the velocity amplitude is provided

by :

V (t, x) = Re
n∑

i=0

k2
i [δ(φ, ci+1) − δ(φ, ci)]u(x)p(x) ∀x ∈ BR (27)

4.4. Initialisation of the level set

Once the evolution of the level set is described, the next step is a correct definition of a

starting point. Usually, when considering a single material phase obstacle, the level set

is initialized as the signed distance function once an initial obstacle Ω is given.

φ(0, x) =



−dist(x, ∂Ω) if x ∈ Ω

+dist(x, ∂Ω) if x /∈ Ω
(28)

In the case of n-ary obstacles, this type of initialisation is no longer possible as there

is no way to construct a unique level set which is a distance function for all Ωi. On

the other hand, the level-set representation does not require that only a signed distance

function must be used, especially as the Hamilton-Jacobi equation does not preserve

this property [Gomez and Faugeras 2000].

Three initialization procedures have been investigated:

• Backpropagation scheme [Kleinman and van den Berg 1992]. By applying such

scheme on the data, one can get an estimation of the current density in the

investigation area. The backpropagation image is then taken directly as the level

set function.

• Topological asymptotic expansion [Guillaume and SidIdris 2002] [Burger et al 2004].

The topological asymptotic expansion corresponds to a first step of a level-set proce-

dure by using as an initial guess no object at all. In that case, the velocity computed

by means of (27) provides the same type of result and gives a good indication of

the topologies. This velocity is then taken directly as the level set function.

• N-ary image. An n-ary image is provided by the end-user. As mentionned above,

there is no way to compute a distance function on that image. Nevertheless, a

blurring process based on a convolution filter with a gaussian kernel can be applied

to provide a level set function which will have the same topology as the initial

image. Unfortunately, by doing this type of blurring, the exact positions of the
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boundaries are lossed. This might be troublesome when performing frequency

hopping reconstructions.

Once the initial level set is obtained, the cut-off levels ci are simply computed by

performing an equirepartition in height of the level set :

ci = max(φ) − (max(φ) − min(φ))
i

n
(29)

The first and last levels are set respectively to +∞ and −∞ in order to cover the entire

range of values.

5. ’Color’ level set

By using a ’color’ level set representation for n multiple phase materials, we need to

change the iterative scheme. Indeed, instead of deforming a unique level-set along time,

the deformation must be done on a full set of level-sets φb(t, x), one for each coding bit

as described previously. This implies that the velocity for each level set must be defined

carefully.

5.1. The Hamilton-Jacobi equation

For each level set φb, the deformation process is still governed by an Hamilton-Jacobi

type equation of the following form :

∂

∂t
φb(t, x) + �Vb(t, x) · �nb |∇φb(t, x)| = 0 ∀b = 1, . . . , m (30)

where ∂x/∂t = �Vb(t, x) and �nb = ∇φb/ | ∇φb | and m = log2(n + 1) is the number of

coding bit required. Each level set evolution will then be performed seperately for each

specific velocity field on the same fixed grid. The time step is chosen in order to satisfy

the CFL condition for all level set functions.

5.2. Fréchet derivative

As the representation of the obstacles has changed, the Fréchet derivative of the cost

function will be different. It can be shown, (see Appendix B), that the Eulerian

derivative of the cost functional (4) for a given set of velocity fields �Vb along the normal

directions can be expressed by

dJ(Θt,
{
�Vb

}
) = −Re

n∑
i=0

k2
i

m∑
b=1

∫
BR


 m∏

j=1,j �=b

H̃Bj
i (φj)


u(x)p(x)δ̃Bb

i (φb)Vb | ∇φb | dx (31)

where the adjoint state p is still defined by (25c) and δ̃Bb
i (φb) is a Dirac delta function

concentrated on the 0-level of φb with a positive or negative sign according to Bb
i .
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5.3. Velocity choice

In order to provide a scheme which tends towards the best shape Θ∗, the velocities Vb

must be chosen in order to minimize the cost functional at each step. An empirical

choice is provided by

Vb(t, x) = Re
n∑

i=0

k2
i


 m∏

j=1,j �=b

H̃Bj
i (φj)


 δ̃Bb

i u(x)p(x) (32)

for each level set function φb associated to the bit b.

6. Numerical results from synthetic data

The two algorithms have been tested in various configurations. A detailed analysis based

on synthetic scattered fields is first provided in order to test the influence of the initial

guess and to show the pros and cons of each approach.

6.1. Description of the synthetic configuration

The homogenenous background in which the obstacles are located is air (ε0, σ0 = 0, µ0).

The area in which the obstacles can be found is a square test domain of length side

d = 2λ and centered at (0, 0). Ony one frequency is used, 10 GHz (λ = 3cm). The

receivers and the sources are equally spaced on a circle of radius 3λ and centered at (0, 0).

The number of receivers and emitters are identical, i.e., 36. The obstacles under study

consist of two disks (figure 5). The first one is of radius λ/4, centered at (λ/4, λ/4) made

of (ε1 = 1.5ε0, σ1 = 0, µ0). The second one is of radius λ/4, centered at (−λ/2,−λ/2)

made of (ε1 = 2ε0, σ2 = 0, µ0). The color assocation is done such as blank correspond

to air (n = 0), grey to the materia (n = 1) made of (ε1 = 1.5ε0, σ1 = 0, µ0) and black

to the last materia (n = 2).

6.2. Numerical considerations

The scattering phenomenon is modeled by a method of moments for the direct and

inverse problems. The test domain is divided into square cells. The number of cells

varies between the direct problem (43 × 43) and the inverse one (21 × 21) in order to

prevent ourselves from committing an inverse crime. In both cases, the size of the cells

is sufficiently small according to the Method of Moments criteria.

The Hamilton-Jacobi equation is solved on a fixed Cartesian grid using a stable

and entropy satisfying scheme developped by [Osher and Sethian 1988] [Sethian 1999].

The time step is automatically selected in order to satisfy the CFL condition and will

be taken as ∆t = 0.5 ∗ ∆tCFL in order to assure a slow but smooth convergence.

The Heaviside function and its derivate are approximated by the following functions

as in [Vese and Chan 2002]:

H(φ, c) = 1 − 1

2
(1 +

2

π
arctan(

φ − c

0.1
)) δ(φ, c) = −1

π

0.01

0.01 + (φ − c)2
(33)
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The iteration process is stopped if the cost function is low enough (< 0.3) or if the

number of iterations has reached 100. The cost function correspond to the difference

between the measured and simulated scattered fields normalised by the measured

scattered fields.

6.3. Single level-set evolution

6.3.1. Initialisation Three different types of initial level set functions has been

investigated: (i) an initial cercle made of (ε = 1.5ε0, σ = 0, µ0), centered and of radius

2λ/3 blurred by a convolution with a Gaussian filter (figure 6 (a)) (ii) the retropagation

result (figure 6 (b)), (iii) the velocity field obtained with a null initial guess (figure 6

(c)). The last two ones provides a good estimation of the positions of the scatterers as

well as their contrasts.

6.3.2. Cost function Due to the different initialisation procedures, the cost function

evolution is presented in figure 7 (a). The oscillations in the cost function at the end of

the iteration is due to to the solution which evolve in a non-smooth way when looking

at small scale changes compared to the pixel size. It can be seen that the initialisation

process has some effect on the convergence of the algorithm and the value of the cost

function at the end is more important when using a single centered circle as initial guess.

6.3.3. Image and level-set evolution When initializing by a centered circle, the

algorithm does not converge towards the ’exact’ solution (figure 8 (a)). The positions of

the objects are correctly found but the shape and the value of associated permittivity are

different. Indeed, by having more material properties available, the number of degree of

freedom has increased and the solution obtained is an equivalent one where the scatterer

of largest permittivity is replaced by a scatterer of larger area with reduced permittivity.

Figure 9 shows the evolution of the associated level-set function, when the initialisation

is done with a circle, and one can see the decrease of the amplitude of the level-set and

its spreading.

If more apriori information is introduced in the initial guess, as it is done with

the other two initialisation processes, the resulting image is very close from the ’exact’

one (figure 8 (b) and (c)). Nevertheless, fast transitions from one material to an other

are not handled by a single level-set representation. This is a severe drawback of such

representation which can slightly be reduced with a more refined mesh but will still be

present.

6.4. ’Color’ level-set evolution

6.4.1. Initialisation Due to the presence of 3 different material phases, two level-set

functions are necessary to represent the coding bits. Two types of initialisation process

has been investigated: (i) an initial cercle made of (ε = 2ε0, σ = 0, µ0), centered and

of radius λ/2 (figure 10 (a)), which provides two level-sets which are identical, (ii) the
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retropropagation result (figure 10 (b)) truncated into two layers to initialize the two

level-set functions.

6.4.2. Cost function Figure 7(b) shows the evolution of the cost function for different

initial guesses. Here, the initialisation with a circle provides faster convergence, but this

can change from one configuration to another one.

6.4.3. Image and level-set evolution Figure 11 show the resulting image for the different

initial guesses. The reconstruction is very satisfactory with this type of approach and

one can distinctly recognized the two scatterers made of different materia. The evolution

of the associated level-set functions is presented in figure 12. One can see easily the bit

association that results in the n-ary images of figure 11.

7. Numerical results from experimental data

The anechoic chamber of Institut Fresnel was used to mesure the scattered fields from

various objects illuminated at different angles and frequencies. A detailed description

of the setup is provided in [Geffrin et al ]. In the present article, only the Transverse

Magnetic measurement is analyzed but the same algorithm can be extended to the

Transverse Electric case [Ramananjaona et al 2001] with a suitable definition of the

adjoint fields. All incident and receivers measurements are used. The scattered fields

are normalized as explained in [Tijhuis et al 2001] by defining a complex coefficient

which assumes that the point opposite to the antenna is measuring an incident field

which is equivalent to the field radiated by a line source.

7.1. Numerical considerations

As previously, a method of moments was used for modelling the electromagnetic

phenomenon. The number of cells was taken as (31 × 31) and the domain test was

a centered square box of (0.2 × 0.2) m. The Hamilton-Jacobi equation was solved as

previously with the same ∆t condition and the same Heaviside function as in (33).

The iteration process was stopped when the cost function was low enough or after 30

iterations. All reconstructions are presented with the same initial guess, corresponding

to a circle, centered, of radius 0.05 m. The color association is done such as (n = 0)

correspond to air, (n = 1) correspond to the dielectric of permittivity εr = 1.45 and

(n = 2) correspond either to the dielectric of permittivity ε = 3 or to the metal part.

When the obstacle is metallic, its permittivity is taken as εr = 1 and its conductivity is

taken as σ = 1 S/m to be sure that the cell size is larger than the skin depth.

7.2. Cost functions

For all configurations, the cost functions are presented with the same initial guess in

figure 13. In the dielectric cases, the convergence is again very rapid and oscillations
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appear when the size of the image changes are of the order of the cell size. When there

are metallic parts, the convergence process is slower and in fact does not converge when

using a single level-set representation.

7.3. Reconstructions at 2 GHz

Reconstructions obtained after 30 iterations for the different dielectric configurations are

presented in figure 14 for the FoamDielIntTM case, in figure 15 for the FoamDielExtTM

case, and in figure 16 for the FoamTwinDielTM case. All reconstructions are very

satisfactory even when using a single frequency. This highlights the importance of a

priori information introduced into the inversion algorithm.

Reconstructions obtained after 100 iterations for the FoamMetExtTM case are

presented in figure 17. The single level-set representation did not converge as the ’color’

level-set representation did. Indeed, when there are metallic parts, the convergence

is more difficult to achieve as the velocity computation requires the value of the total

field inside the object. If the object is metallic, the field will be close to zero and the

associated velocity will be null inside. This means that the inner points will not be

removed even if needed and this will prevent proper convergence.

7.4. Reconstructions at higher frequency

Unfortunately, due to the way the initialisation process is done with the single level-

set representation, it is not possible to perform a frequency-hopping approach as in

[Tijhuis et al 2001]. Indeed, the initial guess does not fully preserve the topology

obtained at previous frequencies as some blurring procedure is applied to the binary

image in order to create an artificial level-set function.

Therefore only frequency-hoping results are presented for the ’color’ level-set

approach in figure 18 for the FoamTwinDielTM case. In order to provide a discretisation

grid which respects for all frequencies the method of moments ratio of λ/7, the number

of cells has been increased to 41 × 41. Three frequencies have been used at 2, 4 and

6 GHz. The last iteration, i.e., iteration 100, is used as an initial guess for the next

frequency. In fact, as the reconstructions are already of a very good quality at 2 GHz,

the higher frequencies do not provide much further information.

8. Conclusion

We have presented here two types of approaches for representing n-ary obstacles by

means of level-set. The first approach is based on a single level-set representation and

is simplier to implement than the second one which uses several level-sets, one for each

coding bit necessary to code the material phases on a binary basis.

As we have seen in the numerical examples, the two approaches are reacting

differently to initial guess selection. The first one is more sensible than the ’color’

level-set representation. Furthermore, the first approach is not really appropriate when
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there are sharp transitions, from material (n = 0) to material (n = 2) for example.

This case is better reconstructed with the ’color’ level-set. Finally, the single level-set

approach fails to converge in some situation, for example when there is a metallic part

inside the scatterers, as the ’color’ level-set does not. In any case, the ’color’ level-set

provides very satisfactory results even when using a single low frequency, as can be seen

on the reconstructions obtained from the experimental fields measured in the anechoic

chamber of Institut Fresnel. This prove the importance of a proper introduction of a

priori information into the inversion process.
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Appendix A. Fréchet derivative for a single level-set

Appendix A.1. Weak formulation of the transmission problem

The objective functional to derivative is the following :

J(Θ) = 1
2
‖ us(Θ) − g ‖2

L2(M) (A.1)

under the constraints that the total field u satistifies (2c) or in a weak sense

[Hettlich 1995]:

S(u, v) =
∫

BR

(∇u∇v̄ − κ2uv̄dx)− < Lu, v >= (f, v)H1(BR) (A.2)

for all v ∈ H1(BR), where BR is a ball of radius R > 0, where S is a sesquilinear form:

H1(BR) × H1(BR) → lC, where L is the Dirichlet-to-Neumann map: H1/2(∂BR) →
H−1/2(∂BR) and f ∈ H1(BR) is a linear functional linked to the incident field. The

contrast κ2 is defined by:

κ2(x) =
n∑

i=0

k2
i χΩi

(x) (A.3)

where k2
i corresponds to the wave number of the obstacle Ωi.

Appendix A.2. Lagrangian formulation

Let us introduce the Lagrangian function L defined by :

L(u, v, t) = J(u) + Re
(
S(u, v, Θt) − (f, v)H1(BR)

)
(A.4)

where Θt is the collection of obstacles shapes at time t. Finding the minimum of

the cost functional is then equivalent to finding the saddle-point of this functional

[Ramananjaona et al 2001]. The partial derivative ∂L(u, v, Θ)/∂v provides the weak

formulation (A.2) for the total field u. The partial derivative ∂L(u, v, t)/∂u provides

the weak formulation for the adjoint field p = v̄ :

S(w, v) = −
∫

M
(us − g)(y)w(y)dy (A.5)

∀w ∈ H1(BR), where the receivers act as sources with a prescribed amplitude.

Appendix A.3. Cost functional derivation

The next step is to derive the objective functional according to the time deformation.

We have :

dJ

dt
=

∂L
∂t

(u, v, t) (A.6)

where u is the total field defined by (A.2) and p = v̄ is the adjoint field defined by (A.5).

As the only term which moves according to time is the wave number κ2, we get:

∂L
∂t

(u, v, t) = −Re
∫

BR

∂κ2(t, x)

∂t
u(x)v̄(x)dx (A.7)
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In fact, the shape information is contained into the level-set representation and

with a single level-set representation, this wave number is defined by:

κ2(t, x) =
n∑

i=0

k2
i [H(φ(t, x), ci+1) − H(φ(t, x), ci]) (A.8)

where H is the one-dimensional Heavisde function and φ(t, x) the level set at time t.

For a given velocity field V (t, x) which represents the perturbation vector field in the

normal direction, the derivative is given by:

∂κ2(t, x)

∂t
=

n∑
i=0

k2
i

[
∂H

∂φ
(φ, ci+1) − ∂H

∂φ
(φ, ci)

]
∂φ

∂t
(A.9)

=
n∑

i=0

k2
i [δ(φ, ci+1) − δ(φ, ci)]V | ∇φ | (A.10)

as φ follows the Hamilton-Jacobi equation (23). The function δ(φ, ci) corresponds to the

Dirac delta function concentrated on the interface ci [Osher and Paragios 2003]. For c0

and cn+1, this Dirac delta function has a null support and therefore does not interfere

in the computations.

The derivative of the Lagrangian is then given by:

∂L
∂t

(u, p, t) = −Re
n∑

i=0

k2
i

∫
BR

[δ(φ, ci+1) − δ(φ, ci)] u(x)p(x)V (t, x) | ∇φ(t, x) | dx (A.11)
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Appendix B. Fréchet derivative for a ’color’ level set

Appendix B.1. Weak formulation and Lagrangian

The cost functional to minimize, as well as the Lagrangian formulation or the adjoint

state are identical as the ones described in Appendix A. As the main difference relies

in the representation of the obstacles, the derivative according to time of the objective

functional will be different.

Appendix B.2. Cost functional derivation

Let us again express the wave number κ2 in terms of the level set description. Here we

have m = log2(n + 1) level set functions, each for each coding bit of material phases.

Following the definitions of (17) and (18), the wave number is given by:

κ2(t, x) =
n∑

i=0

k2
i

(
m∏

b=1

H̃Bb
i (φb)

)
(B.1)

For a given set of velocity fields Vb(t, x) for each level set function φb(t, x), the

derivative of the wave number is :

∂κ2(t, x)

∂t
=

n∑
i=0

k2
i

∂

∂t

(
m∏

b=1

H̃Bb
i (φb)

)
(B.2)

=
n∑

i=0

k2
i

m∑
b=1


 m∏

j=1,j �=b

H̃Bj
i (φj)


 δ̃Bb

i (φb)
∂φb

∂t
(B.3)

=
n∑

i=0

k2
i

m∑
b=1


 m∏

j=1,j �=b

H̃Bj
i (φj)


 δ̃Bb

i (φb)Vb | ∇φb | (B.4)

where δ̃b(φ) is the Dirac delta function concentrated on the interface of the level set φ

with a positive (resp. negative) sign if the associated bit is 1 (resp. 0).

The derivative of the objective function is then given by:

∂L
∂t

(u, p, t) = −Re
n∑

i=0

k2
i

m∑
b=1

∫
BR


 m∏

j=1,j �=b

H̃Bj
i (φj)


u(x)p(x)δ̃Bb

i (φb)Vb | ∇φb | dx (B.5)
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Figure captions

Figure 1 : Several scattering obstacles

Figure 2 : Level-set function for a binary obstacle

Figure 3: Single level-set function for n-ary obstacles

Figure 4: Several level-set functions for n-ary obstacles

Figure 5: Synthetic configuration

Figure 6: Three initialisation processes for a single level-set representation

Figure 7: Cost function for different initial guesses

Figure 8: Resulting images with a single level-set representation for different initial

guesses

Figure 9: Single level-set evolution with a circle as initial guess

Figure 10: Two initialisation processes for a ’color’ level-set representation

Figure 11: Resulting images for different initial guesses with a color level-set

representation

Figure 12: ’Color’ level-sets evolution with a circle as initial guess

Figure 13: Cost function for the different experimental configurations

Figure 14: Resulting images for the FoamDielIntTM case

Figure 15: Resulting images for the FoamDielExtTM case

Figure 16: Resulting images for the FoamTwinDielTM case

Figure 17: Resulting images for the FoamMetExtTM case

Figure 18: Frequency-hopping images for the FoamTwinDielTM case with a ’color’

level-set representation
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Figure 1. Several scattering obstacles
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Figure 2. Level-set function for a binary obstacle
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Figure 4. Multiple level-set functions for n-ary obstacles
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Figure 6. Three initialisation processes for a single level-set representation
(up) image, (down) level-set

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

Iterations

C
os

t f
un

ct
io

n

Circle
Retropropagation
Velocity

(a) Single level-set

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Iterations

C
os

t f
un

ct
io

n

Circle
Retropropagation

(b) Color level-set
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Figure 9. Single level-set evolution with a circle as initial guess
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Figure 10. Two initialisation processes for a ’color’ level-set representation
(left) Image, (middle) Level-set for first bit, (right) Level-set for second bit

x (m)

y 
(m

)

−0.02 −0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

0.0

1.0

2.0

(a) Circle, it. 48

x (m)

y 
(m

)

−0.02 −0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

0.0

1.0

2.0

(b) Retro, it. 82

Figure 11. Resulting images for different initial guesses with a color level-set
representation
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Figure 12. ’Color’ level-sets evolution with a circle as initial guess
(up) Level-set for first coding bit, (down) Level-set for second coding bit
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Figure 13. Cost function for the different experimental configurations
(——) FoamDielIntTM, (+) FoamDielExtTM, (— · —) FoamTwinDielTM, (· · · · · ·)
FoamMetExtTM
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Figure 14. Resulting images for the FoamDielIntTM case
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Figure 15. Resulting images for the FoamDielIntTM case
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Figure 16. Resulting images for the FoamTwinDielTM case
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Figure 17. Resulting images for the FoamMetExtTM case
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Figure 18. Frequency hopping for the FoamTwinDielTM case


