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Laboratoire de Mathématiques Emile Picard, UMR CNRS 5580,

UFR-MIG, Université Toulouse III,
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Abstract

We determine the lower central series and corresponding residual proper-
ties for braid groups and pure braid groups of orientable surfaces.

1 Introduction

Surface braid groups are a natural generalisation of the classical braid groups (cor-
responding to the case where Σ is a disc) and of fundamental groups of surfaces
(corresponding to the case n = 1). They were first defined by Zariski during the
1930’s (braid groups on the sphere had been considered earlier by Hurwitz), were
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re-discovered by Fox during the 1960’s, and were used subsequently in the study of
mapping class groups.

We recall two definitions of surface braid groups. In Section 5.3, we shall give a
third equivalent definition using mapping class groups.

Surface braid groups via configuration space. Let Σ be a connected, ori-
entable surface, and let P = {p1, . . . , pn} be a set of n distinct points (punctures)
in the interior of Σ. Let Fn(Σ) = Σn \∆, where ∆ is the fat diagonal, i.e. the set of
n-tuples x = (x1, . . . , xn) for which xi = xj for some i 6= j. The fundamental group
π1(Fn(Σ)) is called the pure braid group on n strands of the surface Σ; it shall be
denoted by Pn(Σ). There is a natural action of the symmetric group Sn on Fn(Σ) by

permutation of coordinates. We denote by F̂n(Σ) the quotient space Fn(Σ)/Sn. The

fundamental group π1(F̂n(Σ)) is called the braid group on n strands of the surface
Σ; it shall be denoted by Bn(Σ).

Surface braid groups as equivalence classes of geometric braids. A ge-
ometric braid on Σ based at P is a collection (ψ1, . . . , ψn) of n disjoint paths
(called strands) on Σ × [0, 1] which run monotonically with t ∈ [0, 1] and such that
ψi(0) = (pi, 0) and ψi(1) ⊂ P × {1}. Two braids are considered to be equivalent if
they are isotopic. The usual product of paths defines a group structure on the equiv-
alence classes of braids. This group, which is isomorphic to Bn(Σ), does not depend
on the choice of P. A braid is said to be pure if ψi(1) = (pi, 1) for i = 1, . . . , n. The
set of pure braids form a group isomorphic to Pn(Σ).

Given a group G, we define the lower central series of G inductively as follows:
set Γ1(G) = G, and for i ≥ 2, define Γi(G) = [G,Γi−1(G)]. The group G is said
to be perfect if G = Γ2(G). From the lower central series of G one can define
another filtration D1(G) ⊇ D2(G) ⊇ . . . setting D1(G) = G, and for i ≥ 2, defining
Di(G) = { x ∈ G | xn ∈ Γi(G) for some n ∈ N∗ }. After Garoufalidis and Levine
[GLe], this filtration is called rational lower central series of G. Following P. Hall,
for any group-theoretic property P, a group G is said to be residually P if for any
(non-trivial) element x ∈ G, there exists a group H with the property P and a
homomorphism ϕ : G −→ H such that ϕ(x) 6= 1. It is well known that a group G
is residually nilpotent if and only if

⋂
i≥1 Γi(G) = {1}. On the other hand, a group

G is residually torsion-free nilpotent if and only if
⋂

i≥1Di(G) = {1}.
This paper deals with combinatorial properties of surface braid groups, in par-

ticular, their lower central series, and their related residual properties. In the case
of the disc D2 we have that Bn(D2) is residually nilpotent if and only if n = 2, and
if n ≥ 3 then Γ3(Bn(D2)) = Γ2(Bn(D2)) (see Proposition 4). Moreover, Gorin and
Lin [GL] showed that Γ2(Bn(D2)) is perfect for n ≥ 5.
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The case of the sphere S2 and the punctured sphere is currently the subject of
investigation by one of the authors [GG2]: in particularBn(S2) is residually nilpotent
if and only if n = 2 and for all n ≥ 3, Γ3(Bn(S2)) = Γ2(Bn(S2)).

Our main results, which concern orientable surfaces of genus at least one, are as
follows.

Theorem 1 Let Σg be a compact, connected orientable surface without boundary,
of genus g ≥ 1, and let n ≥ 3. Then:

(a) Γ1(Bn(Σg))/Γ2(Bn(Σg)) ∼= Z2g ⊕ Z2.

(b) Γ2(Bn(Σg))/Γ3(Bn(Σg)) ∼= Zn−1+g.

(c) Γ3(Bn(Σg)) = Γ4(Bn(Σg)). Moreover Γ3(Bn(Σg)) is perfect for n ≥ 5.

(d) Bn(Σg) is not residually nilpotent.

This implies that braid groups of compact, connected orientable surfaces without
boundary may be distinguished by their lower central series (indeed by the first two
lower central quotients).

Theorem 2 Let g ≥ 1, m ≥ 1 and n ≥ 3. Let Σg,m be a compact, connected
orientable surface of genus g with m boundary components. Then:

(a) Γ1(Bn(Σg,m))/Γ2(Bn(Σg,m)) = Z2g+m−1 ⊕ Z2.

(b) Γ2(Bn(Σg,m))/Γ3(Bn(Σg,m)) = Z.

(c) Γ3(Bn(Σg,m)) = Γ4(Bn(Σg,m)). Moreover Γ3(Bn(Σg,m)) is perfect for n ≥ 5.

(d) Bn(Σg,m) is not residually nilpotent.

Braid groups on 2 strands represent a very difficult and interesting case. In the
case of the torus, we are able to prove that its 2-strand braid group is residually
nilpotent. Further, using ideas from [GG2] and results of [Ga], we may show that
apart from the first term, the lower central series of B2(T

2) and Z2∗Z2∗Z2 coincide,
and we may also determine all of their lower central quotients. More precisely:

Theorem 3

(a) B2(T
2) is residually nilpotent.

(b) For all i ≥ 2:

(i) Γi(B2(T
2)) ∼= Γi(Z2 ∗ Z2 ∗ Z2);

(ii) Γi(B2(T
2))/Γi+1(B2(T

2)) is isomorphic to the direct sum of Ri copies of Z2,
where:

Ri =

i−2∑

j=1




∑

k|i−j
k>1

µ

(
i− j

k

)
kαk

i− j



 and kαk = 2k + 2(−1)k.
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(c) B2(T
2) is not residually torsion-free nilpotent.

Finally, as we shall see in Proposition 13, B2(T
2) is not bi-orderable (see Section 2

for a definition).
In Section 5, we recall the relations between mapping class groups and surface

braid groups, and prove that pure braid groups of the torus and of surfaces with
boundary components are residually torsion-free nilpotent. This is achieved by
showing that they may be realised as subgroups of the Torelli group of a surface of
higher genus (Lemma 19), which is known to be residually torsion-free nilpotent. In
the Appendix, we provide a short proof of this latter fact (Theorem 25).

Acknowledgements The authors are grateful to I. Marin for pointing out the
relevance of the notion of residual torsion-free nilpotence, and to L. Paris for the
reference [H]. The authors are also indebted to S. Papadima for communicating the
nice proof of the first statement of Theorem 25 to us.

2 Lower central series for Artin-Tits groups

Let us start by recalling some standard results on combinatorial properties of braid
groups. The following result is well known (see [GL] for instance).

Proposition 4 Let Bn be the Artin braid group on n ≥ 3 strands.
Then Γ1(Bn)/Γ2(Bn) ∼= Z and Γ2(Bn) = Γ3(Bn).

Proof. Let us give an easy proof of the second statement (we use an argument
of [GG2]). Let {σ1, . . . , σn−1} be the usual set of generators of Bn; the classical
relations of Bn, referred to hereafter as braid relations, are as follows:

σiσj = σjσi, for all 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2, (1)

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2. (2)

From this, we see that Bn/Γ2(Bn) is isomorphic to Z.
Consider the following short exact sequence:

1 −→
Γ2(Bn)

Γ3(Bn)
−→

Bn

Γ3(Bn)

p
−→

Bn

Γ2(Bn)
−→ 1,

Since all of the σi ∈ Bn/Γ3(Bn) project to the same element of Bn/Γ2(Bn), for
each 1 ≤ i ≤ n − 1, there exists ti ∈ Γ2(Bn)/Γ3(Bn) (with t1 = 1) such that σi =
tiσ1. Projecting the braid relation (2) into Bn/Γ3(Bn), we see that tiσ1ti+1σ1tiσ1 =
ti+1σ1tiσ1ti+1σ1. But the ti are central in Bn/Γ3(Bn), so ti = ti+1, and since t1 =
1, we obtain σ1 = . . . = σn−1. So the surjective homomorphism p is in fact an
isomorphism.
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Remarks 5 We recall that classical braid groups are also called Artin-Tits groups
of type A. Considering the standard group presentations (see for instance [CP]) for
Artin-Tits groups and using the same argument as in the above proof, it is easy
to show that the lower central series of Artin-Tits groups of type B and D and of
Artin-Tits groups E6 and E7 also stabilise at the second term.

Remarks 6 (a) The following groups are perfect: Γ2(Bn) for n ≥ 5 [GL], and the
mapping class group of a compact, connected orientable surface without boundary
of genus g ≥ 3 [Po].

(b) Given a group G, the property that the ith term Γi(G) is perfect implies that
Γi(G) = Γi+1(G).

It is well known that the pure braid groups Pn are residually nilpotent. In fact,
Pn is residually torsion-free nilpotent [FR]. Using the faithfulness of the Krammer-
Digne representation, Marin has shown recently that the pure Artin-Tits groups of
type A (the pure braid groups), B and D are residually torsion-free nilpotent [M].

The fact that a group is residually torsion-free nilpotent has several important
consequences, notably that the group is bi-orderable [MR]. We recall that a group
G is said to be bi-orderable if there exists a strict total ordering < on its elements
which is invariant under left and right multiplication, in other words, g < h implies
that gk < hk and kg < kh for all g, h, k ∈ G. We state one interesting property
of bi-orderable groups. A group G is said to have generalised torsion if there exist
g, h1, . . . , hk, (g 6= 1) such that:

(h1gh
−1
1 )(h2gh

−1
2 ) · · · (hkgh

−1
k ) = 1 .

Proposition 7 ([Go]) A bi-orderable group has no generalised torsion.

The braid group Bn is not bi-orderable for n ≥ 3 since it has generalised tor-
sion [N]. As we shall see in Section 4, B2(T

2) is residually nilpotent, but is not
bi-orderable.

3 Lower central series for surface braid groups on

at least 3 strands

3.1 Surfaces without boundary

This section is devoted to proving Theorem 1. Let Σg be a compact, connected ori-
entable surface without boundary, of genus g > 0. We start by giving a presentation
of Bn(Σg).
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Theorem 8 ([B]) Let n ∈ N. Then Bn(Σg) admits the following group presenta-
tion:

Generators: a1, b1, . . . , ag, bg, σ1, . . . , σn−1.

Relations:

σiσj = σjσi if |i− j| ≥ 2 (3)

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2 (4)

ciσj = σjci for all j ≥ 2, ci = ai or bi and i = 1, . . . , g (5)

ciσ1ciσ1 = σ1ciσ1ci for ci = ai or bi and i = 1, . . . , g (6)

aiσ1bi = σ1biσ1aiσ1 for i = 1, . . . , g (7)

ciσ
−1
1 cjσ1 = σ−1

1 cjσ1ci for ci = ai or bi, cj = aj or bj and 1 ≤ j < i ≤ g (8)
g∏

i=1

[a−1
i , bi] = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1. (9)

Proof. Let B̃n(Σg) be the group defined by the above presentation, and let Bn(Σg)
be the group given by the presentation of Theorem 1.2 of [B]. Consider the homo-

morphism ϕ : Bn(Σg) −→ B̃n(Σg) defined on the generators of Bn(Σg) by ϕ(σj) = σj

(for j = 1, . . . , n − 1), ϕ(ai) = a−1
i and ϕ(bi) = b−1

i (for i = 1, . . . , g). It is an easy
exercise to check that ϕ is an isomorphism.

Proof of Theorem 1.

(a) Consider the group Z2g ⊕ Z2 defined by the presentation 〈c1, . . . , c2g, σ | σ2 =
[ci, cj] = [ci, σ] = 1, for 1 ≤ i, j ≤ 2g 〉 and Bn(Σg) with the group presentation
given by Theorem 8. It is easy to check that the homomorphism

ϕ : Γ1(Bn(Σg))/Γ2(Bn(Σg)) −→ Z2g ⊕ Z2,
which sends ak to c2k−1, bk to c2k and every σj to σ is indeed an isomorphism.

(b) Let us start by determining a group presentation for Bn(Σg)/Γ3(Bn(Σg)). Let
q be the canonical projection of Bn(Σg) onto Bn(Σg)/Γ3(Bn(Σg)). As in the proof of
Proposition 4, the braid relations (4) imply that q(σ1) = · · · = q(σn−1); we denote
this element by σ. This implies that the projected relations (3) are trivial. For
i = 1, . . . , g, let us also denote q(ai) by ai and q(bi) by bi. Since n ≥ 3, we see
from relations (5) that σ is central in Bn(Σg)/Γ3(Bn(Σg)) and hence the projected
relations (6) become trivial. From relations (8), for all 1 ≤ i, j ≤ g, i 6= j, one
may infer that [ai, bj ] = [ai, aj] = [bi, bj ] = [bi, aj ] = 1 in Bn(Σg)/Γ3(Bn(Σg)).
Relations (7) and (9) imply that [bi, ai] = σ−2 for all = 1, . . . , g, and

∏g

i=1[a
−1
i , bi] =

σ2(n−1) respectively. Conjugating the latter equation by a1 · · ·ag yields
∏g

i=1[bi, ai] =
σ2(n−1) in Bn(Σg)/Γ3(Bn(Σg)) (recall that ai commutes with aj and bj if i 6= j), and
hence σ−2g =

∏g

i=1[bi, ai] = σ2(n−1). Therefore, σ2(g+n−1) = 1 in Bn(Σg)/Γ3(Bn(Σg)).

6



Summing up, we have obtained the following information:

Bn(Σg)/Γ3(Bn(Σg)) is generated by a1, b1, . . . , ag, bg and σ

a1, b1, . . . , ag, bg and σ commute pairwise except for the pairs (ai, bi)i=1,...,g

[a1, b1] = · · · = [ag, bg] = σ2; σ2(n+g−1) = 1.





(10)

The remaining relations of Bn(Σg)/Γ3(Bn(Σg)) are those of the form [[x, y], z] = 1
for all x, y, z ∈ Bn(Σg)/Γ3(Bn(Σg)). We claim that such relations are implied by
those of (10). To see this, recall that Γ2(Bn(Σg)/Γ3(Bn(Σg))) is the normal subgroup
of Bn(Σg)/Γ3(Bn(Σg)) generated by the finite set of commutators [ai, aj ], [bi, bj ],
[ai, bj ], [ai, bi], [ai, σ] and [bi, σ], for 1 ≤ i 6= j ≤ g. But the relations of (10) imply
that these commutators are all trivial, with the exception of [ai, bi] for 1 ≤ i ≤ g,
which is equal to σ2. Since σ is central in Bn(Σg)/Γ3(Bn(Σg)), we conclude that
Γ2(Bn(Σg)/Γ3(Bn(Σg))) = 〈σ2〉, and that [[x, y], z] = 1 as claimed. Hence (10) is a
group presentation for Bn(Σg)/Γ3(Bn(Σg)).

Now consider the following exact sequence:

1 −→
Γ2(Bn(Σg))

Γ3(Bn(Σg))
−→

Bn(Σg)

Γ3(Bn(Σg))

p
−→

Bn(Σg)

Γ2(Bn(Σg)
−→ 1.

From the presentation of Bn(Σg)/Γ3(Bn(Σg)) given by (10), one sees that every ele-

ment x of Bn(Σg)/Γ3(Bn(Σg)) may be written in the form aj1
1 b

k1

1 · · ·a
jg
g b

kg
g σp. Since

Bn(Σg)/Γ2(Bn(Σg)) is isomorphic to Z2g ⊕ Z2, the factors being generated respec-
tively by p(a1), p(b1), . . . , p(ag), p(bg) and p(σ), if x ∈ Ker(p) then j1 = k1 = . . . =
jg = kg = 0 and p is even, so Ker(p) ⊆ 〈σ2〉. The converse is clearly true and so
Ker(p) = 〈σ2〉.

Let d denote the order of σ2 in Bn(Σg)/Γ3(Bn(Σg)). From (10), we have that
d divides n + g − 1. To complete the proof of part (b) of Theorem 1, it suffices to
show that n+ g − 1 divides d.

Let G be the group generated by elements a1, b1, . . . , ag, bg and σ, whose relations
are σ2(n+g−1) = 1, and the generators commute pairwise except for the pairs (ai, bi)
for i = 1, . . . , g. Then G = (⊕g

i=1F2(ai, bi)) ⊕ Z2(n+g−1), where F2(ai, bi) denotes
the free group of rank 2 generated by ai and bi. Let N be the subgroup of G
normally generated by the elements [a1, b1]σ

−2, . . . , [ag, bg]σ
−2, and let ρ denote the

canonical projection G −→ G/N . Then G/N ∼= Bn(Σg)/Γ3(Bn(Σg)) by the group
presentation given in (10). The cosets modulo N of the elements a1, b1, . . . , ag, bg
and σ of G may be identified respectively with the elements a1, b1, . . . , ag, bg and
σ of Bn(Σg)/Γ3(Bn(Σg)). Further, by applying the relations of G, any element

of N may be written in the form
∏g

i=1

(∏mi

k=1 uik [ai, bi]
εiku−1

ik

)
σ−2(

∑g
i=1(

∑mi
k=1

εik)),
where mi ∈ N for all i = 1, . . . , g, and for all k = 1, . . . , mi, uik ∈ F2(ai, bi) and
εik ∈ {1,−1}. Since σ2d = 1 in Bn(Σg)/Γ3(Bn(Σg)), and so in G/N , considered as an
element of G, it follows that σ2d belongs to Ker(ρ). Hence for all i = 1, . . . , g, there
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exists mi ∈ N, and for 1 ≤ k ≤ mi, there exist uik ∈ F2(ai, bi) and εik ∈ {1,−1}

such that σ2d =
∏g

i=1

(∏mi

k=1 uik [ai, bi]
εiku−1

ik

)
σ−2(

∑g
i=1(

∑mi
k=1

εik)). Thus:

σ2(d+
∑g

i=1(
∑mi

k=1
εik)) =

g∏

i=1

(
mi∏

k=1

uik([ai, bi])
εiku−1

ik

)
. (11)

From the structure of G, it follows that both the right- and left-hand sides are
equal to 1. Moreover, Γ2(G) = ⊕g

i=1Γ2(F2(ai, bi)). Let 1 ≤ i ≤ g. Projecting the
right-hand side of equation (11), which belongs to Γ2(G), into Γ2(F2(ai, bi)), and

then into Γ2(F2(ai, bi))/Γ3(F2(ai, bi)), we observe that [ai, bi]
∑mi

k=1
εik = 1. But this

quotient is an infinite cyclic group [MKS], hence
∑mi

k=1 εik = 0 for i = 1, . . . , g and
therefore

∑g

i=1 (
∑mi

k=1 εik) = 0. Thus the left-hand side of equation (11) reduces to
σ2d = 1 in G, and so n + g − 1 divides d. It follows that σ is of order 2(n + g − 1)
in Bn(Σg)/Γ3(Bn(Σg)) as claimed.

(c) Let H denote the normal closure in Bn(Σg) of the element σ1σ
−1
2 . Using the

Artin braid relations, one may check that in Bn(Σg)/H , the σi are all identified to
a single element, σ, say, and then that equation (10) defines a group presentation
for Bn(Σg)/H . Thus Bn(Σg)/H ∼= Bn(Σg)/Γ3(Bn(Σg)) via an isomorphism ι. Now
Bn(Σg) contains a copy of the usual Artin braid group Bn which is generated by the
σi. From the Artin braid relations, it follows that Γ2(Bn) is the normal closure in
Bn of the elements σiσ

−1
i+1, 1 ≤ i ≤ n− 2. Moreover, since σi+1σ

−1
i+2 = σ−1

i σ−1
i+1σ

−1
i+2 ·

σiσ
−1
i+1 · σi+2σi+1σi for all 1 ≤ i ≤ n − 3, we see that Γ2(Bn) is the normal closure

in Bn of just σ1σ
−1
2 , and thus NBn(Σg)(Γ2(Bn)) = H (if X is a subset of a group G,

then we denote its normal closure in G by NG(X)).
Since Γ3(Bn) = Γ2(Bn) (by Proposition 4), we have Γ4(Bn(Σg)) ⊇ Γ4(Bn) =

Γ2(Bn). Taking normal closures in Bn(Σg), we deduce that H is a normal subgroup
of Γ4(Bn(Σg)), and hence we obtain the following commutative diagram:

1 // Γ4(Bn(Σg))/H // Bn(Σg)/H

∼=

ι

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

// // Bn(Σg)/Γ4(Bn(Σg))

��
��

// 1

Bn(Σg)/Γ3(Bn(Σg)).

Since ι is an isomorphism, so is the vertical arrow, and hence its kernel
Γ3(Bn(Σg))/Γ4(Bn(Σg)) is trivial. This proves the first part of (c). To prove the
second part, we have just seen that the normal closure H of Γ2(Bn) in Bn(Σg), is
isomorphic to Γ3(Bn(Σg)) (they coincide in fact). Since Γ2(Bn) is perfect for all
n ≥ 5 [GL], so are H and Γ3(Bn(Σg)).

(d) We first remark that Γ3(Bn(Σg)) 6= {1}. For if Γ3(Bn(Σg)) were trivial, by (c),
we would have Γ2(Bn(Σg)) ∼= Zn−1+g. But by [VB], Bn(Σg) is torsion free, which
yields a contradiction. From this it follows that

⋂
i∈N

Γi(Bn(Σg)) 6= {1}. This
completes the proof of the theorem.
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3.2 Surfaces with non-empty boundary

In this section, we study the case of orientable surfaces with boundary, and prove
Theorem 2. We identify Σg,0 with Σg. As in Theorem 8, from Theorem 1.1 of [B],
one obtains the following presentation of Bn(Σg,m).

Theorem 9 Let n ∈ N. Then Bn(Σg,m) admits the following group presenta-
tion:

Generators: a1, b1, . . . , ag, bg, z1, . . . zm−1, σ1, . . . , σn−1.

Relations:

Relations (3) – (8) of Theorem 8

ziσj = σjzi for all j ≥ 2 and i = 1, . . . , m− 1 (12)

ziσ1ziσ1 = σ1ziσ1zi for i = 1, . . . , m− 1 (13)

ziσ
−1
1 zjσ1 = σ−1

1 zjσ1zi for 1 ≤ j < i ≤ m− 1 (14)

ciσ
−1
1 zjσ1 = σ−1

1 zjσ1ci for ci = ai or bi, i = 1, . . . , g and j = 1, . . . , m− 1. (15)

Proof of Theorem 2. Statement (a) may be proved in the same way as (a) of
Theorem 1.

We now prove part (b). As in the proof of part (b) of Theorem 1, one may
check that Γ2(Bn(Σg,m))/Γ3(Bn(Σg,m)) = 〈σ2〉, where for all i = 1, . . . , n − 1, σ is
the projection of σi in Bn(Σg,m)/Γ3(Bn(Σg,m). It thus suffices to show that σ2 is of
infinite order.

Instead of repeating the arguments used in Theorem 1, we propose a different
proof, based on geometric relations between surface braid groups. Suppose that
σ2d = 1 for some d ∈ N. This is equivalent to saying that σ2d

i belongs to Γ3(Bn(Σg,m))
for all i = 1, . . . , n− 1.

Let 1 ≤ i ≤ m. To each boundary component ∂i of Σg,m let us associate a
surface Σgi,1 of positive genus gi. We choose the gi so that h = g +

∑m

i=1 gi >
d − (n − 1). Let Σh denote the compact, orientable surface without boundary and
of genus h obtained by glueing ∂Σgi,1 to ∂i for all i = 1, . . . , m. The embedding of
Σg,m into Σh induces a natural homomorphism ϕ between Bn(Σg,m) and Bn(Σh),
sending geometric generators of Bn(Σg,m) to the corresponding elements of Bn(Σh).
In particular, ϕ(σi) = σi for all i = 1, . . . , n− 1.

Since σ2d
i belongs to Γ3(Bn(Σg,m)), it follows that ϕ(σ2d

i ) = σ2d
i belongs to

Γ3(Bn(Σh)), and hence σ2d = 1 in Γ2(Bn(Σh))/Γ3(Bn(Σh)) (recall that, by The-
orem 1, Γ2(Bn(Σh))/Γ3(Bn(Σh)) = 〈σ2〉 ∼= Zh+n−1). But this would imply that
h+ n− 1 ≤ d – a contradiction. This proves part (b).
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Part (c) may be proved in the same way as (c) of Theorem 1; indeed, the quotient
Bn(Σg,m)/Γ3(Bn(Σg,m)) has a presentation similar to that of (10) (with the zi central,
but without the last relation), and is isomorphic to Bn(Σg,m)/H , where H is the
normal closure of σ1σ

−1
2 in Bn(Σg,m), and thus is equal to the normal closure of

Γ2(Bn) in Bn(Σg,m). As in Theorem 1, one may show that H = Γ3(Bn(Σg,m) is
perfect for n ≥ 5.

Finally, to prove part (d), as in Theorem 1 it suffices to prove that Γ3(Bn(Σg,m)) 6=
{1}. Suppose that Γ3(Bn(Σg,m)) = {1}. Then Γ2(Bn(Σg,m)) ∼= Z by (b), and since
Bn(Σg,m) ⊃ Bn, it follows that Γ2(Bn) is cyclic; but since n ≥ 3, this contradicts
the results of [GL].

4 Braid groups on 2 strands: properties and open

questions

The aim of this section is to prove Theorem 3. Consider first the group presentation
given by Theorem 8, and take n = 2 and g = 1. Setting α = aσ1, β = bσ1 and
γ = aσ1b, one obtains the following presentation of B2(T

2):

Theorem 10 ([BG]) B2(T
2) is generated by α, β and γ, subject to the relations:

α2 and β2 are central

α2β2 = γ2.

Further, α2 and β2 generate the centre of B2(T
2).

Let p : B2(T
2) −→ B2(T

2)/Z(B2(T
2)) denote the canonical projection. From this

presentation, it follows that B2(T
2)/Z(B2(T

2)) is generated by α = p(α), β = p(β)

and γ = p(γ), subject to the relations α2 = β
2

= γ2 = 1. So B2(T
2)/Z(B2(T

2)),
which we identify with Z2 ∗ Z2 ∗ Z2, is the Coxeter group W (α, β, γ) associated to
the free group F3(α, β, γ), and B2(T

2) is a central extension of W (α, β, γ):

1 −→ Z(B2(T
2)) −→ B2(T

2)
p

−→ Z2 ∗ Z2 ∗ Z2 −→ 1.

This presentation of B2(T
2) was considered in [BG], where the following length

functions ℓα̂, ℓβ̂ were defined. If x ∈ {α, β, γ}, set:

ℓα̂(x) =

{
1 if x 6= α

0 if x = α,

and similarly for ℓ
β̂
. From Theorem 10, it follows that each of ℓα̂ and ℓ

β̂
extends to

a homomorphism of B2(T
2) onto Z.

The following observation will be used in the proof of Theorem 3.
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Proposition 11 The intersection of Γ2(B2(T
2)) and Z(B2(T

2)) is trivial.

Proof. Let x ∈ Z(B2(T
2)). By Theorem 10, there exist m,n ∈ Z such that x =

a2mb2n, and thus ℓα̂(x) = 2n and ℓ
β̂
(x) = 2m. But x ∈ Γ2(B2(T

2)), so ℓα̂(x) =
ℓ
β̂
(x) = 0. We conclude that m = n = 0, and hence x = 1.

We are now able to prove Theorem 3.

Proof of Theorem 3. Set G = Z2 ∗ Z2 ∗ Z2.

(a) Suppose that x ∈
⋂

i∈N
Γi(B2(T

2)). Then p(x) ∈
⋂

i∈N
Γi(G), but since G

is residually nilpotent [G], it follows that x ∈ Ker(p) = Z(B2(T
2)). So x = 1 by

Proposition 11, and hence B2(T
2) is residually nilpotent.

(b) (i) Let us consider the following commutative diagram of short exact sequences:

1 // Γ2(B2(T
2)) //

p2

��

B2(T
2)

p

��

// Bn(T2)/Γ2(Bn(T2))

��

// 1

1 // Γ2(G) // G // G/Γ2(G) // 1

The first and third vertical arrows are those induced by p. More generally, for i ≥ 2,
let pi : Γi(B2(T

2)) −→ Γi(G) denote the epimorphism induced by p. But it follows
from Proposition 11 that p2 is also injective, so is an isomorphism. Since for i ≥ 3,
pi is the restriction of p2 to Γi(B2(T

2)), pi is an isomorphism too.

(ii) From (b)(i), it follows that Γi(B2(T
2))/Γi+1(B2(T

2)) ∼= Γi(G)/Γi+1(G), so it
suffices to prove the result for G. We break the proof down into two parts as
follows:

(1). Recall that the elements α, β and γ are each of order 2, and generate G.
We claim that every non-trivial element of Γi(G)/Γi+1(G) is of order 2. Since
Γi(G)/Γi+1(G) is a finitely-generated Abelian group by [MKS], this will imply that
it is isomorphic to a finite number, Ri say, of copies of Z2. To prove the claim, recall
from [MKS] that Γi(G)/Γi+1(G) is generated by the cosets modulo Γi+1(G) of the
i-fold simple commutators [[· · · [[ρ1, ρ2], ρ3] · · · , ρi−1], ρi], where ρj ∈

{
α, β, γ

}
for all

1 ≤ j ≤ i. We argue by induction on i ≥ 2. Firstly, let i = 2. Then Γ2(G)/Γ3(G)
is generated by the cosets of the [ρ1, ρ2]. But modulo Γ3(G), [ρ1, ρ2]

2 ≡ [ρ2
1, ρ2] ≡ 1,

and since Γ2(G)/Γ3(G) is Abelian, this implies that all of its non-trivial elements
are of order 2. Now suppose that i ≥ 3, and suppose by induction that the result
holds for i − 1, so that x2 ≡ 1 modulo Γi(G) for all x ∈ Γi−1(G). Every i-fold sim-
ple commutator may be written in the form [x, ρi], where x is a (i − 1)-fold simple
commutator, so belongs to Γi−1(G), and ρi ∈

{
α, β, γ

}
, so belongs to G. By the

induction hypothesis, x2 ∈ Γi(G), so [x, ρi]
2 ≡ [x2, ρi] ≡ 1 modulo Γi+1(G), and once

more, since Γi(G)/Γi+1(G) is Abelian, all of its non-trivial elements are of order 2.
This proves the claim.
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(2). The number Ri of summands of Z2 is given by Theorem 3.4 of [Ga]. We refer
to Gaglione’s notation in what follows. Since U∞(x) = 0, the Rj

∞ are all zero (Rj
∞

represents the rank of the free abelian factor of Γj(G)/Γj+1(G)), and so Ri is as
given in the statement of the theorem. It just remains to determine kαk for all
k ≥ 2. A simple calculation shows that 1 − U(x) = (1 + x)2(1 − 2x), hence:

d

dx
ln (1 − U(x)) =

2

x+ 1
+

2

2x− 1
,

and that for k ≥ 2,

dk

dxk
ln (1 − U(x)) = (−1)k+1(k − 1)!

(
2

(x+ 1)k
+

2k

(2x− 1)k

)
.

So

kαk = −
1

(k − 1)!

(
dk

dxk
ln (1 − U(x))

)∣∣∣∣
x=0

= 2k + 2(−1)k,

as required.

(c) Given a group G, the quotient group Di(G)/Di+1(G) is torsion free and it
is isomorphic to Γi(G)/Γi+1(G) modulo torsion, for i ≥ 1 [P]. Therefore, from
part (b) one deduces that D2(B2(T

2)) = D3(B2(T
2)). On the other hand one can

easily verify that B2(T
2)/Γ2(B2(T

2)) ∼= Z2⊕Z2 and therefore B2(T
2)/D2(B2(T

2)) ∼=
Z2. Since B2(T

2) is not abelian, it follows that D2(B2(T
2)) is not trivial and then⋂

i∈N
Di(B2(T

2) 6= {1}.

Remarks 12 From Theorem 3 one concludes that Γi(B2(Σ1,p)) 6= Γi+1(B2(Σ1,p)).
On the other hand, the group Γ2(B2(Σg,p)) is generated by the set of conjugates of
the commutators of the form [g, g′], where g, g′ are generators of B2(Σg,p). There-
fore Γ2(B2(Σg,p)) ⊂ P2(Σg,p). Since P2(Σg,p) is residually nilpotent for p ≥ 1 (see
Section 5), one deduces that B2(Σg,p) is residually soluble for p ≥ 1. The question of
whether B2(Σ) is in fact residually nilpotent, when Σ is a surface of positive genus
possibly with boundary different from the torus, is open.

To finish this section, we prove the following result:

Proposition 13 The group B2(T
2) is not bi-orderable.

Proof. Consider B2(T
2) with the group presentation in Theorem 10. Set g = αβγ−1.

The following equality holds in B2(T
2):

((αγ)−1g(αγ))(γ−1gγ)(α−1gα)(g) = 1 .

12



Since g 6= 1, the group B2(T
2) is not bi-orderable by Proposition 7.

Let Σ be an orientable surface, possibly with boundary. If n ≥ 3, Bn(Σ) is
not bi-orderable since it contains a copy of Bn which is not bi-orderable [Go]. If
n = 1, the group B1(Σ) is isomorphic to π1(Σ) which is known to be residually free.
Therefore it is also residually torsion-free nilpotent and hence bi-orderable.

Remark 14 If Σ is an orientable surface, possibly with boundary, different from the
torus, the sphere and the disc, the question of whether B2(Σ) is in fact bi-orderable
is open.

5 Residual torsion free nilpotence of surface pure

braid groups

In this section we give a short survey on relations between surface braids and map-
ping classes, and we show that pure braid groups of surfaces with non-empty bound-
ary may be realised as subgroups of Torelli groups of surfaces with one boundary
component.

5.1 Surface pure braid groups

We start by recalling a group presentation for pure braid groups of surfaces with
one boundary component [B].

Theorem 15 Let Σg,1 be a compact, connected orientable surface of genus g ≥ 1
with one boundary component. The group Pn(Σg,1) admits the following presenta-
tion:

Generators: {Ai,j | 1 ≤ i ≤ 2g + n− 1, 2g + 1 ≤ j ≤ 2g + n, i < j}.

Relations:

(PR1) A−1
i,j Ar,sAi,j = Ar,s if (i < j < r < s) or (r + 1 < i < j < s),

or (i = r + 1 < j < s for even r < 2g or r > 2g) ;

(PR2) A−1
i,j Aj,sAi,j = Ai,sAj,sA

−1
i,s if (i < j < s) ;

(PR3) A−1
i,j Ai,sAi,j = Ai,sAj,sAi,sA

−1
j,sA

−1
i,s if (i < j < s) ;

(PR4) A−1
i,j Ar,sAi,j = Ai,sAj,sA

−1
i,sA

−1
j,sAr,sAj,sAi,sA

−1
j,sA

−1
i,s

if (i+ 1 < r < j < s) or

(i+ 1 = r < j < s for odd r < 2g or r > 2g) ;
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(ER1) A−1
r+1,jAr,sAr+1,j = Ar,sAr+1,sA

−1
j,sA

−1
r+1,s

if r odd and r < 2g ;

(ER2) A−1
r−1,jAr,sAr−1,j = Ar−1,sAj,sA

−1
r−1,sAr,sAj,sAr−1,sA

−1
j,sA

−1
r−1,s

if r even and r < 2g .

As a representative of the generator Ai,j , we may take a geometric braid whose
only non-trivial (non-vertical) strand is the (j−2g)th one. In Figure 1, we illustrate
the projection of such braids on the surface Σg,1 (see also Figure 8 of [B]). Some
misprints in Relations (ER1) and (ER2) of Theorem 5.1 of [B] have been corrected.

Σg,1

A2g+2, 2g+n

n21

1 g

AA1,2g+1 2g, 2g+2

Figure 1: Projection of representatives of the generators Ai,j. We represent Ai,j by
its only non-trivial strand.

With respect to the presentation of Bn(Σg) given in Theorem 8, the elements
Ai,j are the following braids:

• Ai,j = σj−2g · · ·σi+1−2gσ
2
i−2gσ

−1
i+1−2g · · ·σ

−1
j−2g, for i ≥ 2g;

• A2i,j = σj−2g · · ·σ1ag−i+1σ
−1
1 · · ·σ−1

j−2g, for 1 ≤ i ≤ g;

• A2i−1,j = σj−2g · · ·σ1bg−i+1σ
−1
1 · · ·σ−1

j−2g, for 1 ≤ i ≤ g.

Relations (PR1), . . . , (PR4) correspond to the classical relations for the pure
braid group Pn [Bir]. New relations arise when we consider two generators A2i,j ,
A2i−1,k, for 1 ≤ i ≤ g and j 6= k. They correspond to loops based at two different
points which go around the same handle.
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5.2 Mapping class groups

The mapping class group of a surface Σg,p, denoted by Mg,p, is the group of isotopy
classes of orientation-preserving self-homeomorphisms which fix the boundary com-
ponents pointwise. If the surface has empty boundary then we shall just write Mg.
Note that we will denote the composition in the mapping class groups from left to
right1.

Let P = {x1, . . . , xn} be a set of n distinct points in the interior of the surface
Σg,p. The punctured mapping class group of Σg relative to P is defined to be the
group of isotopy classes of orientation-preserving self-homeomorphisms which fix the
boundary components pointwise, and which fix P setwise. This group, denoted by
M(n)

g,p , does not depend on the choice of P, but just on its cardinal. We define
the pure punctured mapping class group, denoted by PM(n)

g,p , to be the subgroup of
(isotopy classes of) homeomorphisms which fix the set P pointwise. We recall that
a Dehn twist TC along a simple closed curve C is the isotopy class of a positive twist
along C.

Let C and D be two simple closed curves bounding an annulus containing the
single puncture xj . We shall say that the multitwist TCT

−1
D is a j-bounding pair

braid.

Remark 16 According to the definition given in [IIM], a j-bounding pair braid is
a 1-string bounding pair braid with string based at the puncture xj .

5.3 Pure braids, bounding pair braids and Torelli groups

Surface braid groups are related to mapping class groups as follows:

Theorem 17 (Birman [Bir]) Let g ≥ 1 and p ≥ 0. Let ψ : M(n)
g,p −→ Mg,p be the

homomorphism induced by the map which forgets the set P. If Σg,p is different from
the torus then Ker(ψ) is isomorphic to Bn(Σg,p).

Remarks 18 In particular, if Σ is an orientable surface (possibly with boundary) of
positive genus and different from the torus, the surface pure braid group Pn(Σ) may
be identified with the group generated by bounding pair braids. Indeed, consider
two simple closed curves C and D bounding an annulus containing a single puncture,
say the jth one. We suppose that at least one curve between C and D either does
not bound a disc, or it bounds a disc containing at least two punctures (otherwise
the corresponding bounding pair braid is trivial). Let h be a homeomorphism of Σ
which is a representative of TCT

−1
D . Then h is isotopic to the identity, but the points

{x1, . . . , xn} may move during the isotopy. The track of these points in Σ × [0, 1]

1We do this in order to have the same group-composition in braid groups and mapping class
groups.
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yields the geometric braid βh corresponding to (the class of) the homeomorphism
h. Let L : S1 −→ Σ be an embedding such that L ∩ P = {xj} and such that L
is contained in the annulus bounded by C and D. Up to braid isotopy, we may
suppose that the jth strand ψj of the braid βh is such that ψj(t) = (L(e2πit), t) (or
ψj(t) = (L(e2πi(1−t)), t)) for every t in [0, 1], and the other n− 1 strands are trivial
(vertical). Since this set of braids generates Pn(Σ) (see Theorems 5.1 and 5.2 of [B]
for instance ), we deduce that bounding pair braids generate a group isomorphic to
Pn(Σ).

5.4 Torelli groups

We recall that the Torelli group Tg,1 is the subgroup of the mapping class group
Mg,1 which acts trivially on the first homology group of the surface Σg,1.

Before stating the main theorem of this section, we recall the following exact
sequence:

1 −→ Zn −→ Mg,n+p

q
−→ PM(n)

g,p −→ 1 , (16)

where Zn is generated by Dehn twists along the first n boundary components of
Σg,n+p. Geometrically, the projection q may be obtained by glueing one-punctured
discs D1, . . . ,Dn, say, onto the first n boundary components.

Lemma 19 Let Σg,1 be a surface of genus greater than or equal to one with one
boundary component. Then the group Pn(Σg,1) embeds in Tg+n,1.

Proof. Applying Theorem 17 and Remark 18, we identify Pn(Σg,1) with the subgroup

of PM(n)
g,1 generated by bounding pair braids. Let us first embed Pn(Σg,1) in Mg,n+1.

To achieve this, we construct a section s on Pn(Σg,1) of the sequence (16). For each
generator Ai,j of Pn(Σg,1), we define s(Ai,j) as follows. Consider two simple closed
curves a and a′ lying in Σg,1 such that Ai,j is equal to the boundary pair braids
TaT

−1
a′ . These two curves may be chosen so as to avoid the discs D1, . . . ,Dn, and

thus may be seen as lying in Σg,n+1. If dj is a simple closed curve parallel to the
jth-boundary component, we set s(Ai,j) = TaT

−1
a′ Tdj

, which we denote by A′
i,j . Since

the Dehn twists Td1
, . . . , Tdn

belong to the kernel of q, one has q ◦ s = Id, and hence
s is injective. We claim that s is a homomorphism. To prove this, we have to show
that relations (PR1-4) and (ER1-2) are satisfied in Mg,n+1 via s.

The four first relations may be written in the form hAr,sh
−1 = Ar,s, where h is a

word in the Ai,j’s. These relations are compatible with s, since for all simple closed
curves a in Σg,n+1, and all h in Mg,n+1, one has:

Th(a) = h−1Tah. (17)

For example, relation (PR1) is compatible with s because the curves occurring
in A′

i,j are disjoint from those occuring in A′
r,s. For (PR2), the bounding pair
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jd ds
bi,j

ai,j

ei,j,s

cj,s
jd ds

ai

bi

Figure 2: curves for relations (PR2) and (ER2)

braid Aj,s (resp. Ai,j, Ai,s) is equal to Tdj
T−1

cj,s
(resp. TaT

−1
a′ , TbT

−1
b′ for (a, a′) ∈

{(ai, ai,j), (bi, bi,j), (di, ci,j)} and (b, b′) ∈ {(ai, ai,s), (bi, bi,s), (di, ci,s)}, where curves
are those described by Figure 2). Thus we have:

A′−1
i,j A

′
j,sA

′
i,j = [T−1

a Ta′T−1
dj

]Tdj
T−1

cj,s
Tds

[Tdj
T−1

a′ Ta]

= [T−1
a Ta′ ]T−1

cj,s
[T−1

a′ Ta]Tdj
Tds

since the Tdk

′s are central

= T−1

TaT−1

a′
(cj,s)

Tdj
Tds

by (17),

and similarly, A′
i,sA

′
j,sA

′−1
i,s = T−1

T−1

b
Tb′ (cj,s)

Tdj
Tds

. Now, it is easy to see that

TaT
−1
a′ (cj,s) = T−1

a′ (cj,s) = T−1
b Tb′(cj,s),

which yields the required relation. The compatibility of relations (PR3-4) with s
may be proved in the same way; we leave this as an exercise for the reader.

Relation (ER1) is a consequence of the lantern relation and relation (17). Indeed,
if we consider the seven curves bi, dj , ds, ei,j,s, bi,s, bj,s and cj,s shown in Figure 2
(where r = 2i− 1), the lantern relation may be written as:

Tei,j,s
Tbi
Tdj

Tds
= Tbi,s

Tbi,j
Tcj,s

,

which implies that

A′
r,s = Tbi

T−1
bi,s
Tds

= Tbi,j
T−1

ei,j,s
Tcj,s

T−1
dj

= Tbi,j
T−1

ei,j,s
Tds

A′−1
j,s .

Since A′
r+1,j = Tai

T−1
ai,j
Tdj

, we obtain

A′−1
r+1,jA

′
r,jA

′
r+1,j =

[
T−1

dj
Tai,j

T−1
ai
Tbi,j

T−1
ei,j,s

Tds
Tai
T−1

ai,j
Tdj

][
A′−1

r+1,jA
′−1
j,s A

′
r+1,j

]

=
[
Tai,j

T−1
ai
Tbi,j

T−1
ei,j,s

Tai
T−1

ai,j

]
Tds

[
A′

r+1,sA
′−1
j,s A

′−1
r+1,s

]
by (PR2)

= TTai
T−1

ai,j
(bi,j )T

−1

Tai
T−1

ai,j
(ei,j,s)

Tds

[
A′

r+1,sA
′−1
j,s A

′−1
r+1,s

]
by (17).

But Tai
T−1

ai,j
(bi,j) = bi and Tai

T−1
ai,j

(ei,j,s) = bi,s, so

A′−1
r+1,jA

′
r,jA

′
r+1,j = Tbi

T−1
bi,s
Tds

[
A′

r+1,sA
′−1
j,s A

′−1
r+1,s

]

= A′
r,sA

′
r+1,sA

′−1
j,s A

′−1
r+1,s ,
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which is relation (ER1). Relation (ER2) is also a consequence of a lantern: again,
we leave the details to the reader.

Hence s : Pn(Σg,1) −→ Mg,n+1 is an embedding. Glueing a one-holed torus
onto each of the first n boundary components of Σg,n+1, we obtain a homomorphism
ϕ : Mg,n+1 −→ Mg+n,1 which is injective (see [PR2]). Clearly, the image under ϕ of
each s(Ai,j) acts trivially on the homology group H1(Σg+n,1; Z). Thus ϕs(Pn(Σg,1))
lies in the Torelli group of Σg+n,1.

Remark 20 The sequence (16) does not split, since the first homology group of
Mg,n is trivial.

Remark 21 This embedding of Pn(Σg,1) into Tg+n,1 does not hold for surfaces with
empty boundary. Indeed, the group Pn(Σg) has an extra relation (TR) (see [B])
which is not satisfied by the section s.

Theorem 22 Let Σ be the sphere, the torus, or a surface of positive genus with
non-empty boundary. Then the group Pn(Σ) is residually torsion-free nilpotent.

Proof. Let Σg,1 be a surface of genus greater than or equal to one, and with one
boundary component. First, we remark that Lemma 19 and Theorem 25 imply
that Pn(Σg,1) is residually torsion-free nilpotent. Now let Σg,p be a surface with
p > 1 boundary components. The group Pn(Σg,p) may be realised as the subgroup
of Pn+p−1(Σg,1) formed by the braids whose first p−1 strands are vertical. Therefore
Pn(Σg,p) is residually torsion-free nilpotent.

The remaining cases are the pure braid groups of S2 and T2. In the case of the
sphere, the group Pn(S2) is isomorphic to Z2 × Pn−2(Σ0,3) (see [GG1]). Therefore,
for i > 1, Γi(Pn(S2)) and Γi(Pn−2(Σ0,3)) are isomorphic. Since Pn−2(Σ0,3) is a
subgroup of Pn (which may be realised geometrically as the subgroup of braids
whose last strand is vertical), from [FR] it follows that Pn(S2) is residually torsion-
free nilpotent. In a similar way, using Lemma 23, one sees that the group Pn(T2) is
residually torsion-free nilpotent.

Lemma 23 The group Pn(T
2) is isomorphic to Pn−1(Σ1,1) × Z2.

Proof. Consider the pure braid group exact sequence for an orientable surface Σ:

(PBS) 1 −→ Pn−1(Σ \ {x1}) −→ Pn(Σ)
θ

−→ π1(Σ) −→ 1,

where geometrically, θ is the map that forgets the paths pointed at x2, . . . , xn. Since
ZPn(Σ1,1) is trivial [PR1], we deduce that the restriction of θ to ZPn(T2) is injective.
Since ZPn(T2) = Z2 [PR1], the restriction of θ to ZPn(T

2) is in fact an isomorphism,
and we conclude that Pn(T2) is isomorphic to the direct product Pn−1(Σ1,1) × Z2.
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Remark 24 Pure braid groups of surfaces of genus g ≥ 2 with empty boundary
are bi-orderable ([Go]). To the best of our knowledge, it is not known whether they
are residually torsion-free nilpotent.

Appendix:

Residually torsion-free nilpotence of Torelli groups

Let Σg,1 be the surface of genus g ≥ 1 with one boundary component. In this section,
we give a short proof of the fact that the Torelli group Tg,1 is residually torsion-free
nilpotent. This result is folklore (see Section 14 of [H]) but we did not find a detailed
proof of it in the literature. In what follows, the fundamental group of Σg,1, which is
free, will be denoted by π, and its lower central series by π1 = π and πk+1 = [π, πk]
for k ≥ 1.

Theorem 25 The Torelli group of a surface of genus g ≥ 1 with one boundary
component is residually torsion-free nilpotent.

In order to prove the theorem, let us recall the ”machinery” of Johnson’s homomor-
phism. For any positive integer k, we consider the subgroup M[k] of Mg,1 consisting
of the elements which act trivially on π/πk. Thus M[1] = Mg,1, M[2] = Tg,1 and
M[k + 1] ⊂ M[k] for all k. We also recall that the kth Johnson’s homomorphism
is a map Jk : M[k] −→ Hom(π/π2, πk/πk+1) such that Ker(Jk) = M[k + 1] (see [J]
or [Mo]).

Proposition 26 The filtration M[1] ⊃ M[2] ⊃ . . . has the following proper-
ties:

(a)
⋂

k∈N∗

M[k] = {Id};

(b) all quotients M[k]/M[k + 1] are torsion free.

Proof.

(a) Let f be an element of
⋂

k∈N∗

M[k]. Then for all x in π and all positive integers k,

f(x)x−1 is an element of πk. Since π is residually nilpotent (see [MKS]), we see that
f(x)x−1 = 1. Thus f acts trivially on the fundamental group of Σg,1. By Nielsen’s
theorem, this means that f is the identity map.

(b) The kernel of the kth Johnson’s morphism is M[k+1], and thus M[k]/M[k+1]
is isomorphic to a subgroup of Hom(π/π2, πk/πk+1), which is torsion free since
πj/πj+1 is a free group for all j.
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Proposition 27 For all positive integers k, one has Dk(Tg,1) ⊂ M[k + 1].

Clearly, Propositions 26 and 27 give a proof of Theorem 25.

Before proving Proposition 27, let us state a lemma about commutator calculus.

Lemma 28 If f is an element of M[k] and x an element of πj, then x−1f(x) belongs
to πk+j−1.

Proof. We proceed by induction on j. For j = 1, this is the definition of M[k]. Let
j be a positive integer, and suppose that x−1f(x) ∈ πk+i−1 for all x ∈ πi and all i,
1 ≤ i ≤ j. If (x, y) is an element of πj × π then there exists (a, a′) ∈ πk+j−1 × πk

such that f(x) = xa and f(y) = ya′. So:

f([x, y]) = [f(x), f(y]
= [xa, ya′]
= xaya′a−1x−1a′−1y−1

= x[a, ya′]ya′x−1a′−1y−1

= x[a, ya′]x−1[x, y]yxa′x−1a′−1y−1

= x[a, ya′]x−1[x, y]y[x, a′]y−1.

Since a ∈ πk+j−1, x ∈ πj and a′ ∈ πk, one has [a, ya′] ∈ πk+j and [x, a′] ∈ πk+j. Thus
[x, y]−1f([x, y]) belongs to πk+j .

Proof of Proposition 27. First we prove that Γk(Tg,1) ⊂ M[k + 1]. We proceed by
induction on k. If k = 1, then Tg,1 = M[2]. Suppose that Γk(Tg,1) ⊂ M[k + 1], and
consider an element f (resp. g) of Γk(Tg,1) (resp. Tg,1). We want to prove that the
commutator [f, g] ∈ M[k + 2], in other words:

(
[f, g]

)
(x)x−1 ∈ πk+2 for all x in π.

So let x be an element of π. There exists (d1, d2) ∈ πk+1 × π2 such that

f−1
(
g−1(x)

)
= g−1(x)d1 and g−1(x) = d2x.

Then: (
[f, g]

)
(x) = fgf−1

(
g−1(x)

)
= fg

(
g−1(x)d1

)
= f

(
xg(d1)

)
.

By Lemma 28, there is an element d3 in πk+2 such that g(d1) = d1d3. From this, we
obtain

(
[f, g]

)
(x) = f

(
xd1d3

)
= f

(
xg−1(x)−1f−1

(
g−1(x)

))
f(d3)

= f
(
d−1

2

)
g−1(x)f(d3).
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Since f ∈ M[k + 1] and d−1
2 ∈ π2, applying Lemma 28 yields an element d4 of πk+2

such that f(d−1
2 ) = d4d

−1
2 . Thus we obtain

(
[f, g]

)
(x) = d4d

−1
2 g−1(x)f(d3) = d4xf(d3) = d4[x, f(d3)]f(d3)x.

Since d3 and d4 are elements of πk+2, we see that
(
[f, g]

)
(x)x−1 ∈ πk+2.

Let g ∈ Dk(Tg,1). Then for some n, gn belongs to Γk(Tg,1) and so to M[k + 1].
By Proposition 26 it follows that g belongs to M[k + 1].

Remark 29 The above commutator calculus may be found in [HP].

Remark 30 In [H] a sketch of a proof of Proposition 26 is outlined, and Proposi-
tion 27 is stated without proof (Proposition 14.9 and the following remarks).
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