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Eliciting Harmonics on Strings

Steven J. Cox† and Antoine Henrot‡
† Computational & Applied Mathematics, Rice University, Houston, TX, USA
‡ Institut Élie Cartan, UMR 7502, Nancy Université - CNRS - INRIA, Nancy, France

Abstract: One may produce the qth harmonic of a string of length π by applying the
‘correct touch’ at the node π/q during a simultaneous pluck or bow. This notion was
made precise by a model of Bamberger, Rauch and Taylor. Their ‘touch’ is a damper of
magnitude b concentrated at π/q. The ‘correct touch’ is that b for which the modes, that
do not vanish at π/q, are maximally damped. We here examine the associated spectral
problem. We find the spectrum to be periodic and determined by a polynomial of degree
q − 1. We establish lower and upper bounds on the spectral abscissa and show that the
set of associated root vectors constitutes a Riesz basis and so identify ‘correct touch’ with
the b that minimizes the spectral abscissa.

Keywords: Point–wise damping, spectral abscissa, Riesz basis.

1. Introduction

We are interested in one’s capacity to elicit harmonic overtones, or simply ‘harmonics,’
from stringed instruments. Such questions have long vexed theorists, though not practi-
tioners, and were key points of friction in the development of mechanics and analysis in the
period between Newton and Cauchy. Although Truesdell [28], Cannon and Dostrovsky [6]
and Christensen [7] cover this period in fascinating detail, their focus on the intellectual
developments of D’Alembert, D. Bernoulli, Euler, Lagrange and Rameau, leaves a number
of practical innovations, notably harmonics, in the dark. As the associated mathematical
question was in fact well set by 1692 and yet its mathematical analysis did not commence
until 1982 we open with an outline of the full history.

Though overtones, or upper partials, had been heard through the ages they were not
seen until late in the 17th century. More precisely, though Descartes, Mersenne and Galileo
each remark on the sound of overtones and often ascribe them to sympathetic vibrations
with neighboring bodies, Wallis [30] in 1677 is the first to report on the means by which
one may see the nodes of a vibrating string. He uses one string to excite a higher mode in
a second, on which are suspended paper riders, and notes that, when the first is tuned an
octave above the second, and the first is struck, “the two halves of this other [second] will
both tremble; but not the middle point.” He proceeds to find the nodes of what we call the
third and fourth modes by tuning the first string a twelfth and double octave, respectively,
above the second and observes that these nodes divide the string in equal, or aliquot,
parts. Roberts [26] in 1692 was the first to observe that, by softly pressing at a node while
bowing elsewhere, higher modes could be elicited on a single string. He developed these
ideas in his explication of the trumpet marine, or nun’s fiddle, a curious variant of the
ancient monochord on which the only pleasant tones are harmonics. Roberts writes “Now
in the Trumpet-Marine you do not stop close as in other instruments, but touch the String
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gently with your thumb, whereby there is mutual concurrence of the upper and lower part
of the String to produce the sound” and observes “that the Trumpet Marine will yield
no musical sound but when the stop makes the upper part of the string an aliquot of the
remainder, and consequently of the whole.” Roberts concludes with a lovely figure that
includes both a clear indication of the first three theoretical mode shapes and a practical
diagram of the 15 nodes at which the player ought to gently thumb.

After Roberts the theory and practice of harmonics regrettably diverge over the course
of the 18th century. On the practical side we have Mondonville’s opus 4, Les Sons Har-

moniques [3], of 1735, the first pieces scored for violin harmonics, complete with a beautiful
diagram identifying notes with nodes. On the theoretical side, the mode shapes of Roberts
were not to reappear until the 1747 study by Daniel Bernoulli [4], a work that stemmed
not from Roberts’ practical considerations but from the theoretical work of Taylor [27]. In
struggling to understand how a single string could simultaneously support so many modes,
D. Bernoulli, Euler and Lagrange, see [25], [23], and [6], brought forth trigonometric series
but rejected these in favor of Euler and D’Alembert’s general wave solution and vague
reference to sympathetic resonance. None of these four men were aware of the simple
mechanical means, of Roberts and Mondonville, for eliciting these individual modes. This
is remarkable given the presence of J-P. Rameau, a composer and music theorist, hailed
as the ‘Newton of Harmony,’ (see [6, p. 8]), who not only entered into substantive indi-
vidual correspondence with D. Bernoulli, Euler, Lagrange and D’Alembert but who was
also surely aware of both the strange flageolet tones of the trumpet marine and the works
of Mondonville. Regarding Rameau’s influence on Bernoulli et al. see Truesdell [28] and
especially Christensen [7]. Galpin [12] informs us that Rameau’s tenure with the orchestra
of the Académie du Concert of Lyon overlapped with that of J.-B. Prin, the established
master of the trumpet marine. Rameau, in the preface to his Pièces de Clavecin en con-

cert, 1741, speaks of the recent success of such ensemble pieces (most likely Mondonville’s
opus 5, see Girdlestone [13, p. 43]) and names one of his own pieces after A.-J. Boucon, his
student and the wife of Mondonville. And yet, neither Prin’s nor Mondonville’s harmonics
figure anywhere in the vast theoretical writings of Rameau. We have not been able to
discern whether this lack was intentional or whether Rameau himself failed to recognize
the theoretical importance of their work. Its effect however was to postpone for 100 years
any mention of harmonics and so offer support to Miller’s dark verdict, [24, p. 37], that “A
careful search fails to reveal any major contribution to the science of sound which arose in
the 18th century.”

It is not until 1807 in the work of Thomas Young [33, lect. 32] that we find a lucid
synthesis of Roberts and Mondonville: “if a long chord be initially divided into any number
of such equal portions, its parts will continue to vibrate in the same manner as if they were
separate chords; the points of division only remaining always at rest. Such subordinate
sounds are called harmonics: they are often produced in violins by lightly touching one of
the points of division with the finger, when the bow is applied, and in all such cases it may
be shown, by putting small feathers or pieces of paper on the string, that the remaining
points of division are also quiescent, while the intervening points are in motion.” Although
Young’s observations were echoed by Helmholtz, 1862, [15, chap. 4] and illustrated by
Tyndall, 1875, [29, §3.6], it appears that Rayleigh, 1877, [25, §134] in noting that “when
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but a single point of the string is retarded by friction there are no normal co–ordinates
properly so called,” was the first to have attempted a mathematical analysis of harmonics.
After Rayleigh the problem remained untouched until the beautiful, but little known,
1982 work of Bamberger, Rauch and Taylor [2]. (Coincidentally, the problem of pointwise
damping of suspension bridge cables was also first broached by Kovács [18] in 1982).

Bamberger et al. followed Rayleigh in retarding by friction, b, at but a single point,
a, the motion of a fixed string of length π with transverse displacement u. More precisely,
they considered

utt − uxx + bδ(x− a)ut = 0, u(0, t) = u(π, t) = 0,

with initial data in the energy space X = H1
0 (0, π) × L2(0, π) endowed with the inner

product

〈[f, g], [u, v]〉 =

∫ π

0

{f ′u′ + gv} dx. (1.1)

They showed that if the damping is applied at a rational multiple of π then it only damps
those modes not vanishing there. They then equated “correct touch” with the value of
b that best damps these remaining modes. In the case a = π/2 they showed that b = 2
was the correct touch. We here attack the general case by investigating the spectra of the
associated wave operator

A(a, b) =

(

0 I
∂xx 0

)

x 6= a

D(A(a, b)) = {[f, g] ∈ (H1
0 (0, π) ∩H2(0, a) ∩H2(a, π))×H1

0 (0, π) :

f ′(a+) − f ′(a−) = bg(a)}

Bamberger et al. argue that A(a, b) has a compact resolvent and so discrete spectrum and
that when a = pπ/q, where p and q are relatively prime integers, it has the imaginary
eigenvalues

λ1,n = inq, n ∈ Z \ 0

and associated eigenvectors
V1,n = sin(nqx)[1/(nq) i]. (1.2)

We write σ(pπ/q, b) for the spectrum of A(pπ/q, b) and

σH(pπ/q, b) = {λ1,n} (1.3)

for the harmonic part of the spectrum. It is shown in [2] that the nonharmonic spectrum,
σ(pπ/q, b) \ σH(pπ/q, b) lies in the strict left half plane and that the semigroup etA(pπ/q,b)

enjoys exponential decay on the orthogonal complement of the harmonic subspace

H ≡ span{V1,n}

More precisely, denoting the orthogonal complement of H by H⊥, Bamberger et al. es-
tablish the existence of positive constants, C1 and C2, depending only on p/q and b, such
that

‖etA(pπ/q,b)U‖X ≤ C1e
−C2t‖U‖X ∀ U ∈ H⊥, t ≥ 0. (1.4)
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In this work we shall show the greatest C2 for which (1.4) holds is the magnitude of the
nonharmonic spectral abscissa of A(pπ/q, b),

µ(pπ/q, b) ≡ max{<λ : λ ∈ σ(pπ/q, b) \ σH(pπ/q, b)} (1.5)

and, along the way, establish bounds on b 7→ µ(a, b) and produce explicit minimizers when
a = π/3 and a = π/4. More precisely, in §2 we delineate the structure of the spectrum,
taking care to identify multiple eigenvalues and to specify the behavior of the spectrum for
b near 0, 2 and ∞. In §3 we establish upper and lower bounds on the nonharmonic spectral
abscissa and arrive at the correct touch for a = π/3 and a = π/4. In §4 we prove that
the associated root vectors comprise a Riesz basis and so identify µ with the best rate of
decay. We close in §5 with a return to dimensions and a discussion of the true magnitude
of b and the role played by an additional elastic term at a.

There exist many works, e.g., Cox and Zuazua [9], [10], devoted to the optimal damp-
ing of strings, and a sizable mathematical literature, e.g., Liu [22], Jaffard et al. [16], and
Ammari et al. [1], and engineering literature, e.g., Kovács [18] and Krenk [21], that in
fact focus on pointwise damping. As the focus of these previous efforts was on the optimal
damping of either all modes or a single mode, the harmonics problem of Bamberger et al.

was naturally neglected.

2. On the Disposition of the Spectrum

If A(a, b)[y z] = λ[y z] then z = λy and y must satisfy the quadratic eigenvalue
problem

y′′(x) − λ2y(x) − λbδ(x− a)y(x) = 0, y(0) = y(π) = 0.

It is not difficult to show that

y(x) =

{

sinh(λ(π − a)) sinh(λx) if 0 < x < a
sinh(λa) sinh(λ(π − x)) if a < x < π

and λ is a zero of the shooting function

S(λ; a, b) = sinh(λπ) + b sinh(λa) sinh(λ(π − a)). (2.1)

The majority of our results are consequences of the simple observation that

S(λ; pπ/q, b) = −(1/4) exp(λπ)P (exp(−2λπ/q); b) (2.2)

where P is the polynomial

P (w; b) = (2 − b)wq + bwp + bwq−p − (2 + b). (2.3)

In terms of its roots, {wk = |wk| exp(iθk)}q
k=1 (repeated according to their multiplicity),

the eigenvalues of A(a, b) are simply

λk,n =
−q
2π

{ln |wk| + i(θk + 2πn)}, k = 1, . . . , q, n ∈ Z (2.4)
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For example, if p/q = 1/2 we find P (w; b) = (2− b)w2 +2bw− 2− b. Its roots, w1 = 1 and
w2 = (b+ 2)/(b− 2) translate readily into the associated eigenvalues

λ1,n = i2n, n 6= 0

λ2,n = − 1

π
ln

∣

∣

∣

∣

b+ 2

b− 2

∣

∣

∣

∣

− i(H(2 − b) + 2n)

where H is the Heaviside function. It follows that

µ(π/2, b) = − 1

π
ln

∣

∣

∣

∣

b+ 2

b− 2

∣

∣

∣

∣

approaches −∞ as b→ 2, in agreement with Bamberger et al.

In preparation for the general case we now examine numerical approximation of the
spectra for 0 < b <∞ and q up to 8. Our calculations are facilitated by the fact that the
spectrum is completely determined by the polynomial (2.3) and the observation that

S(λ; a, b) = S(λ; a, b) and S(λ+ qi, pπ/q, b) = (−1)qS(λ, pπ/q, b),

from which we conclude that the spectrum has period qi and that within a period the
spectrum is symmetric about iq/2.

In the next 10 panels we have plotted the first q eigenvalues as a function of b as b as-
cends from 0 to 5 in steps of 0.01. For b < 2 we have used left-pointing arrowheads while for
b > 2 we have used right-pointing arrowheads. We have, for greater legibility, limited the
plot range real parts in excess of −2. We have placed a dashed vertical line at each minimal
spectral abscissa. Each plot is labeled with its particular value of a and the associated (ap-
proximate) minimal spectral abscissa, µ∗, and correct touch, b∗. These approximate values
are obtained by solving the discrete minimization problem min{µ(a, k/100); k = 0 : 500}.

−2 −1.5 −1 −0.5 0
0

2

4

6

8

(A)    a = π/8,  µ
*
 = −0.0791,  b

*
 = 2.79

−2 −1.5 −1 −0.5 0
0

1

2

3

4

(B)    a = π/4,  µ
*
 = −0.235,  b

*
 = 1.7

5



−2 −1.5 −1 −0.5 0
0

2

4

6

8

(C)    a = 3π/8,  µ
*
 = −0.145,  b

*
 = 3.02

−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

6

7

(D)    a = π/7,  µ
*
 = −0.0944,  b

*
 = 2.49

−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

6

7

(E)    a = 2π/7,  µ
*
 = −0.129,  b

*
 = 2.64

−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

6

7

(F)    a = 3π/7,  µ
*
 = −0.206,  b

*
 = 2.69

−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

6

(G)    a = π/6,  µ
*
 = −0.117,  b

*
 = 2.2

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

(H)    a = π/3,  µ
*
 = −0.627,  b

*
 = 1.73

6



−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

(I)    a = π/5,  µ
*
 = −0.156,  b

*
 = 1.92

−2 −1.5 −1 −0.5 0
0

1

2

3

4

5

(J)    a = 2π/5,  µ
*
 = −0.281,  b

*
 = 2.11

Figure 1. Eigen–trajectories as a function of touch, b, for ten choices of site, a.

We shall now prove that the root trajectories indeed behave in the simple manner
illustrated in Fig. 1. Perhaps the first thing that catches one’s eye is the crossing of
root trajectories when p and q are odd (panels (D,F,H) and (I)). We recall that though
Bamberger et al. proved that all eigenvalues are geometrically simple they neglected to
consider higher algebraic multiplicity. The calculation is explicit when a = π/3. For

P (w; b) = (2 − b)w3 + bw + bw2 − (2 + b) = (w − 1)((2 − b)w2 + 2w + (2 + b))

and the quadratic has roots at (−1 ±
√
b2 − 3)/(2 − b), that coincide at b =

√
3. In terms

of λ this states that λ = (3/(2π)) ln(2 −
√

3) + 3i/2 is a double eigenvalue of A(π/3,
√

3).
It follows that b =

√
3 is in fact the correct touch when a = π/3.

We now consider, for general a = pπ/q, the nature of incoming, splitting and outgoing
branches along the real axis and the line =(λ) = q/2.

Proposition 2.1. We suppose a = pπ/q and λ = α+ iβ.

(0) If b < 2 there exist no real eigenvalues. If b > 2 then there exists precisely one real
eigenvalue α0(b). It is strictly increasing with b and obeys

lim
b↓2

α0(b) = −∞ and lim
b→∞

α0(b) = 0.

(1) If q is even and b < 2 then α1(b)+iq/2 is an eigenvalue and α1(b) is strictly decreasing
with b and obeys

lim
b↑2

α1(b) = −∞

(2) If q is odd and p is even and b > 2 then α2(b) + iq/2 is an eigenvalue and α2(b) is
strictly increasing with b and obeys

lim
b↓2

α2(b) = −∞ and lim
b→∞

α2(b) = 0.
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(3) If q is odd and p is odd then there exists a unique b∗ < 2 and α(b∗) such that a double
eigenvalue occurs at α(b∗) + iq/2. As b exceeds b∗ this eigenvalue splits into the pair
α±(b) + iq/2 satisfying

α−(b) < α(b∗) < α+(b), lim
b↑2

α−(b) = −∞ and lim
b→∞

α+(b) = 0.

Proof: (0) If λ = α is real then (2.1) reads b = − sinh(απ)/(sinh(aα) sinh((π − a)α)). As
this is strictly increasing in α and takes values between 2 and ∞ the claim follows.
(1) If q = 2n then S(α+ in; p/(2n), b) = (−1)n{sinh(πα)+ b cosh(aα) cosh((π− a)α)} and
so b = − sinh(απ)/(cosh(aα) cosh((π − a)α)). As this is strictly decreasing in α and takes
values between 0 and 2 the claim follows.
(2) At p = 2m, q = 2n+1, S(α+iq/2; a, b) = i(−1)n{cosh(πα)+b cosh((π−a)α) sinh(aα)}
and so b = − cosh(απ)/(sinh(aα) cosh((π − a)α)). As this is strictly increasing and takes
values between 2 and ∞ the claim follows.
(3) At p = 2m− 1, q = 2n+ 1, S(α+ iq/2; a, b) = i(−1)n{cosh(πα)+ b cosh(aα) sinh((π−
a)α)} and so

Fa(α) ≡ cosh(aα) sinh((π − a)α)

cosh(πα)
= −1

b
. (2.5)

It is a simple matter to confirm

Fa(0) = 0, −1 ≤ Fa(α) ≤ 0, lim
α→−∞

Fa(α) → −1/2

and that Fa has a unique critical point, αa, satisfying αa < −1/2. As this critical point is
the global minimizer it follows that (2.5) has (i) no solution for b < ba ≡ −1/Fa(αa), (ii)
one double root when b = ba, (iii) exactly two roots when ba < b < 2 (with one going to
−∞ as b→ 2, and (iv) exactly one root when b > 2.

We now show that this is the only possible multiple root.

Proposition 2.2. If λ is a root of S(·; a, b) then (i) its algebraic multiplicity can not
exceed 2 and (ii) if it is double then =λ = q/2 mod q.

Proof: We note that S(λ; a, b) = sinh(πλ) + (b/2) cosh(πλ)− (b/2) cosh((π − 2a)λ) and so

S′′(λ; a, b) = π2 sinh(πλ) + π2(b/2) cosh(πλ) − (π − 2a)2(b/2) cosh((π − 2a)λ)

= π2S(λ; a, b)− ba(2a− π) cosh((π − 2a)λ)

and so if S(λ; a, b) = S′′(λ; a, b) = 0 then cosh((π − 2a)λ) = 0. The latter requires that
λ = i(n+ 1/2)π/(π− 2a) but S(λ) 6= 0.

For the second part we note that λ = −(q/(2π)) log(z) where z is a zero of P . We now
show that every double root of P is real. If P (z) = P ′(z) = 0 then qP (z) − zP ′(z) = 0.
Dividing the latter by bq and rearranging brings

tzq−p + (1 − t)zp = (b+ 2)/b, t = p/q (2.6)
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while z1−qP ′(z) = 0 brings

t/zq−p + (1 − t)/zp = (b− 2)/b (2.7)

If z1 ≡ zq−p and z2 ≡ zp then (2.6) and (2.7) require

t=(z1) + (1 − t)=(z2) = 0 and t
=(z1)

|z1|2
+ (1 − t)

=(z2)

|z2|2
= 0

and so either z1 and z2 are real or |z1| = |z2|. The latter is ruled out by the fact that
|z| > 1. As zq−p and zp are both real and q− p and p are coprime it follows that z is real.
This gives the desired result, since z = exp(−2λπ/q).

We now give a proposition which can be viewed as a “separation” result for the
different branches of the spectrum.

Proposition 2.3. If a = pπ/q and b > 0 and b 6= 2 then the spectrum does not hit the
horizontal lines λ = α+ iβ where

β =
k

2
, k = 1, . . . , 2q − 1, k 6= q

β = k
q

2p
, k = 1, . . . , 2p− 1, k 6= p

β = k
q

2(q − p)
, k = 1, . . . , 2(q − p) − 1, k 6= q − p

(2.8)

Proof: We claim that if z is a root of (2.3) such that either zq or zp or zq−p is real, then
necessarily z is real. This will give the result since z real means that the corresponding
eigenvalue λ satisfies =λ = 0 or =λ = q/2 or =λ = q while the values of =λ appearing
in (2.8) correspond to zq or zp or zq−p real (and z not real) and are therefore forbidden.
Now, if zp is real then

P (z; b) = zq

{

(2 − b) +
b

zp

}

+ bzp − (b+ 2) = 0

immediately implies that zq is real. As p and q are coprime it follows that z real.
Similarly, if zq−p is real then

P (z; b) = (2 − b)zq−pzp + bzp + bzq−p − (2 + b) = 0

implies that zp is real and so z is real.
Next, if zq = t is real and zp = |z|peiθ then

P (z; b) = b|z|peiθ +
bt

|z|p e
−iθ + (2 − b)t− (b+ 2) = 0

implies that |z|peiθ + t|z|−pe−iθ is real. Now |z| > 1 implies that θ = 0, i.e., zp real, and
so z itself is real.
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Recalling fig. 1 we set r = max(p, q−p) and distinguish the exit trajectories (where the
magnitude of the real part is an unbounded increasing function of 0 < b < 2) and return
trajectories (where the magnitude of the real part is an unbounded decreasing function of
2 < b < ∞) from the finite loops (bounded trajectory). Note that q − r = min(p, q − p)
and that q − 2r < 0.

For the behavior of the branches as b → +∞, we easily see (for example by writing
the polynomial equation (1−zr)(1−zq−r) = 2(1−zq)/b), that the limit of all the branches
are the points on the imaginary axis given by

λ = im
q

r
m = 0, . . . , r − 1

λ = im
q

q − r
m = 0, . . . , q − r − 1

We will see below that the first values are the end points of the finite loops, while the other
ones are the end points of return trajectories.

Now, at b = 2 we have only r roots so q − r roots must escape as b ↑ 2. To follow
these we write

P (z; b) = zr{(2 − b)zq−r + b+ bzq−2r − (b+ 2)z−r} = 0

and deduce when |z| → +∞ that zq−r ∼ b
b−2

. When b ↑ 2, it follows that

z ∼
(

b

2 − b

)1/(q−r)

exp(iπ(1 + 2m)/(q − r)), m = 0, 1, . . . , q − r − 1 .

Therefore, the possible imaginary parts of the exit trajectories (b ↑ 2) are

β =
q

2(q − r)
(1 + 2m) m = 0, 1, . . . , q − r − 1 . (2.9)

Similarly, the return trajectories (b ↓ 2) emanate from points with imaginary part

β = m
q

q − r
m = 0, 1, . . . , q − r − 1.

We now combine (2.9) with Proposition 2.3 to locate the starting points of the exit tra-
jectories. Indeed, the first statement of (2.8) shows that there exists horizontal lines that
the spectrum cannot cross every i/2. Therefore, the only possible starting point for the
trajectory that exits at iβ, where β = q(1 + 2m)/(2(q − r)), is i round(β) where round
returns the closest integer. This is well defined except when β is exactly half of an odd
integer. Since q − r is coprime with q, this can only happen if q − r divides 2m+ 1. But,
since 2m+ 1 < 2(q− r), the only possible case is 2m+ 1 = q− r. In this case, Proposition
2.2(3) instructs us that the branch is exactly the half-line β = q/2 and it comes from
both (q + 1)i/2 and (q − 1)i/2. Without loss we identify the lower point, (q − 1)i/2, with
starting point of the loop that ends at iq/2 after splitting, and identify the upper point,

10



(q + 1)i/2, as the starting point of the trajectory that exits the complex plane at β = q/2
after splitting. We have now proven

Proposition 2.4. We set r ≡ max{p, q−p} and denote by round± the extension of round
for which round−(1/2) = 0 and round+(1/2) = 1.
(1) There exist r − 1 proper loops, `m(b), 0 ≤ b ≤ ∞,

`m(∞) = imq/r, and `m(0) = i round−(mq/r) m = 1, . . . , r − 1

These are smooth where they avoid the multiple eigenvalue.
(2) There exist q − r exit trajectories, εj(b), 0 ≤ b ≤ 2,

=εj(2
−) =

q(1 + 2j)

2(q − r)
and εj(0) = i round+

(

q(1 + 2j)

2(q − r)

)

, j = 0, . . . , q − r − 1

These are smooth where they avoid the multiple eigenvalue.
(3) There exist q − r smooth return trajectories, ρj(b), 2 ≤ b ≤ ∞

=ρj(2
+) =

jq

q − r
and ρj(0) = i round

(

jq

q − r

)

, j = 0, . . . , q − r − 1

It follows that the nonharmonic spectral abscissa, b 7→ µ(pπ/q, b) of (1.5), is continuous
and bounded below on [0,∞] and µ(pπ/q,∞) = 0. Hence, there exists a correct touch,
i.e.,

Corollary 2.5. For integer coprime p and q the function b 7→ µ(pπ/q, b) attains its mini-
mum over [0,∞] at a finite value b∗(p, q).

Perusal of the root trajectories in Fig. 1 suggests that b∗ occurs at a turning point
(vertical tangent) of the smallest loop or perhaps along the fastest return trajectory. We
now proceed to bound these loops.

3. Bounds on µ and b∗

We apply the determinant methods of Schur and Cohn to bound the moduli of the
roots of

R(w; b) = P (w; b)/(w− 1) = (2 + b)

p−1
∑

j=0

wj + 2

q−p−1
∑

j=p

wj + (2 − b)

q−1
∑

j=q−p

wj

The principal tool is the Schur–Cohn Criterion

Proposition 3.1. (Marden [23, Thm. 43,1]) The number of roots of w 7→ R(w; b) in the
ball of radius c is the number of sign changes in a sequence of q determinants,

1,∆1(b, c),∆2(b, c), ...,∆q−1(b, c) where ∆k(b, c) = det

(

Lk Uk

UT
k LT

k

)

11



and Lk (Uk) is the k-by-k lower (upper) triangular Toeplitz matrix composed from the
lowest (highest) k coefficients of w 7→ R(cw; b).

Starting at k = 1 we find L1 = 2 + b and U1 = (2 − b)cq−1 and so

∆1(b, c) = (2 + b)2 − (2 − b)2c2q−2.

In order to simplify the analysis of the higher determinants we shall assume, throughout

the remainder of this section, that p = 1. In that case

L2 =

(

2 + b 0
2c 2 + b

)

and U2 =

(

(2 − b)cq−1 2cq−2

0 (2 − b)cq−1

)

and so

∆2(b, c) = (b− 2)4c4q−4 − 4(b− 2)2c2q + 2b2(4 − b2)c2q−2 − 4(b+ 2)2c2q−4 + (b+ 2)4.

Now the turning points in S correspond to turning points in R which correspond to a
double zero of one of the b 7→ ∆k(b, c). We detect such a zero by evaluating the associated
discriminants. We denote by Dj(c) the discriminant of b 7→ ∆j(b, c) and record D1(c) =
64c2q−2 and

D2(c) = 220c6q(cq−1 + 1)4(cq−1 − 1)4(cq−4 + 8c2q−4 + 18cq−2 + 8 + cq)·
(cq−4 − 8c2q−4 + 18cq−2 − 8 + cq)

We note D1 never vanishes and that only the last factor in D2 may vanish for c > 1.
Taking q = 4 we find that b 7→ ∆2(b, c) has a double root when c is a root of 7c4−18c2 +7.
This has a unique root larger than 1, namely

c4 = (1 + 2
√

2)/
√

7.

Transforming this back to the λ variables we predict a turn in one of the eigenvalues at
<λ = −(2/π) log(c4) ≈ −0.2352 in agreement with Fig. 1. To find the associated b we
must find the double root of b 7→ ∆2(b, c4). This occurs at

b4 = (6/5)
√

2

In order to determine whether this is the correct touch we must check the size of the
remaining root of R. Writing R(w; b4) = (2 − b4)(w − w1)(w − w2)(w − w2) we find
R(0; b4) = (b4 − 2)w1|w2|2 or

w1 =
2 + b4

(b4 − 2)c24
= −3 − 2

√
2.

As this exceeds c4 in magnitude, b4 is indeed the correct touch. In the general case, a
similar analysis allows us to get an easy lower bound for the spectral abscissa:

12



Proposition 3.2. Let a = π/q, q ≥ 4 and α = (89+15
√

17)/64 ' 2.357, then the spectral
abscissa µ(a, b) satisfies

µ(a, b) ≥ − q

2π(q − 2)
logα . (3.1)

Proof: As mentioned above, a turning point may arrive for a value of c such that

E(c) ≡ −8c2q−4 + cq + 18cq−2 + cq−4 − 8 = 0 .

Following the rule of signs of Descartes [23, Thm. 41,3], we know that the number n of
positive zeros and the number m of change of signs in the coefficient of E satisfy n ≤ m
and m− n even. Since m = 2, E(0) < 0, E(1) > 0 and E(+∞) < 0, it follows that E has
two positive zeros and only one of them being larger than 1. More precisely, since E(2)
can be written E(2) = −8 ∗ 22q−4 + 89

4 2q−2 − 8 and 8 ∗ 2q−2 > 89
4 for q ≥ 4, we see that

the unique root of E, say cq, larger than 1 is smaller than 2. We use this fact to improve
the bound on cq. Since

c2q + 18 + 1/c2q < 22 + 18 + 1/22 = 89/4

we get

0 = E(cq) < −8c2q−4
q +

89

4
cq−2
q − 8

and the bound cq−2
q < α follows immediately. As the entire loop stays inside the disk of

radius cq the bound (3.1) stems from the link between the modulus of w and <(λ).

It is also possible to get a lower bound for the spectral abscissa in terms of b. For that
purpose, let us observe that looking at ∆1(b, c), we immediately obtain that it becomes
negative when c crosses the value ((2 + b)/(2− b))1/(q−1), therefore the polynomial R has
at least one root in the disk |w| < ((2 + b)/(2 − b))1/(q−1). Of course, if we now consider
the next determinant ∆2(b, c), we can improve this upper bound.

We factor ∆2(b, c) into

∆2(b, c) =
(

(b− 2)2c2(q−1) + 2(b− 2)cq + 2(b+ 2)cq−2 − (b+ 2)2
)

(

(b− 2)2c2(q−1) − 2(b− 2)cq − 2(b+ 2)cq−2 − (b+ 2)2
)

≡ Q1(b, c)Q2(b, c)

and look for the first zero of either Q1 or Q2. We observe that Q2(b, c) ≤ Q1(b, c) while
(b− 2)cq + (b+ 2)cq−2 ≥ 0, i.e.

Q2(b, c) ≤ Q1(b, c) ⇐⇒ b ≥ 2 or

{

b < 2 and 1 ≤ c ≤
(

2 + b

2 − b

)1/2
}

.

Now, since

Q1(b, 1) < 0 and Q1(b,

(

2 + b

2 − b

)1/2

) = (b+ 2)2

(

(

2 + b

2 − b

)q−3

− 1

)

> 0

13



the first zero of Q1 (and therefore of P ) is less than ((2 + b)/(2− b))1/2 and, therefore, we
can assume that we are in the case Q2(b, c) ≤ Q1(b, c). At last, since Q1(b, 1) = −4b < 0
and Q2(b, 1) = −12b < 0, Q1(b, c) will vanish before Q2(b, c), so we can restrict ourselves
to the study of Q1(b, c).

We begin with the case b ≥ 2. Let z0 be the positive root of

R2(z) ≡ (b− 2)2z2 + [2(b− 2) + 2(b+ 2)]z − (b+ 2)2

Namely, z0 = (−2b +
√
b4 − 4b2 + 16)/(b − 2)2 for b 6= 2, and z0 = 2 for b = 2. We note

that z0 > 1, set c0 ≡ z
1/(q−2)
0 > 1 and observe that if b ≥ 2 then

Q1(b, c0) = (b− 2)2c20z
2
0 + 2(b− 2)c20z0 + 2(b+ 2)z0 − (b+ 2)2

≥ (b− 2)2z2
0 + 2(b− 2)z0 + 2(b+ 2)z0 − (b+ 2)2 = 0 .

Therefore, c0 is an upper bound for the first zero of P when b ≥ 2.
We use the same kind of method in the case b < 2. We introduce z1 the (unique)

positive root of

R3(z) ≡ (b− 2)2z3 + 2(b− 2)z2 + 2(b+ 2)z − (b+ 2)2 = 0 .

Since R3(1) = −4b < 0 and R3(2/(2 − b)) = b2(b + 2)/(2 − b) > 0 we see that 1 < z1 <

2/(2 − b). We set c1 ≡ z
1/(q−2)
1 and observe that if b ≤ 2 then

Q1(b, c1) = (b− 2)2c21z
2
1 + 2(b− 2)c21z1 + 2(b+ 2)z1 − (b+ 2)2

= c21z1(b− 2)[(b− 2)z1 + 2] + 2(b+ 2)z1 − (b+ 2)2

≥ z2
1(b− 2)[(b− 2)z1 + 2] + 2(b+ 2)z1 − (b+ 2)2 = 0

where we used the fact that (b− 2)z1 + 2 > 0 and c21 ≤ z1 (for q ≥ 4). Therefore, c1 is an
upper bound for the first zero of P when b < 2. Now, using the link between the spectral
abscissa µ and the moduli of the roots of R we finally obtain the following result:

Proposition 3.3. Let z1(b) be the (unique) positive root of

R3(z) ≡ (b− 2)2z3 + 2(b− 2)z2 + 2(b+ 2)z − (b+ 2)2

and z0(b) be the positive root of R2(z) ≡ (b− 2)2z2 + 4bz − (b+ 2)2. Then, for q ≥ 4

µ(π/q, b) ≥ − q

2π(q − 2)

{

log |z1(b)| when b < 2
log |z0(b)| when b ≥ 2

The estimate is particularly good for large values of b as shown in the following picture
drawn in the case q = 10.
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Figure 2. Estimate from above (solid line) for the spectral abscissa (dashed line) in the
case a = π/10.

In order to get bounds for “the optimal touch” b∗, we now need an upper bound for
the spectral abscissa, at least for a particular choice of b. Since we observe numerically
that b∗ is not so far from the value q/3, we choose this value.

Proposition 3.4. If q ≥ 6 then µ(pπ/q, q/3) ≤ −3/(8πq).

Proof: We outline the key steps but suppress the many routine calculations. We recall the
S of (2.2) and set φ(α, β) ≡ |S(α+ iβ)|2. We begin by working with β fixed in the range
of possible values corresponding to the different branches of the spectrum. We denote by
B this set of possible values for β. We will often need to separate the cases of the closed
loops and branches returning from infinity.

Step 1: The function α 7→ φα(α, β) is non decreasing for −1/(πq) ≤ α ≤ 0 (we just need
to compute the second derivative φαα(α, β) which is clearly non negative).

Step 2: The inequalities φα(0, β) ≥ 0 and φα(−1/(πq), β) + φα(0, β) ≥ 0 hold. Actually,
it is the longer and more technical part of the proof. For that, we write

1

π

(

φα

(−1

πq
, β

)

+ φα(0, β)

)

= A+B1
p

3
cos

2(q − p)

q
βπ +B2

q − p

3
cos

2p

q
βπ (3.2)

with

A =
q

3
+
q

3
cosh

2

q
− (1 +

q2

36
) sinh

2

q
− q(q − 2p)

36
sinh

2(q − 2p)

q2

B1 = −1 +
q

6
sinh

2p

q2
− cosh

2p

q2

B2 = −1 +
q

6
sinh

2(q − p)

q2
− cosh

2(q − p)

q2
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and we get the result using classical inequalities satisfied by the functions cosh and sinh
and precise study of the function of β defined in (3.2).

Step 3: We deduce from steps 1 and 2 that |φα(α, β)| ≤ φα(0, β) for −1/(πq) ≤ α ≤ 0
and so φ(0, β) − φ(α, β) ≤ φα(0, β)|α| there and then, φ(α, β) (and also S) cannot vanish
while

φ(0, β) − φα(0, β)|α| > 0 ⇐⇒ |α| < φ(0, β)

φα(0, β)
≡ ψ(β)

As a consequence, the spectral abscissa µ satisfies µ ≤ −ψ(β) for each β ∈ B.

Step 4: We find a lower bound for

ψ(β) =
sin2 βπ + q2

9 sin2 p
qβπ sin2 (q−p)

q βπ

2π
(

p
3 sin2 q−p

q βπ + q−p
3 sin2 p

qβπ
) . (3.3)

when β varies in the range of possible values. We now examine separately the case of a
closed loop and the case of a branch coming back from infinity (since b = q/3 ≥ 2, we
do not need to look at the case of a branch going to infinity). For sake of simplicity, we
assume here that r = q−p (i.e. q ≥ 2p). The proof would be exactly the same in the other
case.

The case of a loop finishing at imq/(q − p) corresponds to values of β belonging to

the interval
(

k, mq
q−p

)

with k ≡ round(mq/(q − p)) and m are connected by a relation like

mq − k(q − p) = m0. Now, we use that on such an interval sin2((π − a)β) ≤ sin2(aβ) to
get

ψ(β) ≥ 3

2πq

(

q2

9
sin2((π − a)β) +

sin2 βπ

sin2(aβ)

)

. (3.4)

We split the interval I =
(

k, mq
q−p

)

into I =
(

k, k + 1
2

m0

q−p

)

∪
(

k + 1
2

m0

q−p , k + m0

q−p

)

= I1∪I2.
On I1, we have

ψ(β) ≥ 3

2πq

q2

9
sin2 q − p

q
βπ ≥ q

6π
sin2 q − p

q

(

k +
1

2

m0

q − p

)

π =
q

6π
sin2 m0π

2q
.

At last, since on [0, π/12], sin2 x ≥
(

12x
π

sin π
12

)2
, we get

sin2 m0π

2q
≥ sin2 π

2q
≥ 144

π2

π2

4q2
sin2 π

12
=

18

q2
(1 −

√
3

2
),

therefore, on I1

ψ(β) ≥ 3(2 −
√

3)

2πq
. (3.5)

On I2, we write:

ψ(β) ≥ 3

2πq

sin2 βπ

sin2 p
qβπ

≥ 3

2πq

sin2(kπ + 1
2

m0π
q−p

)

sin2 pπ
q (k + m0

q−p)
,
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the right-hand side is equal to

3

2πq

sin2 m0π
2(q−p)

sin2 m0π
(q−p)

=
3

2πq

1

4 cos2 m0π
2(q−p)

therefore, on I2

ψ(β) ≥ 3

8πq
. (3.6)

In the case of a branch coming back from infinity, which corresponds to an interval like
(

k, jq
q−r

)

with k ≡ round(jq/(q − r) and jq − k(q − r) = q − j0, we use the same idea and

we get the same inequalities as (3.5) and (3.6).

As a consequence of the upper and lower bounds on the nonharmonic spectral abscissa
we obtain the following bounds on the correct touch,

Proposition 3.5. Let us denote by b∗(p, q) the correct touch, i.e., the minimizer of b 7→
µ(pπ/q, b). If p = 1 and q ≥ 6 then

b1(q) ≤ b∗(p, q) ≤ b2(q) (3.7)

where

b1(q) =
2z3 − z2 − z + 2 +

√
−7z4 + 18z3 − 7z2

z3 − 1

b2(q) =
2(z2 − z + 1) + 2

√

2z(2 − z)(z − 1
2 )

z2 − 1

and z = exp
(

3(q − 2)/4q2
)

.

Proof: To find these bounds, it suffices to look at the intersection of the curve giving
the lower bound with the line µ = −3/(8πq). Or, equivalently, to find b such that (in
the language of Proposition 3.3) z0(b) and z1(b) equal exp

(

3(q − 2)/4q2
)

. We obtain the
result by plugging this value of z in the equation defining z0(b) and z1(b) respectively and
solving in b.

4. Regarding the Root Vectors

Recall that Rayleigh was already aware of the fact that pointwise damping destroys
the “normal co–ordinates” or orthonormal basis of eigenmodes enjoyed by the undamped
wave operator. For our purposes however it will suffice to show that the (generalized)
eigenmodes, or root vectors, are isomorphic to an orthonormal base. In other words, we
show that these modes comprise a Riesz basis for the energy space, X . We begin with a
specification of these modes.

In addition to the harmonic modes in (1.2) we have the nonharmonic modes

Vk,n(x) = yk,n(x)[1/λk,n 1], yk,n(x) =

{

sinh(λk,n(π − a)) sinh(λk,nx) if x < a,
sinh(λk,na) sinh(λk,n(π − x)) if x > a,

(4.1)
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where k = 2, . . . , q and n runs through the integers.
If λk,n = λk+1,n then, in addition to its eigenvector Vk,n, there exists the generalized

eigenvector Vk+1,n = [ỹ z̃] for which (A− λk)Vk+1,n = Vk,n. In components this reads

z̃ = λk,nỹ + yk,n/λk,n and ỹ′′ − (λk,n + bδa)z̃ = yk.

The first into the latter yields

ỹ′′ − λ2
k,nỹ − λk,nbδaỹ = (2 + bδa/λk,n)yk,n

that is, ỹ is the H1
0 (0, π) function satisfying

ỹ′′ − λ2
k,nỹ = 2

{

sinh(λk,n(π − a)) sinh(λk,nx) if x < a,
sinh(λk,na) sinh(λk,n(π − x)) if x > a,

(4.2)

and the transmission condition

ỹ′(a+) − ỹ′(a−) = λk,nbỹk,n(a) + byk,n(a)/λk,n (4.3)

The solution to (4.2)–(4.3) is, piecewise,

ỹ(x) =
1

λk,n

{

(π − a) cosh(λk,n(π − a)) sinh(λk,nx) + x cosh(λk,nx) sinh(λk,n(π − a))
a cosh(λk,na) sinh(λk,n(π − x)) + (π − x) cosh(λk,n(π − x)) sinh(λk,na)

We now show that the root vectors comprise a Riesz Basis for X . In some related cases,
e.g., Kergomard et al. [17], the underlying isomorphism can be constructed by hand. We
follow here the indirect approach of Bari, e.g., Young [32, Thm. 1.9], and show that they
comprise a complete Bessel sequence and are biorthogonal to a set that is also complete
and Bessel. To begin, as {V1,n}n6=0 is an orthonormal sequence in X , Bessel’s inequality
reads

±∞
∑

n=±1

|〈V1,n, V 〉|2 ≤ ‖V ‖2 ∀V ∈ X

and so we need only show

Proposition 4.1. If V ∈ X then
∑

n

|〈Vk,n, V 〉|2 <∞ for each k = 2, . . . , q.

Proof: We write V = [y z] and find

〈Vk,n, V 〉 = (1/λk,n)

∫ π

0

y′k,ny
′ dx+

∫ π

0

yk,nz dx. (4.4)

Now, as λk,n = λk,0 − iqn,

1

λk,n

∫ π

0

y′k,ny
′ dx = (−1)n(q−p) sinh(λk,0(π − a))

∫ a

0

cosh((λk,0 − inq)x)y′(x) dx−

(−1)np sinh(λk,0a)

∫ π

a

cosh((λk,0 − inq)(π − x))y′(x) dx

(4.5)
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As {nq}n is a separated sequence it follows from Young [32, Thm. 4.4] that einq is a Bessel
sequence in L2(−π, π) and hence the sequence (4.5) is square summable in n. This same
argument allows us to conclude that the second term in (4.4) is also square summable in
n. Finally, given our explicit representation of the root vectors associated with double
eigenvalues, the argument above may be used to show that these too constitute a Bessel
sequence.

These same estimates hold for the adjoint system

A∗(a, b) =

(

0 −I
−∂xx 0

)

x 6= a

D(A∗(a, b)) = {[f, g] ∈ (H1
0 (0, π) ∩H2(0, a) ∩H2(a, π))×H1

0 (0, π) :

f ′(a+) − f ′(a−) = −bg(a)}

for its root vectors are Wk,n(x) = yk,n(x)[1/λk,n − 1]. It is a simple matter to confirm
that this sequence is biorthogonal to {Vk,n}.

Regarding completeness, as our pointwise damping is an unbounded ‘perturbation’ of
the skew wave operator we may not argue as in Cox and Zuazua [9]. Instead, following
Krein and Nudelman [20], Cox and Zuazua [10] and Ammari et al. [1], we invoke the
simple trace criterion of Livšic.

Proposition 4.2. (Krein and Langer [19, §2.5]) If H is Hilbert and T : H → H is linear
and compact and T< ≡ (T + T ∗)/2 is nonpositive and of finite trace then

tr(T<) ≤
∑

νn∈σ(T)

<νn (4.6)

where the νn are repeated according to their algebraic multiplicity. Equality holds in (4.6)
if and only if the root vectors of T are complete in H.

It is now a simple matter to confirm that equality holds in (4.6). We note that an
alternate route to completeness has recently been established in the works of Guo and Xie
[14] and Xu and Guo [31].

Proposition 4.3. tr(A−1(a, b)<) = −b(π − a)a/π.

Proof: If [f g] = A−1(a, b)[u v] then g = u and f ′′ = v+ bδau with f(0) = f(π) = 0. Hence

f(x) =

∫ x

0

(x− t)v(t) dt− (x/π)

∫ π

0

(π − t)v(t) dt− (b/π)u(a)ψ(x)

where

ψ(x) =

{

(π − a)x if x < a
a(π − x) if x > a

Similarly, If [f g] = A−1(a, b)∗[u v] then g = −u and f ′′ = −v+bδau with f(0) = f(π) = 0.
Hence, as above

f(x) = −
∫ x

0

(x− t)v(t) dt+ (x/π)

∫ π

0

(π − t)v(t) dt− (b/π)u(a)ψ(x).

19



Combining these calculations we find A−1(a, b)<[u v] = [−(b/π)u(a)ψ 0], and so the range
of A−1(a, b)< is spanned by the unit vector e1 ≡ [ψ 0]/

√

aπ(π − a). The claim follows
from trA−1(a, b)< = 〈A−1(a, b)<e1, e1〉.

The polynomial representation of our shooting function affords the elementary factor-
ization

S(λ; pπ/q, b) = −1

4
exp(λπ)P (exp(−2πλ/q); b)

=
1

4
exp(λπ)(b− 2)

q
∏

k=1

(exp(−2πλ/q) − wk)
(4.7)

The beauty of this representation is that sums of eigenvalues, as required by (4.6), appear
on differentiation with respect to λ. The computation of these sums will be facilitated by

∑

n

1

(n+ α)2 + β2
=

π

2β

sinh(2πβ)

cosh2(πβ) − cos2(πα)
(4.8)

that follows by summing the residues of −π cot(πz)/((z + α)2 + β).

Proposition 4.4. If b ≥ 0 and b 6= 2 then the shooting function satisfies

S(λ; pπ/q, b) = πλ− πλ2

q
∑

k=1

∑

n

<(1/λk,n) +O(λ3)

Proof: We simply differentiate (4.7) with respect to λ and make frequent use of the fact
that w1 = 1. To begin, with a = pπ/q,

Sλ(λ; a, b) =
π

4
eλπ(b− 2)

q
∏

k=1

(e−2πλ/q − wk) − π

2q
eλπ(1−2/q)(b− 2)

q
∑

j=1

∏

k 6=j

(e−2πλ/q − wk)

The first term vanishes at λ = 0 and the products in the second term each vanish except
when j = 1. Hence

Sλ(0; a, b) =
π

2q
(2 − b)

q
∏

k=2

(1 − wk) =
π

2q

P (w)

w − 1

∣

∣

∣

∣

w=1

= π

as claimed. Proceeding to the second derivative

Sλλ(λ; a, b) =
π2

4
eλπ(b− 2)

q
∏

k=1

(e−2πλ/q − wk)

− π2(q − 1)

q2
eλπ(1−2/q)(b− 2)

q
∑

j=1

∏

k 6=j

(e−2πλ/q − wk)

+
π2

q2
eλπ(1−4/q)(b− 2)

q
∑

j=1

q
∑

i=1

∏

k 6∈{i,j}

(e−2πλ/q − wk)
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At λ = 0 this becomes

Sλλ(0; a, b) =
π2(q − 1)

q2
(2 − b)

q
∏

k=2

(1 − wk) +
2π2

q2
(b− 2)

q
∑

j=2

∏

k 6∈{1,j}

(1 − wk)

=
2π2(q − 1)

q
− 4π2

q

q
∑

k=2

1

1 − wk

=
2π2

q

q
∑

k=2

(

1 − wk

1 − wk
− 2

1 − wk

)

=
2π2

q

q
∑

k=2

wk + 1

wk − 1

(4.9)

and so it remains only to link the wk back to their λk,n. Well, it follows directly from (2.4)
that

<(1/λk,n) =
− log |wk|

2πq

1

log2(|wk|)/(4π2) + (n+ θk/(2π))2

With α = θk/(2π) and β = log(|wk|)/(2π) it now follows from (4.8) that

∑

n

<(1/λk,n) =
− log |wk|

2πq

π2

log |wk|
sinh(log |wk|)

cosh2(log(|wk|)/2) − cos2(θk/2)

=
−π
4q

|wk| − |wk|−1

(|wk| + 2 + |wk|−1)/4 − cos2(θk/2)

=
π

q

1 − |wk|2
|wk|2 − 2<wk + 1

(4.10)

In order to reconcile (4.10) and (4.9) we note that if wk is real then

1 − |wk|2
|wk|2 − 2<wk + 1

=
wk + 1

1 − wk

while if wk is not real then

1 − |wk|2
|wk|2 − 2<wk + 1

+
1 − |wk|2

|wk|2 − 2<wk + 1
=
wk + 1

1 − wk
+
wk + 1

1 − wk

As each wk is either real or occurs with its complex conjugate, we have shown,

Sλλ(0; a, b) = −2π

q
∑

k=1

∑

n

<(1/λk,n)

as claimed.
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Comparing now the MacLaurin developments of S as represented in (2.1) and the
above proposition, we find

πλ+ b(π − a)aλ2 +O(λ3) = πλ− πλ2
∑

λn∈σ(a,b)

<(1/λn) +O(λ3)

and so, recalling proposition 4.2, we have shown that, when b 6= 2,

∑

λk,n∈σ(a,b)

<(1/λk,n) = tr((A−1)<).

It follows that the root vectors are complete in X and hence comprise a Riesz basis in X ,
and, more to the point, that the set of nonharmonic root vectors {Vk,n : k = 2, . . . , q;n ∈ Z}
is a Riesz basis for H⊥. From here it is easy to see, e.g., [8], that the nonharmonic spectral
abscissa, (1.5), indeed coincides with the decay rate on H⊥.

5. Dimensions and Extensions

Though it has been convenient to work in the setting of Bamberger et al. it remains to
see whether the ‘correct’ touch is in fact practical. To see this we start from the dimensional
problem

Tuxx − ρutt + γδ(x− p`/q)ut = 0, 0 < x < `. (5.1)

In terms of the new space and time variables, y = πx/` and τ = (πt/`)
√

T/ρ we recover
our initial equation

uyy − uττ + bδ(y − pπ/q)uτ = 0, 0 < y < π where b =
γ√
Tρ

We note that Cuzzucoli and Lombardo [11] consider finger damping up to 8
√
Tρ. On an

absolute scale, if we take, e.g., the string studied in Cox [8], where T = 27mkg/s2 and
ρ = 0.0015 kg/m we find that

√
Tρ ≈ 0.2 kg/s corresponds to light damping.

Finally, following, e.g., Birch and Srinivasan [5], we note that the interaction of string
of finger is much more complex than our 1-parameter pointwise damper. From the 15-
parameter model of [5] we may abstract an effective fingertip stiffness, k > 0, and so
consider

utt − uxx + δa(but + ku) = 0 (5.2)

This breaks the lovely symmetry of the shooting function,

S(λ; a, b) = λ sinh(λπ) + (bλ+ k) sinh(λa) sinh(λ(π − a)). (5.3)

and so also destroys the simple structure of the spectrum. In comparing figures 1 and 3 we
see at once both the unfolding of the multiple eigenvalue and the genesis of the exit and
return trajectories. Although the qi periodicity is broken, it appears that the full spectral
abscissa is attained on one of the first q trajectories.
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Figure 3. A few root paths of (5.3) when p/q = 1/5, k = 0.2, and b runs from 0 to 8.

It remains of course to determine whether the correct touch in the sense of Bamberger,
Rauch and Taylor is indeed the most pleasing to the ear. If in fact the nonharmonic
spectral abscissa is the right measure to minimize then Fig. 1 seems to indicate a number
of improvements over current practice. More precisely, modern practice, as dictated by
Zukovsky [34], has the musician lightly finger at `/q and yet, for odd q > 3 Fig. 1 states
that fingering at 2`/q is better, i.e., µ(2`/q, b∗(2, q)) < µ(`/q, b∗(1, q)). By this reasoning
it appears that touching simultaneously at `/q and 2`/q should in turn further enhance
the effect.
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