
HAL Id: hal-00015414
https://hal.science/hal-00015414

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Growth of monodisperse mesoscopic metal-oxide colloids
under constant monomer supply

Koh Nozawa, Marie-Hélène Delville, Hideharu Ushiki, Pascal Panizza,
Jean-Pierre Delville

To cite this version:
Koh Nozawa, Marie-Hélène Delville, Hideharu Ushiki, Pascal Panizza, Jean-Pierre Delville. Growth
of monodisperse mesoscopic metal-oxide colloids under constant monomer supply. Physical Review
E : Statistical, Nonlinear, and Soft Matter Physics, 2005, 72 (1), 011404 (8 p.). �10.1103/Phys-
RevE.72.011404�. �hal-00015414�

https://hal.science/hal-00015414
https://hal.archives-ouvertes.fr


Growth of Monodisperse Mesoscopic Metal Oxide Colloids Under 
Constant Monomer Supply 

 

Koh Nozawa§, #, †, Marie-Hélène Delville  #, a, Hideharu Ushiki†, Pascal Panizza , and  §

Jean-Pierre Delville  §, b

§Centre de Physique Moléculaire Optique et Hertzienne, UMR CNRS 5798, Université 

Bordeaux I, 351 Cours de la Libération, 33405 Talence cedex, France

#Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS 9048 , Université 

Bordeaux I, 87 Avenue du Dr. A. Schweitzer, 33608 Pessac cedex, France

†Laboratory of Molecular Dynamics and Complex Chemical Physics, Faculty of Agriculture, 

Department of Environmental and Resource Science, Tokyo University of Agriculture and 

Technology, 3-5-8, Saiwai-cho, Tokyo 183-8509, Japan 

 
  
Abstract: In closed systems, control over the size of monodisperse metal oxide colloids is 

generally limited to submicrometric dimensions. To overcome this difficulty, we explore the 

formation and growth of silica particles under constant monomer supply. The monomer 

source is externally driven by the progressive addition into the system of one of the 

precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We 

analyze their growth versus the monomer addition rate at different temperatures. Our results 

show that in the presence of a continuous monomer addition, growth is limited by diffusion 

over the investigated temporal window. Using the temperature variation of the growth rate, 

we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the 

growth process, the final particles size reached after the end of the reagent supply, strongly 
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depends on the addition rate. The variation of the final particle size versus addition rate can be 

deduced from an analogy with crystal formation in jet precipitation. Within this framework, 

and using the temperature dependences of both the particle growth law and the final size, we 

determine the value of the molecular heat of dissolution associated to the silica solubility. 

These observations support the fact that classical theories of phase-ordering dynamics can be 

extended to the synthesis of inorganic particles. The emergence of a master behavior in the 

presence of continuous monomer addition also suggests the extension of these theories to 

open systems. 

 

PACS Numbers: 81.07.-b, 81.20.Fw, 81.10.Dn, 82.60.Nh  

 

I – INTRODUCTION 

 

The synthesis of fine mesoscopic particles of targeted sizes is now required in numerous high 

technology applications as different as ceramics, catalysis, pigments, recording materials, 

medical diagnostics, or photonics 1, 2. Since most physical properties of colloids are size 

dependent, it is essential to control their monodispersity as well as their uniformity in shape 

and composition. Reaching this goal requires a detailed understanding of both their 

mechanisms of formation and growth, under various experimental conditions. Classically, 

precipitation is initiated by fast quenching conditions, such as thermal quenching of a solution 

within the miscibility gap in which the solution becomes thermodynamically metastable 3, or 

by pouring "instantaneously" a chemical species into another to initiate a chemical reaction 4. 

These two situations are called conservative because their overall composition does not vary 

during the precipitation. For each case, the control over the synthesis of monodisperse 

particles up to mesoscopic scale is made difficult for two main reasons: (i) the segregation 
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intrinsically leads to polydispersity (due to the classical Lifshitz-Slyozov distribution 5, for 

instance) and, (ii) the monodispersity is limited to submicrometric dimensions for growth 

driven by chemical reactions 6. Even in seeded experiments 7, 8, where growth is initiated 

using preformed nuclei, secondary nucleation cannot be avoided beyond a certain particle size 

(typically of the submicrometric order), preventing the formation of monodisperse 

mesoscopic particles. By contrast, experimental investigations of photographic colloid 

production by the double-jet technique 9 have shown that continuous changes in composition 

obtained by controlling the monomer source strongly improve particle monodispersity. The 

invoked reason is that particle growth proceeds in a starved situation as reagents are added 10. 

Moreover, as opposed to classical precipitation, the number of particles in solution 

asymptotically becomes constant and proportional to the addition rate when growth is limited 

by diffusion. This was experimentally and theoretically illustrated in the case of silver halides 

11, 12. However, despite these very appealing properties, such experimental procedures have 

been almost exclusively limited to the control of photographic colloids 11, 13. With the 

exception of silver halides, to the best of our knowledge, the only experimental verification of 

the linear relation between particle number and addition rate concerns the synthesis of 

uniform ZnO  particles . In a more general frame, such kinetic behaviors remain almost 

unexplored even if particle growth in open systems has recently received some confirmation 

in material-independent computer simulations at vanishing supersaturation 14. Confronting 

experimental results for different systems would certainly permit to check whether or not, 

nucleation and growth under continuous supply of monomer can be generalized to colloids 

other than silver halides. This is the purpose of our work, which is devoted to the formation of 

silica particles by inorganic polymerization. 
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We investigate the growth of monodisperse silica particles 15 with diameter up to  by 

controlling the effects of the progressive addition of an alcoholic solution of 

tetraethylorthosilicate (TE ), defined herein as the monomeric precursor, in a hydro-

alcoholic mixture of ammonia. This choice is motivated by the intrinsic importance of silica 

as one of the most familiar inorganic metal oxides, and by the common use of silica colloids 

in fundamental as well as practical research areas 

µm 2

OS

16.  

 

The paper is organized as follows. In Sec. II, we describe the experimental procedures 

implemented to investigate the particle growth in open conditions. Sec. III is devoted to our 

experimental results whereas Sec. IV focuses on the theoretical background of particle growth 

for both closed and open configurations. In Sec. V, we then discuss our results. We finally 

conclude in Sec. VI with the opportunity offered by the present work to predict the properties 

of colloidal growth in open conditions. 

 

II – SETUP AND EXPERIMENTAL CHARACTERIZATIONS 

 

The preparation of monodisperse silica particles, first described by Kolbe 17, generally 

proceeds with the hydrolysis and condensation of tetraalkoxysilanes (often 

tetraethylorthosilicate (TE ) [  with OS ( )4
Si OR = 2 5R C H ]) in a mixture of alcohol and water, 

with ammonia used as a catalyst 18, 19. Ultra pure water, TE  (OS ( )2 5 4
Si OC H , , Aldrich 

Chemical Co.), ethanol ( , J.T. Baker, ), and ammonia ( , , 

Aldrich Chemical Co.) are used as starting materials without further purification. The 

solutions are prepared at room temperature under inert argon atmosphere. The temperature of 

99%

OHHC 52 99.9% 4NH OH 28%
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the reactor is controlled with an accuracy of ± °0.05 C  by a thermoregulated bath (LAUDA, 

E200, ecoline SRE2312). The silica particles are grown by the hydrolysis of TE  according 

to the following procedure . We first prepare separately two solutions I (   in 

 ethanol) and II ( 9.5  aqueous ammonia in  ethanol). The total volume of 

solutions I and II, as well as the reagent concentrations, are the same for all our experiments. 

The overall molar ratio for  is 1 . This value is chosen in order 

to reach final particle diameters in the 

OS

5 ml TEOS

30 ml  ml 50 ml

3 2TEOS / NH / H O / 6.3 / 15.2

−1 2 µm  mesoscopic range. Solution I is added at 

controlled flow rate by a syringe pump, under an argon blanket into the thermoregulated 

round bottom flask containing the solution II under mechanical stirring. 

 

Analysis of the shape and the monodispersity of the produced  particles is performed by 

transmission electron microscopy (JEOL JEM-2000 FX transmission electron microscope, 

using an accelerating voltage of ) at room temperature. Their growth is characterized 

by a homemade dynamic light scattering apparatus using a c.w. Ar

2SiO

200 kV

+ laser (wavelength in 

vacuum λ =0 514 nm ) and an ALV5000 correlator. During the TE  addition, we regularly 

pick one or two drops of solution in the reactor and quickly dilute them in 10  of alcohol in 

order to instantaneously stop the reaction. To increase the measurement accuracy, the mean 

particle size for each sample is then deduced by fitting the relaxation time of the correlation 

function versus the square modulus of the transfer wave vector for varying scattering angle 

OS

 ml

θ . 

 

III – EXPERIMENTAL RESULTS 

 

III.1 – Effect of stirring speed on particle growth 
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To determine the relevant mechanisms involved in particle growth, we first check the 

influence of the stirring speed on the final particle size obtained well after the end of the 

 addition. We perform a set of experiments for an addition rate of 125  at 

 with stirring speeds varying between  and 700 . For the whole set of 

attempts, we find a mean final particle radius 

TEOS  µl / min

= °T 20 C 300  rpm

( )= ±fR 480 10  nm . Such a good 

reproducibility is not surprising since the associated hydrodynamic Peclet number , which 

compares the particle advection versus the solute diffusion within the reactor 

Pe

20, is much 

smaller than unity. By definition,  is given by Pe Ω= 2
mPe R D , where , Ω R  and mD  are 

respectively the angular velocity associated to the stirring, the particle radius and the 

molecular diffusion coefficient of the monomer. Using the ethanol viscosity 

 at , as it constitutes more than 90%  of the solvent phase at the 

end of the growth, and a typical monomer size , we find 

η −= × ⋅31.2 10  Pa s = °T 20 C

2 Å~ −=m
9 2D 10  cm s . On the 

other hand, the angular velocity  varies from 5 H  (at 300 ) to 12  (at ). 

Since experiments lead to a final particle size 

Ω z  rpm  Hz 700 rpm

≈fR 500 nm , we find − −≤ ≤ ×3 310 Pe 3 10  for 

the extreme values of the Peclet number. Consequently, the hydrodynamic effects at classical 

stirring velocities can totally be discarded for the investigation of particle growth. This is also 

illustrated by the particle growth laws presented below. Indeed, flow effects are known to 

significantly accelerate the kinetics compared to diffusion or reaction-limited growth 21, a fact 

that is not observed in our experiments. In the following, we use an average stirring speed of 

. 500 rpm

 

III.2 –Particle growth law versus temperature and addition rate 
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We have undertaken a systematic study of the particle growth at different addition rates and 

for various temperatures. Measurements of the kinetic evolution of the particle size for three 

values of the addition rate Q  ( , 125 , =Q 68 250 µl min ) performed at three different 

temperatures ( , , ) are presented in Figure 1. These temperatures are chosen to 

fulfill the condition of negligible evaporation of the reagents in the argon atmosphere in order 

to keep their overall ratio constant in the solution. Mean particle radii were deduced from the 

following procedure. We measure for each sample the time 

=T 0 10 °20 C

τ P  associated to the exponential 

relaxation of the correlation function versus the scattering angle θ . Assuming that growing 

particles behave as Rayleigh scatterers, τ P  is given by τ = 2
P 1 2D qp , where 

πη=p BD k T 6 R  is the mass diffusion of a particle of radius R , and ( )π λ θ= 0q 4 n sin 2  is 

the modulus of the transfer wave vector;  is the index of refraction of ethanol in which the 

few drops of solution are diluted. Then, by fitting the linear behavior of 

n

τ P  versus 21 q , we 

obtain a reliable value of  and thus of pD R . An example of variation of ( )τ 2
P 1 q  for various 

temporal samplings is given in Figure 2. The linear variation expected for Rayleigh particles 

is experimentally retrieved and we deduce the mean particle radius from the slope. The 

particle dynamics is also illustrated by TEM snapshots in Figure 3 for the "intermediate" 

couple ( =Q 125 µl min , ). The particle distribution appears to be highly 

monodisperse on the investigated temporal window, with an almost constant standard 

deviation smaller than . This shows that the use of continuous addition of monomer offers 

the opportunity to easily push the limits of monodispersity up to the micrometer range while 

in closed systems it is always limited to the submicrometric sizes . 

= °T 10 C

3%

 

Figure 1 illustrates the dependence of the particle radius dynamics on the addition rate and the 

temperature. The growth can be divided in two parts: during and after the monomer supply. 
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During the monomer addition, two main features are observed: (i) the measured growth laws 

are very well separated in temperature and, (ii) the addition rate has no influence on them. As 

shown Figure 4, the variation of the particle radius versus time clearly exhibits a power law 

behavior with a mean measured exponent of 1 2 . By contrast, the final particle radius reached 

at the end of the monomer supply, strongly varies with the addition rate as well as the 

temperature.  

 

IV – GROWTH IN OPEN SYSTEMS: THEORETICAL BACKGROUND 

 

IV.1 – Particle growth rate 

 

To interpret our data, let us extend the formulation of particle growth rate in closed systems to 

open ones. As particle growth does not depend on stirring, the concentration gradients do not 

couple with flow. The particle growth rate is, therefore, expected to be analogous to that 

found for unstirred constant composition systems 22. It follows that growth is driven by the 

transportation of the monomers to the interface, here by diffusion, and then by their 

incorporation into the particle through interface interactions. If the monomer incorporation 

(respectively, the diffusion) is the fastest process, then growth is limited by diffusion 

(respectively, the interface kinetics). The growth rate dR dt  of a spherical particle of radius 

( )R t  is thus described by a general expression, which includes both bulk diffusion and 

interface reaction :  

 

( ) ( )( )
ε

−
=

+
eq

i

C t C RdR K
dt 1 R

.         (1) 
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( )C t  is the concentration of monomer at a given time t , and ( )eqC R  is the equilibrium 

concentration at the particle surface; in the following, concentrations are expressed as volume 

fractions.  is the rate constant for the surface integration of the monomer and iK ε −1  is a 

screening length which compares bulk diffusion to surface integration effect. ε  is defined by 

( )ε υ= i mK D , where υ  is the molecular volume of the precipitate. On the other hand, 

 is classically given by the Gibbs-Thomson relation, yielding ( )eqC R

( ) ( ) (α α= ≈ +eq S SC R C exp R C 1 R) , where  represents the bulk solubility, and SC

α γυ= B2 k T  is a capillary length. γ  and  are respectively the liquid/particle surface 

energy and the Boltzmann constant. By defining the supersaturation 

Bk

σ  as 

( ) ( )( )σ = − St C t C CS , the general expression of the particle growth rate becomes: 

 

( )α
ε

−
=

+
Ci S

C

1 R RK CdR
dt R 1 R

.         (2) 

 

α σ=CR  represents the critical radius above which a particle spontaneously grows and 

below which it dissolves. Eq. (2) shows that the transition from interface to diffusion limited 

growth is, indeed, controlled by the product εR . Growth is initially limited by the monomer 

incorporation at the particle surface (ε <<R 1) and eventually becomes diffusion limited at 

large particle radius (ε >>R 1). As we cannot estimate the value of ε  (  being unknown), in 

the following, we briefly describe the particle growth laws expected in both cases. 

iK
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As evidenced by Eq. (2), the particle growth strongly depends on the temporal behavior of the 

supersaturation σ . Usually, the kinetics of precipitation is divided in four main stages 23, 24. 

(i) Due to the TE  addition, the solute concentration initially increases linearly with time. 

At this stage, no particle nucleation exists. (ii) Spontaneous nucleation occurs as soon as the 

supersaturation reaches its critical value 

OS

σC , i.e. when the activation energy for particle 

nucleation is of the order of . Particles are formed and grow. Due to the competition 

between growth and nucleation, 

Bk T

σ  reaches a maximum and then starts to decrease, and drops 

below σC . After this nucleation regime, (iii) a transient period appears where σ  reaches a 

quasi-steady state corresponding to the so-called "free-growth regime". At this stage, σ  

becomes too low to allow the nucleation of new particles and the existing particles simply 

grow by drawing solute to their surface. (iv) Finally, due to the mass conservation, this free-

growth regime cannot survive indefinitely, and therefore σ  starts to decrease again towards 

its asymptotic value σ = 0 . Consequently, the critical radius value significantly increases 

( σ∝CR 1 ) and growth switches to the well-known Ostwald ripening regime, where the 

material resulting from the dissolution of some particles (those of radius ) is used by 

the others (those of radius ) to continue to grow. Note that, in the presence of 

monomer addition, there is a fifth additional regime. Indeed, when the dissolution of the 

smaller particles slows down, the surviving particles simply grow by the consumption of the 

incoming material that is continuously added to the system. 

< CR R

> CR R

 

IV.2 – Free-growth regime 

 

The particle growth in the free-growth regime is characterized by a constant supersaturation 

σ . Therefore, in the interface kinetic limited case (ε <<R 1), Eq. (2) reduces to: 
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α ⎛= −⎜
⎝ ⎠

i S C

C

K C RdR 1
dt R R

⎞
⎟ .         (3) 

 

Integration of Eq. (3) for >>CR R 1 shows that the particle size increases linearly with time 

during the free-growth regime, i.e. ∝R t .  

 

On the other hand, growth limited by diffusion presents different kinetic behaviors. In this 

case (ε >>R 1), Eq. (2) becomes: 

 

( )υ α −
= Cm S

2
CC

1 R RD CdR
dt R RR

.         (4) 

 

For >>CR R 1, integration of Eq. (4) reveals that the diffusion limited free-growth is 

characterized by a first  behavior followed by an ∝R t ∝ 1 2R t  regime , 25. 

 

The particle number  remains constant during the free-growth regime N 26, whatever the 

nature of the mechanism (interface kinetic or diffusion limited) governing the growth. 

 

These growth mechanisms, which are analogous for both open and closed systems, have 

successfully been investigated in experiments involving liquid/liquid phase transitions . Their 

extension to inorganic colloid dispersions is much more recent. Dealing with closed systems, 
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an extensive study  has shown that (i) silica beads grow by the incorporation of hydrolyzed 

monomers instead of aggregation of smaller particles and (ii) the late stage growth is limited 

by diffusion. A more recent investigation of the early stage growth of silica particles in closed 

conditions  has revealed an  regime followed by the behavior ∝R t ∝ 1 2R t . It has also been 

shown that the number of particles as well as their mass density remained nearly constant over 

the investigated reaction time period (from  to ). On the other hand, in an open 

system, Sugimoto  has explored the growth of photographic emulsions versus addition rate at 

. He showed that  colloids grow as 

50 2000 s

= °T 70 C AgBr ∝ 1 2R t , and that growth does not depend 

on the addition rate. 

 

IV.3 – Ostwald ripening regime 

 

As previously mentioned, σ  cannot stay indefinitely constant due to the mass conservation, 

and therefore must decrease again. At this stage, growth switches from the free-growth regime 

to the well-known Ostwald ripening. The particles whose radius is smaller than the actual 

value of the critical radius, become unstable and dissolve, while larger ones continue to grow 

using the dissolved material. Nevertheless, due to the presence of monomer addition, the 

particle dissolution eventually stops. Consequently the surviving particles continue to grow 

mainly by consuming the flux of monomer that is continuously added to the system. As the 

nucleation rate is negligible during Ostwald ripening, the size distribution of particles 

( )f R,t , defined by the particle number , obeys a continuity equation: ( ) ( )
∞

= ∫0N t f R,t dR

 

( ) ( )∂ ∂ ⎛+ ⎜∂ ∂ ⎝ ⎠
f dR ⎞ =⎟R,t f R,t 0
t R dt

.        (5) 
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Since the supersaturation is vanishing, the conservation of the monomer concentration in the 

presence of addition, leads to: 

 

( )π ∞
=∫ 3

0

4 f R,t R dR Qt
3

.         (6) 

 

Eqs. (3, 5, 6) show that the  free-growth obtained for interface limited growth is 

followed by a ripening regime characterized by 

∝R t

∝ 1 2R t  27, as for Ostwald ripening in closed 

systems . However, whereas for closed systems the particle number varies as  (i.e. −∝ 3N R

−∝ 3 2N t ) , the matter conservation is different for open systems. One finds 

( )( )⎡ ⎤∝ ⎣ ⎦
3 2

B m SN k T D C T Q R , i.e. −∝ 1 2N t , due to the source term associated to the 

monomer addition. On the other hand, for diffusion limited growth, Eqs. (4-6) show that the 

free-growth regime is followed by a ripening described by ∝ 1 3R t  ; the same growth law is 

found for Ostwald ripening in closed systems 28. The variation of the number of particles also 

turns differently. In closed systems, the number of particles varies as −∝ 1N t   whereas it 

stabilizes to a stationary value ( ) ( )( )∝ B m SN k TQ D C T  for open systems 14, . This constant 

value also corresponds to the fixed number of particles found in the free-growth regime . 

 

The confrontation of these predictions to published works on growth of inorganic colloids is 

not clear, even in closed systems. Indeed, very few experiments provide particle growth laws 

over significantly long time periods to lead to sufficiently reliable measured growth law 

exponent. In Pontoni’s experiment on silica particles , a slow down in growth is observed 
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after the  and ∝R t ∝ 1 2R t  measured regimes, but the transition towards the ripening regime 

is not clearly proved. This regime has nonetheless been recently observed in closed 

configuration by Oskam et al. 29 during the coarsening of different types of metal oxide 

nanoparticles (zinc and titanium oxide particles, for instance). On the other hand, we are not 

aware of any experiment on colloid growth dealing with Ostwald ripening in the presence of 

monomer addition. 

 

V – DISCUSSION 

 

V.1 – Particle growth rate in the presence of monomer addition 

 

Coming back to our experiments, Figure 4 shows that the growth regime observed during the 

addition of TE  corresponds to a OS ∝ 1 2R t  behavior. The temporal exponents measured in 

Figure 4 are , , and ±0.65 0.07 ±0.49 0.02 ±0.53 0.03 , respectively, for , , and 

; the apparently larger value obtained for 

=T 0 10

°20 C = °T 0 C  is explained in the following 

subsection. According to Sec. IV, the exponent 1 2  found during the monomer addition can 

either corresponds to the generalized Ostwald ripening for interface limited growth or to the 

free-growth regime in the diffusion limited case. However, this exponent is obtained since the 

beginning of measurements, i.e. at a time where the supersaturation cannot be considered as 

negligibly small. Therefore, any possible link to Ostwald ripening is ruled out and the 

observed particle growth corresponds to the free-growth regime. This means that the particle 

growth had already switched from interface- (ε <<R 1) to diffusion-limited (ε >>R 1) at the 

beginning of the investigated temporal window. The diffusive origin of the measured growth 

law is also confirmed by the persistence of the ∝ 1 2R t  regime just after the end of the 
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addition. Indeed, as soon as the addition is stopped, the system automatically switches from 

open to close. Accordingly, the particle growth law also switches to that corresponding for a 

closed configuration. Since the behavior ∝ 1 2R t  is momentarily preserved, this means that 

growth is still limited by diffusion after the end of the addition. Finally, as in Pontoni's 

experiments , we do not identify the scaling regime ∝ 1 3R t  associated to the Ostwald 

ripening between the free-growth regime and the saturation to the final particle size after the 

end of the TE  addition. OS

 

V.2 –Rescaling of growth laws 

 

We show that the particle growth law exponent illustrated in Figure 4 corresponds to the free-

growth regime of diffusion limited growth, and that the associated amplitude only depends on 

temperature. Within the general framework of the kinetics of first-order phase transitions , a 

universal description of the particle growth should be retrieved for inorganic materials using 

Eq. (4). This is usually observed upon plotting the normalized particle radius ρ = CR R  

versus the normalized time τ υ α= 3
m S CD C R t  rescaled with the diffusive relaxation time 

scale associated to the critical radius . However, for experiments which involve a 

continuous quenching 

CR

30 or addition of monomers, the initial supersaturation can no longer be 

defined. As a result, the value of the critical radius varies continuously, and then, prevents the 

use of the classical scaling considered for first-order phase transitions in closed systems. 

Nevertheless, the regular shift in temperature observed in Figure 1 supports the existence of 

some scaling in temperature. For the free-growth regime, where the supersaturation is 

constant, we find from Eq. (4): 
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( )υ σ= m SR 2D C t .          (7) 

 

A priori, three quantities vary with temperature: σ , mD  and  in Eq. (7). Since the b

of 

SC ehavior 

σ  is difficult to estimate for open systems , we assume that the supersaturation does not 

appreciably vary with temperature over the investigated range. On the other hand, one has 

( )η∝m BD k T T the shear viscosity is given by  where ( ) ( )ηη =T η Δ0 Bexp E k T  31 and ηΔE  

is the shear stress activation energy. Finally, the silica solubility SC  depends on the molecular

heat of dissolution Δ SE  as 

 

( )∝ −Δ S BE k T  . Accordi the SC exp ng to Eq. (7), this means that 

particle radius should rescale as ( )η⎡ ⎤− Δ + Δ∝ ⎣ ⎦S BBR k T exp ding 

fit for the temperature variation of the growth law amplitude is presented in the Inset of 

Figure 4. We find 

E E t . The correspon2k T

( )ηΔ = Δ + Δ = ±SE E investigated temperature range. 

Considering the temperature variation of the shear viscosity of the solution, here mainly 

composed of ethanol 

E 0.5 0.1  eV  for the 

 This l )32, we deduce ηΔ =E 0 eads to (Δ =S.14 eV . ±E 0.36 0.10  eV , 

w  is in very g  value 

)

hich ood agreement with already published data presented in Table 1. This

is identical to that obtained by Hamrouni 33, and falls within the range of 

(Δ = ±SE 0.26 44 e  the molecular heat of dissolution fo

silica. Then, according to Eq. (7), by plotting the particle growth laws presented in Fig

versus the rescaled time 

0.03  eV   to V  34 found for r 

ure 1 

Δ =SE 0.

( ) ( )Bk T t , our data set should point out a single-

 

s 

τ = Δ −ΔBk T E exp E

scaled dynamics for the growth during the monomer addition. This data reduction is shown in

Figure 5 for the whole set of experiments presented in Figure 1. The master curve also 

enhances and demonstrates the existence of a well-defined crossover between the two regime

∝R t  and ∝ 1 2R t  expect r diffu ited free-growth. Indeed, even if the ∝R t  

regime could be suspected in Figure 1 for the early growth observed at =T 273 K , i.e. at low 

ed fo sion lim
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tem here the reaction rate is the slowest, it is now clearly identified by the scaling o

the full data set. Note that the ∝R t  regime has already been observed in closed systems 

Our data are nevertheless at variance with the late stage predictions for open systems a

do not even suggest the existence of an Ostwald ripening characterized by its 

perature w f 

. 

s they 

∝ 1 3R t  

behavior. Finally, the description of the particle growth by a master curve demonstrates a 

posteriori that the supersaturation does not appreciably vary with temperature during the 

monomer addition. 

 

V.3 –Saturation of the particle growth 

 

The observed scaling obviously breaks down, after some delay, when the addition of the 

monomer is stopped. Stopping the addition has two major consequences on the particle 

growth. From the fundamental point of view, the growth mechanisms change due to the 

switching from an open to a closed configuration. The ∝ 1 2R t  is momentarily preserved, as 

illustrated in Figures 1 and 4 for time , and corresponds from now on to the free-growth 

regime in closed systems. Then, growth deviates towards a saturation of the particle radius. In 

contrast to particle growth performed in other metal oxide syntheses , Ostwald ripening for 

closed systems is not observed in our experiments. This is in good agreement with most of the 

experiments involving growth of silica particles, such as Pontoni’s ones  which do not show 

any Ostwald ripening either, when all the reagents are added together in a single step. This 

result could be explained by the experimental conditions required for silica particle synthesis, 

particularly in terms of 

> Qt t

pH  of the solution, which are not strong enough to allow for silica 

dissolution . Then, the combination of both aspects, i.e. the formation of a set of 

monodisperse particles and the lack of observable Ostwald ripening, strongly suggests that the 

 17



constant number of particles  during the free-growth regime is preserved until the end of 

the growth, and thus corresponds to the final particle number. To check this assumption, we 

consider the available models of growth in open systems 

N

, . Based on particle growth limited 

by diffusion, they all show that the particle number  versus addition rate behaves as: N

 

β
π γυ

= B

m S

Qk TN
8 D C

,          (8) 

 

where β  is a numeric factor which depends on the chosen model ( β≤ ≤1 3 ); the most 

reliable theory gives β = 1.57  . This prediction for free-growth limited by diffusion, 

particularly the behavior of  versus the addition rate , was experimentally verified in 

double-jet precipitation for silver halides production 

N Q

, ,  and also for inorganic metal oxide 

materials (zinc oxide colloid synthesis , for instance). Using mass conservation, the particle 

number  is related to the final radius N fR  by:  

 

π =
2

3
f SiO

4N R v
3

,          (9) 

 

where  is the volume of produced silica corresponding to the added TE . By 

combining Eq. (8) and Eq. (9), the relation between the final particle radius and the addition 

rate becomes: 

2SiOv OS
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γ υ
β

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2

1 3
m SiO S 1 3

f
B

6D v C
R

k T
Q .        (10) 

 

Consequently, in contrast to what occurs in the free-growth regime, the final particle size is 

expected to depend on the addition rate. The analogy with jet-precipitation leads to the 

behavior −∝ 1 3
fR Q . This predicted behavior, which is quantitatively demonstrated over more 

than two orders of magnitude in addition rate  , is illustrated in Figure 6 for the experiments 

presented in Figure 1. Taking into account the investigated range of addition rates, the 

agreement is fairly good. Note that these measurements give an additional proof for diffusion 

limited growth since Ostwald ripening for interface limited growth in the presence and the 

absence of monomer addition are respectively characterized by

Q

−∝ ∝ 1 2N 1 R t  and 

− −∝ ∝3 3N 1 R t 2  (see Sec. IV.3), which cannot be supported by experimental data. 

Moreover, as predicted by Eq. (10) and observed in Figure 6, the final particle radius also 

varies with temperature. Using the temperature dependence of both the mass diffusion mD  

and the silica solubility , we should then be able to retrieve by an independent way, i.e. 

without considering the particle growth rate, the molecular heat of dissolution  of silica. 

By forcing the exponent of the 

SC

Δ SE

( )fR Q  variation to be −1 3 , we get the temperature behavior 

of the amplitude factor. It is expected to behave as ( )−Δ Bexp E 3k T  from Eq. (10), where 

. The corresponding fit is presented in the Inset of Figure 6. We find ηΔ = Δ + Δ SE E E

(ηΔ = Δ + Δ = ±S )E E E 0.35 0.02  eV  for the investigated temperature range. Considering 

, this leads to ηΔ =E 0.14 eV (Δ = ±S )E 0.21 0.02  eV . As illustrated in Table 1, this value is in 

good agreement with both the value previously deduced from particle growth laws and the 

few already published data 16, , 33 34. 
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VI – CONCLUSION 

 

We have experimentally investigated the formation and the growth of monodisperse 

mesoscopic silica particles by analyzing the effects of the progressive addition of one of the 

reagents in the reactor. Our goal was twofold. At first, we wanted to implement a reliable 

technique to kinetically control colloid synthesis up to the microscopic size since classical 

methods usually fail for this length range (emergence of particle polydispersity). Indeed, the 

micron range is often considered as a sort of crossover between the nano- and the macro-

world, called "mesoscopia" 35, that does not take advantage of the physical properties 

underlined by one or the other length scale. Then, we were interested in a description of metal 

oxide particle growth in terms of universal dynamic scaling, in order to discuss the existence 

of a unified picture within the classical first-order phase transition area. 

 

To investigate the pertinence of the relevant external parameters, experiments were performed 

by varying the addition rate for different temperatures. In the presence of monomer addition, 

the formed silica particles are spherical and monodisperse all over the investigated size range 

(i.e. for particle radii R  from 80  to 600 ). At low Peclet number, measurements reveal 

that the growth of mesoscopic silica colloids is not affected at all by the monomer addition, 

but it simply depends on temperature. Moreover, the growth law exponents show that growth 

in the presence of continuous addition is limited by diffusion and corresponds to the so-called 

“free-growth regime”, generalizing results already obtained in closed systems. As the 

temperature is the only relevant parameter during the monomer addition, the corresponding 

variation was used to rescale the dynamical data according to behaviors predicted for 

 nm
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diffusion limited growth. The data reduction onto a single master curve is clearly evidenced. 

This scaling also enhances the two particle growth laws expected for free-growth (i.e. ∝R t  

and ∝ 1 2R t ) whereas the first one ( ∝R t ) is partly hidden in unscaled data. Finally, by using 

the temperature dependence of the amplitude of the particle growth, we have quantitatively 

deduced the molecular heat of dissolution of silica; the result compares very well with already 

published data. Consequently, our investigation strongly supports the fact that kinetic theories 

of first-order phase transitions can easily be applied to the growth of inorganic particles. 

 

On the other hand, if the monomer addition is stopped, the observed master behavior cannot 

survive any longer. After some time delay, the particle growth irreversibly deviates from the 

scaled regime to asymptotically saturate to a final size. As opposed to the growth process, the 

final particle size is affected by the addition rate. Using an analogy with crystal formation in 

jet precipitation, we have explored the variations of the final particle size versus both the 

addition rate and the temperature. The power law expected theoretically for the variation of 

the final particle size versus addition rate is experimentally retrieved. A quantitative 

interpretation of the temperature behavior of the associated amplitude gives us the opportunity 

to determine, by a different way and independently from particle growth, the activation 

energy associated to the silica solubility. 

 

More generally, our investigation may represent a first step toward a unified description of the 

processes involved in controlled colloid synthesis. Moreover, from a fundamental point of 

view, the observation of master behaviors for colloidal growth also brings new insights on the 

kinetic of precipitates in open systems 36, 37. Indeed, even for the most famous and spectacular 

example of coarsening in open system, the so-called “Liesegang phenomenon” 38 where the 
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precipitation of weakly soluble salts leads to periodic patterns, a close examination of the 

growth of the particles that form these patterns 39 still misses both theoretical developments 

and experimental investigations. 
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TABLE CAPTION 

 

Table 1: Molecular heat of dissolution of silica Δ SE . Comparison between data 

published in the literature and the values obtained from the fits of both the measured 

particle growth laws and the addition rate dependence of the final particle sizes. 

 

FIGURE CAPTIONS 

 

Figure 1: Growth law of silica particles performed at temperatures , 10 , and 

 for addition rates of TE  

=T 0

°20 C OS =Q 68 , , and . A regime 125 250 µl / min ∝ 1 2R t  is 

evidenced during the monomer addition, while growth saturates to a final value fR  

after the end of the addition. The arrows indicate the time Qt  corresponding to the end 

TEOS  addof the ition. 
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Figure 2: Linear variation of the relaxation time τ P  of the correlation function versus 

21 q  for particle solutions picked in the reactor at different times t  during the growth 

and quickly diluted in ethanol. The slope increases with time since it is proportional to 

P1 D  i.e. to ( )R t . The experimental conditions correspond to =Q 68 µl min  and 

. = °T 20 C

 

Figure 3: Transmission electron micrograph of silica particles showing their temporal 

behavior in terms of mean size R , shape and monodispersity for = °T 10 C  and 

=Q 125 µl min . (a) =t 480 s , =R 101 nm ; (b) =t 1500 s , =R 195 nm , (c) , =t 2400 s

=R 265 nm , (d) , =t 3600 s =R 335 nm ; (e) =t 7200 s , =R 420 nm . The bare scale is 

. 200 nm

 

Figure 4: Zoom on the particle free-growth regime ( ) ( )β=R t T t  expected from Eq. 

(7); symbols are the same as in Figure 1. Lines are power law fits with the forced growth 

exponent 1 2  in order to deduce the amplitude ( )β T . Note that experiments performed 

at the lowest temperature ( ) present a larger growth exponent at the early 

stage (see text). The arrows indicate the time  corresponding to the end of the TE  

addition. Inset: fit of the temperature variation of the amplitude 

= °T 10 C

Qt OS

( )β T  assuming a 

dependence in activation energy ηΔ = Δ + Δ SE E E , where ηΔE  and Δ SE  are respectively 

the activation energy associated to the shear viscosity of the solution and the molecular 

heat of silica dissolution. 
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Figure 5: Plot in rescaled time ( R , ( ) ( )τ = Δ −ΔB Bk T E exp E k T t ) of the nine 

experiments presented in Figure 1. The two successive regimes τ∝R  and τ∝ 1 2R  

expected for the diffusion limited particle free-growth are clearly evidenced by the data 

reduction onto a master curve. 

 

Figure 6: Evolution of the final particle radius fR  versus the addition rate Q  of TE  

for temperatures , , and . Lines are power law fits with the forced 

exponent 

OS

=T 0 10 °20 C

−1 3  expected from Eq. (10). Inset: fit of the temperature variation of the 

associated amplitude assuming a dependence in activation energy ηΔ = Δ + Δ SE E E , 

where ηΔE  and  are respectively the activation energy associated to the shear 

viscosity in the solution and the molecular heat of silica dissolution. 

Δ SE
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Table 1: 

 

 R. K. Iler 

(Ref. [16]) 

B. Hamrouni et 

al. (Ref. [33]) 

R. A. Robie et 

al. (Ref. [34])

From particle 

growth: Eq. (7) 

From final particle 

size: Eq. (10) 

( )Δ SE  eV  ±0.26 0.03 0.35  0.44  ±0.36 0.10  ±0.21 0.02  
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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