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INFINITELY DIVISIBLE DISTRIBUTIONS FOR RECTANGULAR FREE
CONVOLUTION: CLASSIFICATION AND MATRICIAL INTERPRETATION

FLORENT BENAYCH-GEORGES

ABSTRACT. In a previous paper ([])7 we defined the rectangular free convolution s,. Here,
we investigate the related notion of infinite divisibility, which happens to be closely related the
classical infinite divisibility: there exists a bijection between the set of classical symmetric in-
finitely divisible distributions and the set of @, -infinitely divisible distributions, which preserves
limit theorems. We give an interpretation of this correspondence in terms of random matrices:
we construct distributions on sets of complex rectangular matrices which give rise to random
matrices with singular laws going from the symmetric classical infinitely divisible distributions
to their @,-infinitely divisible correspondents when the dimensions go from one to infinity in a
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2 FLORENT BENAYCH-GEORGES

INTRODUCTION

In a previous paper ([B-G1]), we modeled the asymptotic behavior of rectangular random
matrices with freeness with amalgamation. Therefore we defined, for each A € [0, 1], the rect-
angular free convolution with ratio A, denoted by m,. It is a binary operation on the set of
symmetric probability measures on the real line defined in the following way. Let us call the
singular law of a matrix M the uniform law on its singular values, i.e. on the spectrum of its
absolute value |M| = (MM*)'/2. Consider p, v symmetric probability measures on the real line,
consider two sequences q1(n), gz(n) of integers tending to oo such that

@ (n)

q2(n) n—oo
and consider, for each n, M(n), N(n) independent g1(n)xg2(n) random matrices, one of them
being biunitarily invariant (i.e. having a distribution invariant under the left and right actions
of the unitary groups) such that the symmetrization of the singular law of M (n) (resp. of N(n))
converges weakly in probability to p (resp. v). Then the symmetrization of the singular law of
M(n) + N(n) converges weakly in probability to a probability measure which depends only on
u, v, and A, denoted by pm,v, and called the rectangular free convolution with ratio A of p and
v.

In the present paper, we study the notion of infinite divisibility for m,, which leads to a Lévy-
Kinchine formula for the rectangular R-transform (whose definition we shall recall in section [l):
a symmetric probability measure p is ®,-infinitely divisible if and only if there exists a positive
finite symmetric measure G (called its Lévy measure) such that the rectangular R-transform
with ratio A of p is given by the formula:

1+ ¢
Ciu(z) = 2 /R LA,

Therefore we can define a bijection Ay between the set of classical symmetric infinitely divisible
distributions and the set of @, -infinitely divisible distributions: Ay maps a symmetric *-infinitely
divisible distribution to the m,-infinitely divisible distribution with the same Lévy measure. This
bijection happens, like the one of Bercovici and Pata ([BPB99]) between - and -infinitely
divisible distributions, to have deep properties. It is a semi-group morphism:

A% v) = M (s, A (),
and it preserves limit theorems: for all sequences (p,,) of symmetric distributions and (k;,) of
positive integers tending to infinity, we have, for all probability measures p,

k
k. — =

n—oo

n

— Ax(p).
n—oo
A, will be called the rectangular Bercovici-Pata bijection with ratio A.

In section ], we give examples of @,-infinitely divisible distributions. First, in section |1 we
give the density of the image, by the bijection Ay, of the standard Gaussian distribution. An
interesting interpretation of this result is made in a forthcoming paper ([B-GJ]) where we con-
struct analogues of Voiculescu’s free entropy and free Fisher information for operators between
different Hilbert spaces, and where the maximum of entropy and the minimum of Fisher informa-
tion are realized for operators the absolute value of which has this (symmetrized) distribution.
Another consequence of this result is a new formula for the moments of the Marchenko-Pastur
distribution (which is closely related to this distribution): for all a > 0, for all n > 1, the n-th
moment of the Marchenko-Pastur distribution with parameter a (see [HP0(] p. 65) is equal to
S a°™ where the sum is taken over all noncrossing pairings of [2n], and where o(r) is the
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number of blocks of a partition 7 the first element of which is odd. Then, in section [£.2, we give
the densities of the images, by the above mentioned bijection, of the symmetric Cauchy laws.
Cauchy laws are well known to be invariant under many transformations, but we are going to
see that unless A = 1, they are not invariant under this bijection. At last, in section [£3, we
characterize the images, by the same bijection, of the symmetric Poisson distributions. When
A =0, we have a formula for the density.

In section ], we shall construct a matricial model for the =,-infinitely divisible laws and
present in a maybe more palpable way the Bercovici-Pata bijection with ratio A (whereas the
proofs of the other sections rely on integral transforms and complex analysis): we are going to
construct, in the same way as in [B-G04| and in [C-D04], for each d,d" > 1, for each symmetric
x-infinitely divisible distribution p, an infinitely divisible distribution IF’Z o on the set of dx d

complex matrices such that for all p, v, P4 , «PY , = P4" and such that the symmetrization of
the singular law of M (with M random matrix distributed according to ]P’g o) goes from p to its

image by the rectangular Bercovici-Pata bijection with ratio A when d,d’ — oo, % — A

In the last section, we shall give a representation of the image of the symmetric Poisson
distribution by the rectangular Bercovici-Pata bijection with ratio A as the distribution of the
absolute value of sums of rank-one matrices.

Acknowledgments. We would like to thank Philippe Biane, our advisor, for useful discus-
sions. Also, we would like to thank Cécile Martineau for her contribution to the english version
of this paper.

1. PRELIMINARIES

Until the end of section [], A is a fixed number of [0, 1].

1.1. General introduction to the rectangular R-transform with ratio A € [0,1]. In
this section, we shall recall definitions and basic results from [B-GI||] about the rectangular
R-transform C), of a symmetric probability measure p.

Let us denote by z — 2172 (resp. z — +/z) the analytic version of the square root on
the complement of the real non positive (resp. non negative) half line such that 112 =1
(resp. v/—1 = i). On the set of non null complex numbers, we will use the argument function
which takes values in [0,27). Let us define the analytic function on a neighborhood of zero

NS 5 1/2
U(z) = A H[(AJ;\) 4] (when A = 0, U(z) = z). Then one can summarize the different

steps of the construction of the rectangular R-transform with ratio A in the following chain

— Guz)= | — — H,(z)=XG,|—= ) +1 -G, | —=]| —
sym.uprob. g( )h t/ fZ —t M( ) a \/E ( )\/_ g \/E
measure auchy transform

Cyu(2) :U<ﬁ _1>,

rect. R-transf. with ratio A

where H, !'is the inverse (for composition) of H,. Proposition [.] and theorem bellow,
which have first been established in [B-GJ]], prove that such an inverse exists, give its domain,
and prove that for any tight set A of symmetric probability measures, the properties and the
domains of the functions H, U (u € A) are “uniform”.
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Proposition 1.1. Let A be a set of symmetric probability measures on the real line. Then the
following assertions are equivalent

(i) A is tight,

(ii) for every 0 <6 <m, lim 1H,(z) =1 uniformly in p € A,

z—0
larg z—m|<6
(iii) lin%] 1H,(z) =1 uniformly in p € A.
:vE:(Bjoo,O)

Define, for ae € (0,7), 3 > 0, A, g to be the set of complex numbers z such that |arg z—7| < «
and |z| < (.

Let H be the set of functions f which are analytic in a domain Dy such that for all a € (0,7),
there exists 3 positive such that
Aaﬂ C Df.
A family (fy)aea of functions of H is said to be uniform if for all & € (0,7), there exists [
positive such that
Vae A, A.p CDy,.

Theorem 1.2. Let (H,)aca be a uniform family of functions of H such that for every a € (0,7),
lim Ha(2)
z—0
|arg z—m|<a

= 1 uniformly in a € A.

Then there exists a uniform family (Fy)aca of functions of H such that for every a € (0,7),
F
lim a(2)

z—0 z
|arg z—m|<a

=1 uniformly in a € A,

and there exists 8 positive such that
Vac A, HyokF,=F,0H,=1;0nA,g.

Moreover, the family (Fy)aea is unique in the following sense: if a family (Fy)aca of functions
of H satisfies the same conditions, then for all o € (0,7), there exists 3 positive such that

Va€ A, F,=F, on A,p.

Using the theory of cumulants in operator-valued free probability theory, we prove ([B-G1l])
the additivity of rectangular R-transform:

Theorem 1.3. For all i, v, symmetric probability measures, we have
Cusw =Cu+Cy.

Note that it is also proved in [B-GI|] that for all A\ € [0,1], the rectangular R-transform
with ratio A is injective. The following remark gives a practical way to derive any symmetric
probability measure 4 on the real line from C),.

Remark 1.4 (How to compute p when we know C,, 7). Let us define the function T(X) =
AX +1)(X + 1), such that T(U(z)) = z+ 1. We have z/H;l(z) = T(Cu(2)), for z € C\R"
small enough. From this, we can compute H,(z) for z € C\R" small enough. Then we can use
the equation, for = € C\RT,

0= (s () vk ()
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Moreover, when z € C\R™ is small enough, 1/+/z is large and in C~ (the set of complex numbers
with negative imaginary part), so \I[Gﬂ (%) is closed to 1. %Hu(z) is also closed to 1, and for

vz
h,g complex numbers closed to 1,

D=

A=1+((A=1)2+4X2)

h=X?+(1=Ngeg=V(h), withV(z) = 0

=U(z—1)+1.
So one has, for z € C\RT small enough,

1 1\ H,(z2)

70 () = (7))

We shall mention here two other results, proved in [B-GIf]. The second of them allows us to
claim that m, is continuous with respect to weak convergence.

Lemma 1.5 (Tightness and rectangular R-transform). Let A be a set of symmetric probability
measures. Then we have equivalence between :

(i) A is tight,
(ii) for any 0 < a <, ;% Cu(z) = 0 uniformly in p € A,
larg z—7|<a
(iii) lir% C,(x) = 0 uniformly in p € A.
xe%joo,o)

Theorem 1.6 (Paul Lévy’s theorem for rectangular R-transform). Let (u,) be a sequence of
symmetric probability measures. Then we have equivalence between:

(i) (un) converges weakly to a symmetric probability measure;
(i) there exists o, 3 such that
(a) lir% C, (2) = 0 uniformly in n,
| argzz_:WKa
(b) the sequence (C,,,) converges uniformly on every compact set of Ay g when n — oo;
(iii) (a) lin%] C,, (x) = 0 uniformly in n,
:vE:(Bjoo,O)
(b) there exists 3 > 0 such that the sequence (Cy,) converges pointwise on [—(3,0) when
n — oo.

Moreover, in this case, denoting by p the weak limit of (uy), for every «, there exists [ such
that the sequence (C,,) converges uniformly to C,, on every compact set of A, g when n — oo.

1.2. The particular cases A = 0 and A = 1. The results of this section are proved in [B-GJ||.

1.2.1. Rectangular free convolution. For u,v symmetric probability measures on the real line,
the rectangular free convolution with ratio 1 of p and v is their free convolution (as defined in
BV93]), and their rectangular free convolution with ratio 0 is the unique symmetric probability
measure on the real line whose push-forward by the function ¢t — t? is the free convolution of
their push-forwards by the same function.

1.2.2. Rectangular R-transform. The rectangular R-transform with ratio 1 (resp. 0), for a sym-
metric distribution g, is linked to the Voiculescu transform ¢, of p by the relation C\(z) =
Vzeu(1/y/z) (resp. C,(z) = zp,(1/z), where p is the push-forward of y by the function ¢ — ¢?)
(see paragraph 5 of [BV9]J] for the construction of the Voiculescu transform).
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2. LEVY-KINCHINE FORMULA FOR #,-INFINITELY DIVISIBLE DISTRIBUTIONS

m,-infinitely divisible distributions are defined in the same way as *- and B-infinitely divisible
distributions:

Definition 2.1. A symmetric probability measure v is said to be m,-infinitely divisible if for
each n € N*, there exists a symmetric distribution v, such that A" = .

As for *- and &, we have the following characterization of m,-infinite divisibility.

Theorem 2.2. Let v be a symmetric distribution. Then v is m,-infinitely divisible if and only if
there exists a sequence (vyn) of symmetric probability measures such that v\ converges weakly
tov.

Proof. If v is m,-infinitely divisible, it is clear. Assume the existence of a sequence (v,,) such
that vp" converges weakly to v. Consider £k > 1. Let us show that there exists a symmetric

probability measure ¢ such that o™ = v. We have lin% nCy, (y) = 0 uniformly in n, so
<0

?}ii% nCy,. (y) = 0 uniformly in n. So by lemma [, the sequence <1/E$n> is tight. If the

y<0

symmetric distribution o is the limit of one of its subsequences, we have

B,k
. B A . Bynk
o — 1im (yk$n> = lim v, " =v

n—0o0 n—oo g

0

Corollary 2.3. The set of m,-infinitely divisible distributions is closed under weak convergence.

Proof. If a sequence (u,) of m,-infinitely divisible distributions converges weakly to a distribu-
. . BHyn Hyn
tion p, then if for every n, v, = u,, the sequence (vp,*") converges weakly to p. [

To prove the Lévy-Kinchine formula for m,-infinitely divisible distributions, we need the fol-
lowing lemma, which is the analogue of propositions 2.6 and 2.7 of [BPB9Y]. Until the end of the
paper, for f, g functions defined on a domain whose closure contains an element xq, ” f(x) ~ g(x)
in the neighborhood of xg (or as  tends to xg)” will mean that f(x)/g(z) tends to 1 as x tends
to xg.

Lemma 2.4. Let (v,) be a sequence of symmetric probability measures that converges weakly to
do. Consider o € (0,m). Then there exists f > 0 such that on A, g,

Cp (2) = <%G (%) - 1) (14 v(2))

where the functions vy, defined on A, g, are such that

(i) Vn,Vz, v, (2)] <1/2 and lin%vn(z) = 0 uniformly in n,

(i) Vz, lim v,(z) = 0.

Proof. First, note that unless v, = Jp (in which case v, = 0 is suitable), for all z,
1a, <%) — 1 #0, so there is a function v,, on the domain of C,, such that

vz
o (2) = (%G (%) _ 1> (14 va(2). (2.1)
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To prove (i), we will only use the tightness of {v,, ; n € N}. It suffices to show that
CVn (Z)

lin}) 1 1

z—

|arg z—m|<a ﬁGvn <ﬁ) -1

We have, by the paragraph following Proposition 5.1 in [BV93],
1 1

lii% %Gyn <$> = 1 uniformly in n,

|arg z—m|<a

and when a complex number ¢ tends to 1, ¢ — 1 ~ (At? 4+ (1 — \)t — 1)/(XA + 1), so it suffices to
show that

= 1 uniformly in n.

lim M = 1 uniformly in n.
z—0 HL('Z) -1
|arg z—7| <o z
We have
HVn(Z)

o1 B (1 25).

and we know, by proposition [L.1], that

lim

H, (2)

= 1 uniformly in n. (2.2)
|arg z—m|<a
So it suffices to show that
1)Cy
LA 1G,0)

2—0 1-—- =
|arg z—m| <o Hup (2)

We know, by proposition [L.1] and by theorem [I.3, that

— 1 = 0 uniformly in n.

L HL(2) : .
lim —2—~ =1 uniformly in n, (2.3)
z—0 z
|arg z—7| <o
and the equivalent of U(x) in a neighborhood of zero is 375 So, since C,,,(2) = U <H§( ) - 1> ,
vn \R
it suffices to show that
zZ
=z
—1
liH(l) % = 1 uniformly in n.
\argijw\<a - Hy,(2)

Choose o € (a,7). By theorem [[.9, there exists 31 > 0 such that for all n, H, 1 is defined on
Ay 2p,, and

an(Aaﬂl) U Hv_nl(Aaﬂl) - Aa/ﬂﬁl'
We have, for z € A, g,

2 _ zH,, (2) _
e ) Hu(2) )
1-— m Hyn(Z) —Z
5=
= TN fn (88,
Hl/n(z) — 2 J[,H,p ()] ( )

where f, . is the function defined by

H,1(&)H,,(2)
Hy\(2)

n

fn,z(g) = —&.
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But the lemma 2.4 of [BPB9Y] states that

liH(l) (Hy_nl)'(z) = 1 uniformly in n.
|arg ijﬂ|<a/
Hence, using also (B.2) and (2.3) (which stay true if « is replaced by '), we have
i sup{[£.()

|arg z—m|<a

; € €[z,Hy,(2)]} =0 uniformly in n.

SO P
H,I(z) !

lim —"-—~—— =1 uniformly in n.

z PR —

|arg z—m| <o Hup (2)
So we know that the sequence (v,,) of functions satisfying (R.T) satisfies lim v, (2) = 0 uniformly
zZ— 00
in n. Hence we can choose (32 such that Vn,Vz € Ay g,,|vn(2)] < 1/2, and (i) is satisfied.
Let us now prove (ii). First, note that since v, — dy, the sequence (G,, ) converges uniformly

to Gs, : z — 1/z on every compact of the upper half plane (see [A6]]] or section 3.1 of [HPO(]),
so, as in the proof of (i), it suffices to show that

L A+ 1)C, ()

n— o0 Hy, (2) -1
z

=1.

The convergence of v, to §p implies too that (H,, ) converges to Hs, : z — z . So, since

Bl ) Male) (),

2 z H, (z)

it suffices to prove that

lim A+ I)C;n (2)
n—oo 1 — .
Furthermore, by theorem [[.G, there exists 83 < 2 such that the sequence C,, converges uni-
formly to Cs, = 0 on every compact of A, g,. So z/H, 1(z) = (ACy, (2)+1)(Cy, (2)+1) converges
uniformly to 1 on every compact of A, g,. So, since (A +1)U(z) is equivalent to z as z tends to

zero and since Cy,, = U (2/H,, ' (2) — 1), it suffices to show that for all z € A, g,,

z
i F) !
lim ————
n—oo | — —%—

HVn(Z)
As in the proof of (i), let us choose § < [33/2 such that for all n, H,jnl is defined on Ay g,
Hl/n (Aa,ﬁ) U Hu_nl(Aa,ﬁ) - Aa’,Qﬁ, and
- H, N (z)
llm _n * 7

n—00 z

=1.

=1.

= 1 uniformly on every compact of A,/ o3.

By analycity of the H,, 1’5, the last assertion implies that

lim (H,jnl)’(z) = 1 uniformly on every compact of Ay 3.

n—oo

We have, for z € A, g,

2 . zHy, (2)
M, e e

1
. " (6)d
o /[szM(ZH FL(6)de,
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where f,, is still the function defined by

H, 1 (&)H,,(2)

fn(f) = Hy_nl(z) - §

f), tends to zero as n tends to infinity, uniformly on every compact of A, 23, s0

z p—

Hy(2)  ~
1—

_z
Hl’n (Z)
tends to zero when n tends to infinity, and the result is proved. [

In the following, we shall refer to weak convergence for sequences of positive finite measures
on the real line: it is the convergence for which the test functions are the continuous bounded
functions.

Theorem 2.5 (Lévy-Kinchine formula, part 1). Let p be a symmetric probability measure, (vy,)
be a sequence of symmetric probability measures and k, a sequence of integers tending to infinity

such that vy, A converges weakly to . Then there exists a symmetric positive finite measure G
such that

(1) the sequence of positive finite measures (knli%dun(tw converges weakly to G,

(2) the rectangular R-transform of p has an analytic continuation to the complement of the
real nonnegative half line and is given by the formula

2
Culz) = 2 /R %d&‘(t). (2.4)

Moreover, G is symmetric and is the only positive finite measure F' such that

1412
Cu(z) = z/R T dF(t).

Proof.

(1) The sequence (1) converges weakly to dp. Indeed, for every n, C akn = knCy,, and by
theorem [L.6, we have !
(a) gljigbk”c”n (x) = 0 uniformly in n,
z<0

(b) There exists 5 > 0 such that the sequence (k,C,, ) converges pointwise on (—(3,0).
So
(a) gljii%c”" (x) = 0 uniformly in n,
x<0
(b) there exists 5 > 0 such that the sequence (C,,, ) converges pointwise to 0 = Cs, on
(2) The sequence of positive finite measures (kzn%dl/n(t)) is tight. Indeed, for y > 0,

2 1 2 2
/ knt_Qdyn(t) < 2/ ;rt 5k ! s dv(t)
Fipape 1t teR Y-t 1+t

= =2k ((ify)Gy, (ify) = 1).
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We used the symmetry of v, in the second line. Let v,, be as in the previous lemma. For
y > 0 small enough,

2
[ rtpann < -229aC8) <y, ),
YRV L 1+ vp(—y?)

which tends to zero uniformly in n when y tends to zero, by tightness of the sequence

(I/E Ak").

The sequence of positive finite measures <knlfr%dyn(t)> is bounded. Indeed, choose
€ (0,1) is such that —y? is in the domain of the v,’s of the previous lemma and
. 2 —

JLrgokncun(_QZ) = Cu(—y?). Note that for all ¢ € R, we have 1fr—tg <1<y2 so

y72+t2
1+¢2

< 2y~2, hence
12 12
— <y
1+2 -y

So we have, for each n,

12 t2
kp——du,(t) < 2 —2/ kp———du,(t
/teR 1+t2y() = 7 teR y_2+t2y()
= =2 %kn((i/y)Gu, (ify) — 1)
CVn(_yQ)
"1 4 vp(—y?)
—2 2

= —2y_2k

IN

)

which is bounded uniformly in n.
Let us now recall a few facts about the Poisson integral of positive measures on the real
line which integrate 1/(14t2). If M is such a measure, for y < 0 and = € R, let us define

RON@ = [ mam),

Then (z + iy) — P,(M)(z) is harmonic and determines the measure M ([D74], chapter
I1, theorem II).
Moreover, an easy computation shows that for each positive symmetric measure M on

the real line that integrates 1/(1 + t2), the Poisson integral P,(M)(z) is the imaginary
part of [ tQ\[ldM( t) (with z ¢ [0,+00),  + iy = 1/3/z, as it will be until the end of
this proof). Indeed, since M is symmetric,

Vo VEE+ 1) VAE + 1)
t2z—1 M(#) = g t2z—1 dM \/_t\/_—l—l(t—T)dM(t)

o [dM(t) (t—z)+1y
‘/Rt—% ‘/Ru—m) Fp MO

Now let us compute the Poisson integral of the measures k,t2dv,(t). Let o, 3 > 0 and
(vn) be as in the previous lemma, z € A, 3. We have

P, (knt?dvn(t))(z) = s( /]R fgftfdyn(t)>.
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But since v, is symmetric, we have

n\/_t2 (1 + \/_t) tdl/n (t)
/t2z—1d nlt) = hn /(t\/E—l)(t\/_Jrl)d nlt) = kn /t\/E—l’

which is equal, by an easy computation, to

. ANVZ)Gy, (/VZ) 1

n \/E N

So Py (kut*dv,(t))(z) = —S <kn\/g(f”l—%
—Cy(2)/\/z, because ynfn converges weakly to p and lim v,(z) = 0.

n—oo

> , which tends to the imaginary part of

The sequence (kzn e duy(t )), bounded and tight, is relatively compact in the set of

finite positive measures in the real line endowed with the topology of weak convergence
(i.e. the topology defined by bounded continuous functions). If two measures G, H are

the weak limit of subsequences of <kn e dva(l )>, then the measures (1 + t2)dG(¢) and
(1 +t?)dH (t) have the same Poisson integral on /A, 5. Indeed, for z € A, 3,

L4123 knt?
Py(knt*dvn(t))(x) = /R é;:i_i)fz/ 1+tt2

continuous
bounded fct of ¢

tends at the same time to P, ((1+t2)dG(t))(z), to P,((1+t*)dH(t))(z), and to the imag-
inary part of —C,,(z)/y/z. It implies, by harmonicity, that they have the same Poisson

Vn(t)

integral on the lower half plane, which implies H = G. So the sequence (kzn%dun(t))

converges weakly to a measure G, such that the Poisson integral P,((1 + t?)dG(t))(x),
is equal to the imaginary part of —C),(2)/\/z. Thus, the functions

Cu(z)/7 and /W“d(;()

have the same imaginary part. For z € (—o0,0), it follows that
t2+1
C,(z) and z/R T t2ZdG(t)

have the same real part, so, by analycity and since both tend to zero as z goes to zero,
they are equal.

2 +1
(5) If F is another positive finite measure such that C,(2) = z / i dF(t), then

R 1-— t2Z
2 +1 2 +1
z/ LE LG = z/ EE AR
R 1—t°z R 1—t°z
After division by —4/z and extraction of the imaginary part, this gives the equality of
the Poisson integrals of (1 + t2)dG(¢) and of (1 + t2)dF(¢), which implies G = F.
O

The previous theorem implies that for all m,-infinitely divisible distribution u, there exists
a unique positive finite measure G such that C, is given by equation (R4). G is symmetric
(as limit of symmetric measures) and will be called the Lévy measure of p. By injectivity of
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the rectangular R-transform, two different probability measures cannot have the same Lévy
measure.

Theorem 2.6 (Lévy-Kinchine formula, part 2). Every symmetric positive finite measure on the
real line is the Lévy measure of a m,-infinitely divisible distribution.

Before the proof of the theorem, let us state two lemmas. The first one is about the rectangular
R-transform of the symmetric Bernoulli distribution.

Lemma 2.7. There exists a sequence (a),>2 such that the associated power series has a positive
radius of convergence and such that the rectangular R-transform with ratio X of (01 +d-1)/2 is
given by the formula

0(514_571)/2(2’) =z+ Z akzk.
k>2

Proof. By the subsection called ” The case of compactly supported probability measures” of the
section called "The rectangular R-transform” of [B-G1]] applied to p = (81 4+ 6_1)/2, we know
that

Csirs_)y2(2) = (01 +6-1)/2)2 + > ean((61 +6-1)/2)2",

k>2

where the power series has a positive radius of convergence. So it suffices to prove that co((d1 +
§_1)/2) = 1, which follows from the equation ([L.1) of the present paper. [

We will also need a result about the way dilation of probability measures modify the rectan-
gular R-transform. For ¢ > 0, let us denote by D, : x +— cx. For any distribution pu, D.(u) is
the push-forward of y by D, i.e. De(i) : B — p(c™'B).

Lemma 2.8. For all p symmetric probability measure, for all ¢ > 0,

Cp.(u)(2) = Cl.(c?2). (2.5)

Proof. We have Gp.(p) = %G“(%),

2
o tpE =3 (G2)) G = Sae),

2 c? ez 2
ie. HDc(M) = D% o Hﬂ o DCQ,
—1 4 —1
HDC(;L) = D%? oH, oD,
2z
then C z) = U|l——=—-1]),
De()(?) ( H (%) >
that is Cpw(2) = Cu(c®z).

0

Proof of the theorem. Let us denote by M the set of symmetric positive finite measures G
on the real line such that there exists a symmetric distribution p whose rectangular R-transform
is given by equation (2.4). We will show that M is the set of symmetric positive finite measures,
proving that ¢dy and ¢(d, +9—,,) € M for all ¢,u > 0, that M is stable under addition, and that
M is closed under weak convergence. Note that once this result is proved, it will be clear that
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any symmetric probability measure with rectangular R-transform given by equation (R.4) will
be m,-infinitely divisible. Indeed, denoting

we have C(G) = nC(

(1)

142
(@) (,) — STt
C'™(2) z/R T o0 dG(t) (G e M),

3Q

).

For every ¢ > 0, c§y € M. Indeed, by equation (R.5), if C%) = Cy, then for every ¢ > 0,
C(ed) = Cy, with g/ = D_1/2(p), so it suffices to show that there exists a symmetric
distribution whose rectangular R-transform is C'(%). This distribution will appear as the
limit in the rectangular free central limit theorem: the sequence D,,—1/2 ((d1 + 0_1)/2)% ™)
converges weakly to a distribution with rectangular R-transform C(%) (we will see in
the following that it stays true if one replaces (0; +0_1)/2 by any symmetric probability
measure with variance equal to 1). Indeed, let C,, denote the rectangular R-transform
of D, 12 (01 + 6-1)/2)®r"). By theorem [[.§, we have to prove that
(a) lim C,(x) =0 uniformly in n,
xez(vjog,O)
(b) there exists § > 0 such that for all y € (0, ], the sequence (Cy(—y)) converges to
—y.
Note that Cp(2) = nC(51+5_1)/2(z/n) (we used lemma P.§ and the additivity of the
rectangular R-transform (Theorem [[.3)). Hence lemma P.7 allows to conclude.
For all ¢,u > 0, ¢(d, 4+ 6—,) € M. Indeed, we have

14 u? 14 u?) (u?2)(1 + 12 )
Clelbuto) () = 2Cz( +u?)  _e(l+u?) (uP2)(1+17%) OG5 (2,

1—uZz 2u? 1— (u22) v

2
where ¢ = % So, by equation (R.), it suffices to show that for all ¢ > 0, there
exists a distribution whose rectangular R-transform is C(¢(®1+0-1)) Tt is the same to

prove that there exists a distribution whose rectangular R-transform is C (§(014+0-1)) " This
distribution will appear as the limit in the rectangular free Poisson limit theorem: the
sequence vy ", with v, = (1 — %) 0o + 55 (01 +d_1), converges weakly to a distribution

with rectangular R-transform C (§(0140-1))

2_
Indeed, G, (2) = %, so, if (v,) is a sequence of functions on A, g as in the
lemma P.4, we have

Co(z) = (%G <%> - 1) (14 vn(2)) = ﬁu +on(2)),
50 O fin = Un@y - - - 8 U,

n times

= (14 va(2)).

So by the properties of the functions v,, we have both

Cun(2) = nCy, (2)

liH(l) C, (2) = 0 uniformly in n
Z—

|arg z—m|<a

and .
i C(61+6—
Vz € Ao"ﬁ’nlinéo Cp,(2) = T o§(01+ 1))(2)‘
So, by theorem [I.g, we know that there exists a distribution whose rectangular R-

transform is C(2(01+0-1))
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(3) M is stable under addition because C, + C), = Cpa, .

(4) M is closed under weak convergence: let (Gy) be a sequence of M that converges to a
finite measure G. Then clearly, the sequence (C(G")) converges pointwise to C(©). So,
by theorem [L.6, to prove that G € M, it suffices to show that

lin%]C(G")(x) = 0 uniformly in n.
z<0

For each n and z € (0,1), since G, is symmetric, C(¢n)(—22) = — [, f;t;xf dG, (1),

Vit e R,

1+ t222 —

22 4 1222 z(x+1) if 12 <t <172,
1 otherwise.

So

C(Gn)(m)‘ < 2(z +1)Gn(R) + Gy <R — -1/, 1/351/2]) ,

which tends to zero uniformly in n when x tends to 0, by boundedness and tightness of

{G,; n €N}
O

Both previous theorems together allow us to state the following corollary.

Corollary 2.9. A symmetric probability measure p is m,-infinitely divisible if and only if there
exists a sequence (vy,) of symmetric probability measures and a sequence (ky,) of integers tending

to infinity such that the sequence <V,Ef*k") tends to .

3. RECTANGULAR BERCOVICI-PATA BIJECTION

In this section, we will show that the bijective correspondence between classical symmet-
ric infinitely divisible distributions and rectangular free infinitely divisible distributions is a
homeomorphism, and that there exists a correspondence between limit theorems for sums of
independent symmetric random variables and sums of free rectangular random variables.

Let us recall a few facts about symmetric *-infinitely divisible distributions, that can be found
in [GK54] (or [F66], [P97] ... ). A symmetric probability measure p on the real line is *-infinitely
divisible if and only if there exists a finite positive symmetric measure G such that

A 2
V€ e R, /tER e dpu(t) = exp (/tER(cos(tf) — 1)%dG(t)> .

In this case, such a measure G is unique, and we will call it the Lévy measure of i, and a sequence
of symmetric *-infinitely divisible distributions converges weakly if and only if the sequence of
the corresponding Lévy measures converges weakly. Moreover, in this case, the Lévy measure
of the limit will be the limit of the Lévy measures.

We can then define the rectangular Bercovici-Pata bijection with ratio A, denoted by Ay, from
the set of symmetric *-infinitely divisible distributions to the set of m,-infinitely divisible distri-
butions, that maps a *-infinitely divisible distribution to the m,-infinitely divisible distribution
with the same Lévy measure. Let u, v be two x-infinitely divisible distributions with Lévy
measures G, H. Then the Lévy measures of u * v and of Ay(u)sy\A)(v) are both G + H, so we
have

Ax(pxv) = A(p)ss A (V).
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Theorem 3.1. The rectangular Bercovici-Pata bijection with ratio A is a homeomorphism,
which means that a sequence of m,-infinitely divisible distributions converges weakly if and only
if the sequence of the corresponding Lévy measures converges weakly, and in this case, the Lévy
measure of the limit is the limit of the Lévy measures.

Remark 3.2. Note that, for G symmetric positive finite measure, the function C’(G)(z) can also

be written, by symmetry,
t
(@) (z) = / 22 ).
r1—tyz

Proof. Since the rectangular R-transform C, with ratio 1 of a symmetric distribution p is
linked to its Voiculescu transform ¢, by the relation Cy(z) = /z¢p,(1/y/2) (see paragraph 5 of
for the construction of the Voiculescu transform, and use the fact that for symmetric
distributions, the Lévy measure is symmetric to obtain C,(z) = /z¢.(1/\/z)), the previous
remark and theorem 5.10 of [BV93] shows that the map A is the restriction of the “usual”
Bercovici-Pata bijection to the set of symmetric distributions. It has been proved in ||B 2
that the Bercovici-Pata bijection is a homeomorphism. So the theorem is proved in the case
where A = 1. But for every x-infinitely divisible distribution p, the formula of the rectangular
R-transform with ratio A of Ay(p) does not depend on A, so theorem [[.6 allows us to claim that

all Ay’s are homeomorphisms. [

The next theorem furthers the analogy between the free rectangular convolution and the
classical convolution of symmetric measures. As recalled in Theorem 3.3 of [BPB9Y], it is proved
in [GK54] that when (v,) is a sequence of symmetric probability measures on the real line and

(ky) is a sequence of integers tending to infinity, the sequence (V;;k") converges weakly to a *-

infinitely divisible distribution if and only if the sequence %—idu“t)) of positive finite measures

converges weakly to its Lévy measure. By the theorem P.5, we know that it will be the case if
the sequence Un A converges weakly to the image of the *-infinitely divisible distribution by

the rectangular Bercovici-Pata bijection. The following theorem states the converse implication.
So we have, for all #-infinitely divisible distributions u,

(V:Lk") converges to u <= <Vskkn) converges to Ax(u) (3.1)

Theorem 3.3. Let (v,) be a sequence of symmetric probability measures on the real line and

(k) be a sequence of integers tending to infinity. The sequence (V;;k”) converges weakly to an *-

infinitely divisible distribution if and only if the sequence (l/s)k”> converges weakly to its image

by the rectangular Bercovici-Pata bijection with ratio .

Proof. By what precedes, it suffices to prove that if the sequence (f_’;—izdyn(t)) of positive

Hin .
Un, converges

finite measures converges weakly to a finite measure G, then the sequence (
weakly to the B,-infinitely divisible distribution with Lévy measure G. Assume the sequence

<fj;—iidun(t)> of positive finite measures to converge weakly to a finite measure G.

(1) The sequence (v,,) converges weakly to dg:
Indeed, for all € > 0, as the function t — % is increasing on R™, we have

c 1+¢e? t2
i ([=2,e%) < = /R v,
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14+¢2
(2) We have pointwise convergence of the rectangular R-transforms:
Let o, 3 and (v,) be as in the lemma P.4. On A, g, we have

C 00 (2) = ki (2) = b <%G (%) _ 1> (14 va(2)), (3.2)

but we have seen in the proof of theorem P.J that

1 1 241 kut?
b (26 (22) 1) =+ o )
<\/E Vz R 11—tz 1+ ®)

continuous
bounded fct of ¢

which tends to zero as n tends to infinity, because the sequence < knt? dl/n(t)> is bounded.

so, by pointwise convergence of the sequence (v, ) to zero, the rectangular R-transform

of V,EfAk” converges pointwise to z — z [p lt:rglz dG(t) on the set A, g.
(3) We have lir%Cyaa vien (—y?) = 0 uniformly in n:
o
By equation (B.2) and (i) of lemma R.4, it suffices to prove that
lir%kn((i/y)Gyn (ify) —1) =0 uniformly in n,
>0
that is, since v, is symmetric,
; / 2 + 22 k2 y
R 1+t2y2 1+e2"

L (t) =0 uniformly in n.
>0

2 2,2 .. .
When y < 1, t — yljtéy% is <1 and is increasing on [0, 00), so we have, for every T' > 0,

2 t2 2 k t2 k t2 2 T2 2 L t2
/ s 2@/2 “—duy(t) < / ——dv,(t) + y 2@/2 / ~—duy(t).
Rl"‘ty 1+t [,T’T]cl‘Ft 1+Ty ]R1+t

Now fix € > 0, choose T" > 0 such that for all n, f[—T 7] f_’;—gdun(t) < e. For y small

Y2 + T2y? L 42
enough, TW s%p/R #dyn(t) is less than e, which closes the proof.
O

The following corollary could have been proved with the equation (R.F), but the proof we give
is shorter and does not use any computations.

Corollary 3.4. The rectangular Bercovici-Pata bijection commutes with the dilations D., ¢ > 0.

Proof. Let p be a x-infinitely divisible distribution. Let, for each n > 1, v, be a symmetric
distribution such that ;" = u. We have

AxoDulp) = Ao De (v
Ay (De(vn)™)
= lim D.(v,)" ™.
n—oo
But from equation (B.§) and additivity of the rectangular R-transform, we know that

Vn > 1, De(vy)™" = D, (ﬁw) ,
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80, by continuity of D.,
Ay o D.(u) = D, ( lim ysw)

which is D, o Ay(u) by equivalence (B.1). O

Let us define the m, -stable distributions to be the symmetric distributions whose orbit under
the action of the group of the dilations is stable under m,. The previous corollary allows us to
give the following one.

Corollary 3.5. The rectangular Bercovici-Pata bijection exchanges symmetric x-stable and m, -
stable distributions. Moreover, the index of any *-stable distribution p (i.e. the unique o € (0, 2]
such that for alln > 1, p*"* = D 1 (1)) is preserved, i.e. one has Ay(pu)Er" = D 1 (Ax(p)).
The theorem has another surprising consequence, which concerns classical probability
theory. It mights already be known by specialists of limit theorems in classical probability
theory, but we since it can surprisingly be deduced from our results on Bercovici-Pata bijections,
we state it and prove it here. In order to state it, we have to go further in the description of
divisible distributions with respect to m and *: we have to give the Lévy-Kinchine formulas
for non symmetric infinitely divisible distributions. These distributions have been classified in
[BV93] and [[GK54]: a probability measure on the real line p is infinitely divisible with respect
to ® (resp. x) if and only if there exists a real number v and a positive finite measure on
the real line o such that ¢,(2) = v + [; £2tdo(t) (resp. the Fourier transform is f(t) =

z—1

exp [mt + [l —1— métfl)gﬁi‘glda(x)} ). Moreover, in this case, such a pair (y,0) is unique,

and we denote p by vg? (resp. v;’?). Thus, one can define a bijection A, called the Bercovici-
Pata bijection, from the set of x-infinitely divisible distributions to the set of B-infinitely divisible
distributions by
A:v)% = 7.

It is proved in [BPB99 that for all sequence (i) of probability measures and for all sequence
(k) of integers tending to 400, the sequence p**» tends weakly to a probability measure p
if and only if the sequence p®*" tends weakly to A(u). By section [[.3, the infinitely divisible
distributions with respect to m; are the symmetric infinitely divisible distributions with respect
to m and the rectangular Bercovici-Pata bijection with ratio 1 is the restriction of the Bercovici-

Pata bijection to the set of symmetric #-infinitely divisible distributions.

Corollary 3.6. Let (v,) be a sequence of symmetric probability measures on the real line and
(kn) be a sequence of integers tending to infinity. Let, for all n, p, be the push-forward of v,
by the function t — t>. Then the sequence (l/;klk") converges weakly to a probability measure if
and only if the sequence (p;jk") converges weakly to a probability measure. Moreover, this case,
if one denotes the Lévy measure of the limit of (V;k") by G (as the limit of such a sequence, the
limit probability measure has actually got to be symmetric and x-infinitely divisible), then the
limit of (piFn) is v, with

14t 24+t
= —th’ :—dFt,
" /teR1+t4 (#), =g 7

where F is the push-forward, by t — t2, of G.

Proof. Let us first prove the equivalence. Recall that, as explained in section [[.3, for all n, the
push-forward, by the function ¢t — ¢2, of 0% is pF». Hence for any symmetric probability

n
measure (, if

l/*kn

n W, L. V;I;‘Okn — AO(:U’)’

n—oo n—~0o0
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then

)

P — Ag(p)?

n—oo

where Ag(1)? denotes the push-forward, by the function ¢ — ¢2, of Ag(u). Hence
i — AT (Ao (n)?).

Reciprocally, if there is a probability measure p on [0 4 co) such that

sk

P — P
n—oo

then
Bk

Pn — A(p),

n—0o0

i.e. vPokn converges weakly to the symmetric probability measure v whose push-forward by the
square function is A(p), which implies that v**» converges weakly to a symmetric probability
measure.

To prove the last part of the corollary, recall the fact from [[GK54], which is also recalled in
[BPB99], that for all sequence (7,,) of probability measures on the real line, for all sequence (,,)
of integers tending to +oo, for all real number a and all positive measure finite H on the real
line, we have the equivalence

2
Sl () — a, and 22 dn, (1) — H,
n—oo

*kn
T n—c:o V <:> teR 1+ 2
where he convergences of measures are with respect to the weak topology, i.e. against all
continuous bounded functions (note that this equivalence could have been a way to prove the
result without reference to the Bercovici-Pata bijections). Suppose that (V;k") converges weakly
to a probability measure. This measure has to be symmetric and *-infinitely divisible. Let us
denote its Lévy measure by G. Then

Ent Ent? 1+1t2 k,t? 1+t
[ o= [ Eane - [ FEann — [ o,
er 1 +1 ter 1 +1 ter 1 +12 141 n—0o0 Jieg 1 +1

and for all continuous bounded function f,

knt? o Kt t2 4+t kot
(1) = t v (t) = t
[ IO = | SO dnm = | ) T T gdn),
which tends, when n goes to inﬁnity, to
4+t t+t?
G = [ g nar).
teR + ¢ teR

This concludes the proof. [

4. EXAMPLES

In this section, we give examples of symmetric *-infinitely divisible distributions whose images
by the rectangular Bercovici-Pata bijections we are able to give. Unfortunately, there are as few
examples as for the ”classical” Bercovici-Pata bijection. But in the section [f], we shall give some
matricial models for all m,-infinitely divisible distributions.
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4.1. Rectangular Gaussian distribution and Marchenko-Pastur distribution. In this
section, we will identify the rectangular Gaussian distribution v, that is the image, by the
rectangular Bercovici-Pata bijection, of the Gaussian distribution with mean zero and variance
one. The corresponding Lévy measure is dg, so the rectangular R-transform is z. We will show
that unless A = 0, in which case v = (6_; + 01)/2, v is the symmetric distribution whose push
forward by the function  — 22 has the density

[4X = (z — 1 = \)?]
2T AT

where y stands for the characteristic function of the interval [(1—AY?)2, (14+A/2)2], which means
that for all n > 1, the 2n-th moment of v is 1/A times the n-th moment of the Marchenko-Pastur
distribution with expectation A (the Marchenko-Pastur distributions are presented in section
1.3.9).

Recall that the sequence (c2p,(t))n>1 of the free cumulants with ratio A of a symmetric proba-
bility measure p with moments of any order, defined in the subsection called ” The case of com-
pactly supported probability measures” of the section called ” The rectangular R-transform” of
B-G1]], are linked to the sequence (m,(1))n>0 of its moments by the relation (see the proposition

3.5 of [B-G1|)):

1/2

x(z),

Vn>1, mon(p)= Y A evi(w), (4.1)
TeNC’(2n) Ver
where NC’(2n) is the set of noncrossing partitions of {1,...,2n} in which all blocks have even
cardinality, and where e(7) denotes the number of blocks of 7 with even minimum.

The following lemma will be useful to study distributions coming from rectangular free prob-
ability theory. A function f defined on a conjugation-stable subset of C is said to be commuting
with the conjugation (abbreviated by c.w.c.) if f(Z) = f(z). Note that the function z — z'/2 is
c.w.c., whereas z — 4/ is not.

Lemma 4.1. If the rectangular R-transform of a symmetric probability measure p extends to
an analytic c.w.c. function in a neighborhood B(0,7) of zero in the complex plane and tends to
zero at zero, then the probability measure has compact support, and the expansion of Cy(z) for

small z is given by the formula
+o00

Cul2) = 3 eon)2™. (4.2)

n=1

Proof. Let us define T'(z) = (Az + 1)(z + 1). Note that U is the inverse of 7' — 1. Since the
extension of C), tends to zero at zero, z/H,; 1(2) extends to a neighborhood of zero such that we

have, in this neighborhood,
z

H'(2)
and this function tends to 1 at zero. Thus H;l(z) is one to one in a neighborhood of zero, and
H,, extends to an analytic c.w.c. function in a neighborhood of zero such that

lim —H“ (2)

z—0 ¥4

So the function G, (1/y/2)/\/%, which is equal to

A= 1+ [(1= N2+ 4\(Hy(2)/2)]
22

=T (Cu(2)),

= 1.
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if A > 0 and to H,(2) if A = 0, extends to an analytic c.w.c. function in a neighborhood of zero.
But since p is symmetric, for all z in the complement of the real nonnegative half line,

G,(1/\/z 1 du(t 1 1 1 1 du(t) 1
M(\//Ef):ﬁ J(_)fzx/i [i e d”(t):Z/ lli(tl:ZG”(l/Z)’
R Vz R Vz R 7
where p is the push forward of p by the function ¢ — t?>. Hence the Cauchy transform of p

extends to an analytic c.w.c. function in a neighborhood of infinity. Thus, by the Stieltjes
inversion formula, p is compactly supported, which implies that p has compact support too.

1
W—Ft

4 has now been proved to be compactly supported. Then the second part of the lemma,
equation ([.g), has been established in the subsection called ” The case of compactly supported
probability measures” of the section called ”The rectangular R-transform” of [B-G1]. O

So v has compact support, and for all n > 1, 2, (v) = 01,.
Let us first treat the case where A = 0. By ([L.1)), all even moment of v are 1, sov = (6_1+61)/2.
Assume A > 0. By ([L.1)), the moments of v are given by

o(m)
Vn > 1, mo,(v) = Z)\e(”) = A"Z (%) ,

where the sums are taken over noncrossing pairings of {1,...,2n} (a noncrossing pairing is a
noncrossing partition where all classes have cardinality two, recall also that for a partition ,
e(m) and o(m) are respectively the number of classes of = with even and odd minimum).

Lemma 4.2. Let [ ={z1 < - <zp} and J ={y1 < 21 <y2 < 290 < -+ < yp < 2z} be totally
ordered sets. There is a bijection m — 7 from the set of noncrossing partitions of I to the set of
noncrossing pairings of J such that for all 7,

|| = o(7).

Proof. Let us first construct the map m — 7 by induction on n, using the following well known
result : a partition 7 of a finite totally ordered set is noncrossing if and only if one of its classes
V is an interval and m\{V'} is noncrossing (page 3 of [§99]). Consider a noncrossing partition 7
of I. If m has only one class, we define 7 to be

{{y17 ZN}7 {217 y2}7 {227 y3}7 R {Zn—layn}}'

In the other case, a strict class V of 7 is an interval, V' = {zy, xf4+1,...,2;}. Then we define 7
to be

¢ U{{yk: 2} {2 o1 b Lz vnr2ds - {z- wid )
where & is the image (defined by the induction hypothesis) of the partition
o=m—{V}
of I —V (it is easy to see that the result does not depend on the choice of the interval V).
The relation |7| = o(i) follows from the construction of 7 — 7.

Let us now prove, by induction on n, that m — 7 is a bijection. If n = 1, the result is obvious.
Suppose the result to be proved to the ranks 1,...,n—1, and consider a noncrossing pairing 7 of
J. Let us prove that there exists exactly one noncrossing partition 7 of I such that © = 7. Con-
sider [ € [n] minimal such that there exists k < [ such that {yx, 2} is a class of 7 (such an [ exists
because it is the case of n). Then it is easy to see that {zx, yg+1}, {21, Ykt2},- .-, {211, w1} are
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classes of T, and any partition 7 of I such that # = 7 must satisfy V := {zy, vx41,..., 21} € 7,
and

=1~ {{yr 2t} {26 Yk s {241 U2}y - {z-1, ui b )
where 0 = m— {V'} (partition of I —V'). Thus, by the induction hypothesis, there exists exactly
one noncrossing partition « of I such that 7+ =7. 0O

So the moments of v are given by

Vn > 1, moy(v) = A" Z (;)Iw.

7TENC(n)

But for all n > 1, 3° o) (1/)\)‘7T| is the n-th moment of a distribution with all free cumulants

being equal to 1/A, i.e. of the Marchenko-Pastur distribution with parameter 1/\ (see section
13.9). Thus the push-forward of v by ¢t — t2 is the push-forward of the Marchenko-Pastur
distribution with parameter 1/\ by the map ¢t — At, and has density

[4)\—(x—1—)\)2]1/2

2T A\x

where y stands for the characteristic function of the interval [(1 — A/2)2, (1 + A/?)2]. Hence we
have proved the following result:

x(),

Theorem 4.3. The rectangular Gaussian distribution v with ratio A has cumulants given by
Vn > 1, con (V) = 0.
When A\ =0, v = (61 +d-1)/2. When X\ > 0, v has density
[N — (@2 —1-22]"
27\ |z x(@).
Its support is [—1 — A2, —1 + AV2] U [1 — AV2, 1 + A2,

Note that when A\ = 1, it is the well-known semi-circle law with radius two.

Remark 4.4 (Moments of the Marchenko-Pastur distribution). Note that the previous lemma,
used with the fact that the free cumulants of the Marchenko-Pastur distribution with parameter a
are all equal to a (see [APOA] p. 65), gives us a formula for the n-th moment of the Marchenko-
Pastur distribution with parameter a: it is equal to ) a®™) | where the sum is taken over all
noncrossing pairings of [2n|. This formula, proved using a random matriz approach, appeared
already in an unpublished paper of Ferenc Oravecz and Dénes Petz.

Remark 4.5 (Growth of the support in the related semigroup). Let us define, for a fized

A € [0,1] and for all ¢ > 0, N, to be the law of C%X, when X is a random variable distributed
according v (i.e. N is the image of the symmetric Gaussian law with variance ¢ by the rectan-
gular Bercovici-Pata bijection). Then ({N.; ¢ > 0},m,) is an additive semigroup, whereas the

size of the support of N, is not linear in ¢ but in c2. This kind of phenomenon had already been
observed in free probability.

4.2. Rectangular Cauchy distributions. This section could be called missed appointment
for the Cauchy distribution. The Cauchy type, {C; = %mé(ftg ;t > 0}, is well known to be
invariant under many transformations. For example, this set is the set of symmetric *- and

s-stable distributions with index 1 (C; has Lévy measure ¢C1). But we are going to compute the
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set of m,-stable distributions with index 1, and it will appear that unless A = 1, it is not the
Cauchy type.

So let us fix A € [0,1], and let us denote the image A)(C;) of the symmetric Cauchy law C;
with index t by the Bercovici-Pata bijection with ratio A by v;. We know that the rectangular
R-transform with ratio A of v; admits an analytic extension to C\R™ given by the formula it\/z.
So, by the remark [L.4, H, ! admits an analytic extension to C\(R* U {—t%, ﬁ}) given by the
formula

1O = T )~ BaE D)

where T'(X) = (AX + 1)(X +1).

In order to compute H,,(x), we have to invert the previous formula and to remember that it
is a bijection form a neighborhood of 0 in C\R™ to a neighborhood of zero in C\R™, equivalent
to  in the neighborhood of zero. So let us fix x € C\R™, and denote H,,(x) by 2. If z is closed
enough from zero, we have x = H,,(z), hence

z(Nity/z + 1)(ity/z+1) =
Azt + Dz +iteA+ 1)z +2 = 0,

Note that (itz(A +1))? — dz(—(\zt? + 1)) = 4z — t222(\ — 1)2, so

ite(A+ 1) & 4z — 222(\ — 1)2
2\xt? + 2 '

N

But when z goes to zero in C\R™,

1) + Az — 222\ — 1)2
i (1) ~ 2VE bOztﬂv()\—i— ) 2)\\£t§+2tx()\ ) -
hence
S it VIZ =P 1P ita(A +1) +Va(A - Pa(A - 1)2)2
2zt + 2 2\xt? + 2 ’
hence

I B itr(A+ 1) + V(4 — 2z(A — 1)2)2 2_ v [ityzOA+1) + (4 — z(\ — 1)2)2 2
m(x) - N\t +9 - Z \ot2 1

But by the remark [[.4,

1 A= 1+4[A =12+ 4\H,, () /2]
N Vt(T T )= 2\ '

So we compute

(A= 1)2+4XH,,(z)/z
= (A= 12+ e (itVa(A + 1) + [4 = 22(A - 1)2)?
= (A= 12 + ey 2O+ 12 + 4= 220 = 1)2 4 2it/T(A + 14 — 22(A - 1))}
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Hence
(Azt? + 1)2[(A — 1)? + 4\H,, (7) /]
= (A= 1)2 + 2222(A — 1)2 4+ 2224\ — 1)2 — 202t2(A2 + 1) + 4\ + 2itA/z(A + 1[4 — 2z() — 1)2]2
= (A= 12440+ 2222[(A — 1)2 — A2 — 1] + A2224(\ — 1)2 + 2itA/Z(A + 1[4 — 22 (A — 1)2]2
= (A +1)2 — 4X2282 + N22264 (X — 1)2 + 2itA/z(A + 1[4 — 2z(\ — 1)2]2
= {(A+ 1) +itAV/z[4 — 2z(A — 1)2]3)2

Hence for all z € C\R™ closed enough to zero,

GulGe) = LHA- 14 [0 1P 4 N @)/alE)

1
A+ D FitAvz[4—t22(A-1)2] 2
Azt2+1

=

VEA=1)(Azt? + 1) + X+ 1 +itAy/z[4 — 2z (X — 1)?]

2) Axt? +1
_yp ]2 O Dt 4 it - Pa() — 1)?/4)
-V 2(A\zt? + 1) .

So for all z € C~ faraway enough from zero (in a non tangential way), for z € C\R™ such that

z=1/\/z,ie xv=1/22
Gonls) = G (L) :\/E{Q—i—()\—l)xt +2ity/z[l — oA — 1) /4]5}

N 2(A\xt? + 1)
1
11 2 2it t2(A—1)2]2
SR S & W W D L P 2
222—52+2{ FAE T [ 427 }
1
z 2 it t2(A—1)2]2
== 14+ M-+ |12
)\t2+22{ *+ )2z2+z [ 422 ]
Note that for p € R, for all z € C\{0},
1_1&2()\—1)2 RN t2(1 — \)? PR t(1—N) e [_t(l—)\) t(l—)\)].
422 41+ p) 2(1 + p)% 2 72
1
So the function z +— [1 — %} * extends analytically to C\[—@, @] with the same

formula. So, by analycity, we have

~ 2 + 22 222 2z 422

Ve e C\{iARt},  Gu(2) = ———— {1 + (A — 1)i L [1 - M} 5} . (43)

Remark 4.6. Note that G, (z) has to be analytic at —i\2L. If the formula we give had no

analytic extension at —i)\%t, we would have made a mistake. Hopefully, one can check that the

pole of z — /\t++z2 at —iA3t is simple, and that the function
1
2 it 2N —1)2]2
1+ A1)+ — 1= 2
2 14 )222+z[ 422

has a zero at —i)\%t.
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In order to compute v, we are going to use the following lemma.

Lemma 4.7. Let v be probability measure on the real line such that the restriction of G, to C~
extends analytically to an open set containing C~ U I, where I is an open interval. Then the
restriction of p to I admits an analytic density: x € I — %%Gy(az).

Proof. Let us define, for ¢ > 0,

SGy(x —it) ifxel,
in the other case.

O 3=

pt:xeRH{

Then for all t > 0, p; is well known to be the restriction, to I, of the density of v *C;. Moreover,
v*C; converges weakly (i.e. against any continuous bounded function) to v as ¢ tends to zero. So
it suffices to prove that for all f compactly supported continuous function on I, [ f(z)pi(x)dx
tends to [ f(z)po(x)dz when t goes to zero, which is an easy application of the dominated
convergence theorem. [J

This lemma allows us to claim that the restriction of v to R\[—@, @] has an analytic

density given by the function

20y _ 1\273 B B
T ﬂ(wl = [1 ot (A4x21) ] (e R\[—t(l . A 11 2 A)]). 4)

In order to prove that vy is carried by R\[—@, @]

prove that there is no mass out of R\[—@, @], i.e. that I =1, with

and has this density, it suffices to

1
2 -1 27132
I::/ 2t 2[—t()\2):|dx.
R\[- 1022 0=y (L2 + 22) dx

We have

1
2t [T 1 2N —1)272 q
—_ —_— s x
™ Juaon M2 + 22

1
I A ) t2(A —1)2 5d 1
o7 H1=3) M2 + 22 422 x

2 gt )

—a) A2
s t(l2 A) = +1

1
ot [rnm 1 2O 1D%?]?
= — - u
T Jo At2u? 41

2t 2 /ﬁ 1 [1 t2(>\—1)2u2rd<(1—A)tu>
T or (1=t 1Nt ) 2 - 4 2
( )t Jo 4\ (( 2)t ) +1

FEYE

41 -2 [1 1 5r 1
= 1-0%%d
E /04)\1)2—1—(1—)\)2[ v]? dv
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v

Let us define y = . When v goes from 0 to 1, y goes increasingly from 0 to +oco. One

(1-02)2
,and v :1+2,hence
1 dy
11— dv=[1-0* dy = —2
[1—v*]?dv=[1-v]"dy 1+ y2)2
1 1 B 1+y° 3 1+
4 v 4+ (1= N)?2 4,\% F(1-N2 AP -N)2(04y?)  OFN+(1 -0

So

dy
I = -
21 )/R 1+ ) y+(1—)\)27r(1+y2)
20-% /
= 9(y
A2 S w1 +y?)
where g(y) = ygﬁ, with a = ;i Note that

) = 1 11 1
I ~ (y+ia)(y —ia) 2ia \y—ia y-+ia)’

so the well known formula of the Cauchy transform of the Cauchy distribution with parameter

1 gives us
C21-N) 1 1 1 C21-N) 1 2i
_(1+A)2'%<—¢—m_z‘+m>_(1+A)2'%'a+1
20—=X) 1+AX 1 2
T (1+A2 1—=X a+1  (I4+Na+(1+N)
So we have proved the following result :

Proposition 4.8. For all A € [0,1], for allt > 0, the image of the symmetric Cauchy law with
parameter t by the Bercovici-Pata bijection with ratio X\ is

S,k

Ttz ooy (7)o e

Its support is R\ < 1 ’\), (1;”)

The Cauchy type is well known to be invariant by the push-forward by the function ¢ — 1/t.
In the following corollary, we are going to see that again, unless A = 1, things append differently
for m,-stable laws with index 1.

Corollary 4.9 (Push-forward by the function z — 1/z). - For \ = 1, the push-forward,
by the function x — 1/x, of the measure presented in the proposition [[.§ is the symmetric
Cauchy law with parameter 1/t.

- For A € [0,1), it is the measure carried by [—ﬁ, ﬁ} with density
1
1 222\ —1)%] 2 2 2
1-— — . 4.5
me(At%M—l)[ 1 ] (me[ t(l—)\)’t(l—)\)}) (45)

(a) When A =0, it is equal to
1
t 4 ok 2 2
Z sz 4
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hence it is the symmetric semi-circle law with radius 2/t and variance 1/t2.
(b) When X € (0,1), it is equal to

2 \? 2 2 2
(t(l—)\)> —5”2] (e [_t(l—)\)’t(l—)\) ) @D

This density is the one of a symmetric semi-circle law with radius ﬁ and variance

1-X 1
— I 3
QWt)\W—i-.%'

#(1%)\)2 times the density of a Cauchy law with parameter = times T

N S
tAZ (1=M\)£2A3

Proof. Let p be the density of a probability on a Borel set I. Then for all bounded Borel
function f,

Jr(EJoone= 1 () e (1) o

where J = {1/x; x € I}. Hence the push-forward of p(x)dz by x — 1/z is carrled by J and has
density 214¥) / Y This proves the (well known) result for A = 1, and ([£§). ([£6) and ([7]) follow

easily. To recognize the products of semi-circle and Cauchy densities, just remember that for all
r > 0, the semi-circle law with radius r has variance 72/4 and density

2 12 9%

€ |-rrl——|r"—a"|?

~rrl o 2 2 =2,

1 _cdz
T x24c2” O

and that the Cauchy law with parameter ¢ > 0 is C. =

Question. Inspired by what happens in the cases A = 0 and A = 1, we ask the following question,
the answer of which could have spared us the long previous calculus: is there, for each A in [0, 1],
a functional f) from the set of symmetric probability measures on R into the set of probability
measures on R such that for all p, v symmetric probability measures, pm,v is the only symmetric
probability measure satisfying

Ia(pmav) = fa(pafa(v) 7
Note that in the case A = 1, the functional fy(u) = p works, and in the case A = 0, the functional
which maps a measure to its push-forward by the square function works.

4.3. Rectangular analogues of symmetrized Poisson distributions.

4.3.1. The general case A € [0,1]. Let us define the symmetric Poisson distribution with param-
eter ¢ > 0 to be the *-infinitely divisible distribution with Lévy measure §(01 +6_1). It can also
be seen as the law of X —Y, where X, Y are independent random Varlables with (unsymmetric)
Poisson law with parameter ¢/2, or as the weak limit of

((1 - —) 5o + —(5,1 + 51))

The rectangular R-transform of its image P, by the rectangular Bercovici-Pata bijection with
ratio A is

*n

cz
1—2

Hence )
1
HRle) = i = gt ,
‘ T(Cp.(2) [(Ac=1)z+1][(c=1)z+1]
whose inversion would be very heavy because of a third degree equation. So we know the
rectangular R-transform of this law, but we don’t give the law (except when A = 0, see below).
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However, we know that for all ¢, > 0, Py Pv = P.,, and in the section [, we shall give a
nice matricial model for this distributions.

4.3.2. The particular case A = 0. Let us recall the definition, for ¢ > 0, of the Marchenko-Pastur
law with parameter ¢, also called free Poisson law with parameter c. It is the probability measure
on [0, +00)

1
M W)@(:ﬂ)dx ife>1,
c = 1
(1 —2¢)dp + W)@(:ﬂ)dx ifo<e<1,

where y. is the characteristic function of [(1 — 05)2, (14 c%)Q]. It is well known (see [HPO(])
that its Voiculescu transform is cz/(z — 1).

Let us consider the symmetric law whose push-forward by ¢t — ¢2 is M,. By section [.9,
its rectangular R-transform with ratio 0 is given b the formula cz/(1 — z). Hence for A = 0,
the distribution P. introduced in the previous section is this distribution, hence (still for
A=0),

1
b ch(ﬁ)dm ifc>1,
= 1
(1 _ 0)60 + WXC(SEQ)(L’C ifo<e< 1.

Remark 4.10 (Growth of the support in the semigroup). Note that we observe the same kind
of phenomenon as in the remark [[.4: in the additive semigroup ({P.; ¢ > 0},8,}), the size of

the support of P. is not linear in ¢, but in cs.

5. A MATRICIAL MODEL FOR THE RECTANGULAR BERCOVICI-PATA BIJECTION

In the previous sections, the proofs rely on integral transforms and complex analysis. We will
construct, in this subsection, a matricial model for the m,-infinitely divisible laws and present
in a maybe more palpable way the Bercovici-Pata bijection with ratio A.

In this section, d,d’ will represent dimensions of rectangular matrices, because n will be
used to another role. For any distribution P and any function f on a set of matrices, Ep(f(M))
denotes [ f(M)dP(M). Let us recall that the singular law of a matrix M designates the uniform

distribution on the spectrum of |M| := (MM *)% Let us define the symmetrization i of a
distribution g on the real line: it is the distribution which maps a Borel set B to (u(B) +
p(—B))/2. The symmetrization of the singular law of a matrix M will be denoted by i)

We are going to construct, in the same way as in [|B 4] and in [C-D04], for each d,d’ > 1,
for each symmetric *-infinitely divisible distribution u, an infinitely divisible distribution ]P’Z &
on the set of dxd’ complex matrices such that for all p,v, P, * Py = PY*, and such that
the symmetrization of the singular law of M (with M random matrix distributed according to
IP’Z o) goes from p to its image by the rectangular Bercovici-Pata bijection with ratio A when

d
’W—>)\

d,d — oo

Let us introduce the heuristic argument that led us to choose the model we will present.
Consider a symmetric *-infinitely divisible distribution p, and two sequences (v;,) (symmetric
probability measures), (k,) (integers tending to infinity) such that v**» tends weakly to pu.

Define, for all 1 < d < d’ and each n > 1, Q)" to be the law of the dx d' random matrix

U {an‘sﬂ 1<i<d 4
1<<d’
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where U (resp. V) is a uniform dxd (resp. d'xd’) unitary random matrix, X, 1,..., X, 4 are
distributed according to v,, and U,V, X, 1 ... are independent.

Then if one fixes n and lets d,d’ go to infinity in such a way that % — A, the symmetrization
of the singular law of M (vy,) + -+ + My, (v,) (with My (vp), ..., My, (v,) independent and

n

distributed according to Q") goes to U

*kn
Moreover, if one fixes d,d" and lets n go to infinity, the distribution <@an'> of Mi(vy) +

-+ My, (vn) converges weakly to a distribution P ,, on the set of dxd’ matrices, whose Fourier
transform is given by the following formula: for any dxd matrix A

Epg,d’ (exp (i (Tr A*M))) = exp (E (dx ¥, (R (< u, Av >)))) (5.1)

where 1, is the Lévy exponent of i, i.e. the unique continuous function f on R such that f(0) =0
and the Fourier transform of p is expof, < .,. > is the canonical hermitian product of C%, and
u=(ug,...,uq), v=(v1,...,vq) are independent random vectors, uniformly distributed on the
unit sphere of respectively C%, C¥. The proof of this weak convergence, analogous to the one
of theorem 3.1 of [B-G04]}, uses the polar decomposition of dxd matrices and the bi-unitarily
invariance of the distributions ngd, Note that for all u, v, PH da ¥ Py ha = = PH* . d,, and that when

p=N(0,1), Py ; is the distribution of a matrix [M; ;] with (?RMW, \st) 1<i<d 1i.d. random
1<j<d’
variables N (0, o )-distributed.

So the convergence of the symmetrization of the singular law of a P/ ,, -random matrix is
the expression of the commutativity of the following diagram:

n—00 "
d,d" go to oo d,d’ go to co
d/d ~\ d/d ~\
symmetrized n—00 symmetrized
singular law: ————  singular law:
yExEn Ax(p)

To prove this result, we need a preliminary result about cumulants of m,-infinitely divisible
laws with compactly supported Lévy measure. First, note that by lemma [i.1), such laws are
compactly supported. Recall that free cumulants with ratio A have been defined in the beginning
of section [i.] by ({.1)). For v probability measure v whose moments of all orders are defined, let
us denote by ¢ (v) (n > 1) its classical cumulants. Recall that classical cumulants linearize the
classical convolution and are linked to the moments by the formula

VE>1,mw)= > ] v (5.2)
wePart(k) Ver

Theorem 5.1. Let u be a symmetric x-infinitely divisible distribution with compactly supported
Lévy measure, and let, for each integer n, p, be a probability measure such that ;" = u. Then
for each k > 1, the sequence (nxmay(un))n tends to the 2k-th classical cumulant ¢, (1) of p,
which is equal to cop(Ax(1)).

Proof. By (f.2), for all n, one has
nxmar(p) =n > [ ffvn) = > b len(u) = e (n) + o(1).

rEPart(2k) Ver ~——~—" mePart(2k)
n- lc‘v‘(l")
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Let us denote v, = pE\ ™. By the line above, for all k, mor(u,) = O(n~1), so, by an easy
induction on k based on equation (fI]), one gets cor(pn) = O(n™1). Hence car(vy) = O(1), and
mok(vn) = O(1). Moreover, by the equivalence (B.1)), the sequence (yn) converges weakly to
Ax(p). So the moments of v, tend to the moments of Ay(u) (cf [B63]). But thanks to ([]),

nxmor(n) = n Y )\e(”)H C\Vl(:un)

mENC'(2k) ver n=lep(vn)

1-
S VRTINS | YR
TENC’(2k) Ver

It has already been proved just above that the left hand term of the previous equation tends to
3. (1), whereas the right hand term tends to

Z )\e(w)fs‘ g IT cvi(Ax(w) = car(An()).
TeENC( Vern
It allows us to conclude. [

We will first prove the result when p has a compactly supported Lévy measure. We will work
with a sequence (d};)q such that 1 < d < d);, and d/d], tends to A € (0,1] (even though the proof
can be adapted to the case A = 0, we assume that A > 0 in order to simplify). To simplify
notations, d’ will stand for d,.

Proposition 5.2. Let u be a symmetric x-infinitely divisible distribution with compactly sup-
ported Lévy measure. Then for all integers k,

(a) dlggo Epg’d, (m(fgar)) = my (Ax(p)) -
(b) The variance, under Py .., of my(fijar)) tends to zero as d goes to infinity.

Proof. For an integer n, [n] will denote {1,...,n}, and NC(n) will denote the set of noncrosing
partitions of [n]. Recall that NC’(n) denotes the set of noncrosing partitions of [n] in which all
blocks have even cardinality.

(a) First, for every complex dxd matrix M, for all integer k, my (/1‘ M|) is null if k£ is odd

k
and is equal to tr (M M*)2 (tr denotes normalized trace) if k is even. Ay (p) is symmetric, so it
suffices to show that for all k € N*,

(tr (MM = g (Ax(1))

Let, for n € N*, u, be the probability measure such that )" = u. Consider, for d > 1 and

lim Epe
d—oo d,d’

n > 1, (Mc(lzzl) i.i.d. random matrices with distribution Z’Zl,. By definition, for every
1<i<n
d > 1, the sum of the M( 5 s (i =1...n) converges in distribution to IF’d » When n goes to co.

We know, by theorem @ that for all k € N*, the sequence (nx mk(,un))n is bounded, and so
(see []) for all k,d € N*,

n n k
£y, (o () = = (e ((S00) (X)) ). oo
=1

i=1

Let us fix k € N*.
We are going to use the formula (f.3).
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n n k
o) 5
i=1 i=1

)

n

Let, for d,n > 1,

From now on, we do not write anymore the index d in Méi . We denote, for [,n non-negative
integers, by Al the number of one-to-one maps from [I] to [n], i.e. n(n —1)---(n—1+1). For
a partition 7 of [2k], for 1 <[ < 2k, we denote by 7(l) the index of the class of [, after having
ordered the classes according to the order of their first element (for example, 7(1) = 1; 7(2) =1

if 1 £ 2 and 7(2) = 2 if 1 % 2). Then we have

by, = tr|E Z MT(Lf(l))MT(Lf(Q))* .. Mr(zf(%))*
fe{l,...,n}?k

= w(E[ Y AMEOME@ ) ek
wePart(2k)

But E | MmO | =B | MO amD o | = o,

2] + 1 alterned factors 2] 4+ 1 alterned factors

. d
E | MV .. pr() = —mai(n) L

2[ alterned factors

E M?S,:L)MT’(Ll)* e MT(LI)* = moy(pin)14.

2[ alterned factors
So, using many times the fact that a partition 7 of a finite totally ordered set is noncrossing
if and only if one of its class V' is an interval and 7w\{V'} is noncrossing (page 3 of [F9g]) and
integrating successively with respect to the different independent random matrices, one has

d e(m)
7€ NC@H) > 8 (MO MDY = (5) 7 TT o),
B

en

m e NC(2k)\NC'(2k) = tr E (M}LWU”M;L”(?))* S M,(L’T(%))*> —0.
But A'rzr‘ ~ nl™l. so, by the preceding theorem, the limit, when n goes to infinity, of

w (B[ S AMEO @ e

wEPart(2k)
is
d e(m)
Z (E) H C\V\(A)\(M)),
TeNC’(2k) Ver

which tends, when d goes to infinity, to

> AT qviam)),

TENC'(2k) Ven
which is equal to may (Ax(r)) by (E).
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So it suffices to prove that

= S AP wE (MO M) gl
mePart(2k)
T¢NC(2k)

vanishes when n, and then d, go to infinity. Let us expand the trace: bln, 4 1s equal to

1 ) { (x(1)) @) L [k }
d WEP%(QH jE%% A [Mn L17j2 [Mn ]j2 J3 [Mn ]jZkvjl .
w¢NC(2k) Vr odd, j-<d

Using the fact that <M (Z)) are independent copies of a matrix with distribution Qg’&,, we
1<i<n )
deduce (with the notation jor+1 = Jj1)

1
o= g 2 AT > M Een {1 Mo 11 M550

wePart(2k) jel[d)?* Bem reB reB
TgNC(2k) Vr odd, jr<d r odd r even

1 Al

T d Z nl7l Z

wePart(2k) jE[d?k
T¢NC(2k) Vr odd, j»<d

H nk Z H ujrvlTvlijrﬂX"vlT H /l_)lijTXn7lrajr+lylr )

Bem leld|B reB reB

€ld] r odd r even
where U,V, X, 1,..., X, q are independent, with respective distribution the Haar measure on

the group of dxd unitary matrices, the Haar measure on the group of d'xd’ unitary matrices,
and fiy,.

For all B C [2k], for all j € [d']?* such that for all » odd, j, < d, summing over the partition
generated by [, one has

nk 2 : | | ujrylrvlrvjr+anvlr | | ﬁlryernvlrﬂjr+1,lr
B reB reB
leld) r odd r even

—_ 1—|o _ _
- Z Z n I I [H nm|W‘ Mn)] E H ujmlrvlr,jr+1 H vlmjrujr+lylr

o€Part(B) l€[d]° Weo reB reB
r odd T even

The measures u, are symmetric, so all their moments of odd order are null. Hence, according
to theorem p.J], the quantity of the previous equation tends, as n goes to infinity, to

d
X o . .
g c|B|(,u)E H W, 1V, H 01,5, Uj, 11 if |B| is even,
=1 reB reB
r odd r even
0 otherwise.

Note that equation (f.9) implies, by an easy induction, that the classical cumulants with of even
order of a symmetric probability measure are null. It allows us to avoid considering two cases
on the parity of |B| in the previous limit, and to claim that the first formula is valid whenever
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|B| is odd. This limit is equal, by invariance of uniform distributions on unitary groups by
permutation of rows and columns, to

* _
dXC\B\(M)E H ujrvjr-H H vjrujr-H ’
reB reB
r odd T even

where u, v are independent uniform random vectors on the unit spheres of C%, C% .

So the limit, when n goes to infinity, of ¥/, is

1 N _

= > > I axdggWES IT wivi IT w0 ¢
m€Part(2k)  je[d']?k Bem reB reB
T¢NC(2k) Vr odd, jr<d r odd T even

the absolute value of which is less or equal, by invariance of the distributions of v and v under
permutation of coordinates, to

é Z A H ¢ (W)E H Ur(r) Vr(r41) H Ur(r41) Ur(r)

m,7€Part(2k) Ber reB reB
T¢NC(2k) 7 odd reven
Moreover, by invariance of the distribution of v under the action of unitary diagonal matrices,
for every pair (7, 7) of partitions of [2k], if

ITE| IT woyoresn 11 @reenyvee

Bemw reB reB
r odd reven

is non zero, then for every class B of m, there exists ¢, permutation of B, which maps odd
numbers to even numbers and vice versa, such that for all » € B, 7(r) = 7(¢(r) + 1). It implies,
by lemma 4.4 of [B-G04)|, that |7| + |r| < 2k. So one has, using the Holder inequality and
equation (4.2.11) of [AP0(],

lim b, ; =O0(d ™),

n—0o0

which closes the proof of (a).

One notes that the proof of (a) is a very closed adaptation of the proof of Proposition 4.1
of [B-G04], by adaptation of the arguments to the context of non hermitian and non square
matrices. Using again the same adaptation, the proof of (b) is along the same lines as the proof

of Proposition 5.1 of [B-G04]. O

To conclude this section, we have to state its main theorem. Recall that the convergence
in probability of a sequence X,, of random variables in a metrizable topological space X to a
constant [ € X is the convergence of the probability of the event {d(X,,l) < €} to 1 for all
positive &, where d is any distance which defines the topology (it does not depend on the choice
of such a distance). In the following theorem, we shall refer to the convergence in probability in
the set of probability measures on the real line, endowed with the metrizable topology of weak
convergence. The proof of the theorem is similar to the one of Theorem 7.6 of [B-G04], based
on the previous proposition and on an approximation by compound Poisson laws. The only
modification is to work with products of the type M M* rather than M*M. Recall that d’ is in
fact d), (i.e. d’ depends on d) and that d/d’ tends to A as d tends to infinity.
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Theorem 5.3. Let pu be a symmetric x-infinitely divisible distribution. Let, for d > 1, My be a
random matriz with distribution ]P’g a

Then as d goes to infinity, the syr’nmetm'zation fn, of the singular law of My converges in
probability to Ax(u).

Remark 5.4. In the case where p is a normal law, one recovers the well known result about
asymptotic spectral distribution of Wishart random matrices.

6. RECTANGULAR SYMMETRIC POISSON DISTRIBUTIONS AS LIMITS OF SUMS OF RANK-ONE
MATRICES

The symmetric Poisson distribution with parameter ¢ > 0 has been introduced in section
[.3. The free analogues of unsymmetric Poisson distributions are Marchenko-Pastur laws. But
as we said it in section [I.3, unless A\ = 0, the computations for symmetric Poisson laws are
harder than for the unsymmetric ones (even when A\ = 1, the densities have not been expressed).
Nevertheless, we have the following characterization of the rectangular analogues of symmetric
Poisson distributions.

Proposition 6.1. Consider A\ € (0,1], and ¢ > 0. Then the image, by the Bercovici-Pata
bijection with ratio X\, of the symmetric Poisson distribution with parameter c is the limit, for
convergence in probability, of the symmetrization of the singular law of the random matrix
&
d d, d” : Zud Ud/

when

d d//
d — 00, E—))\’ i (6.1)
where ug(k), vy (k) (k > 1) are independent uniform random vectors of the unit spheres of C4, C¥
(considered as column matrices).

Remark 6.2. Note that when A\ = 1, the image, by the Bercovici-Pata bijection with ratio A,
of the symmetric Poisson distribution with parameter c¢ is T @7_, where Ty is the Marchenko-
Pastur distribution with parameter c/2, and 7 is the push-forward, by the function t — —t, of

T4+.

Proof. Let us denote by p the symmetric Poisson distribution with parameter ¢, and by o the
push-forward by t — t2 of its image by the Bercovici-Pata bijection with ratio A. As explained in
the beginning of the proof of the last theorem of the section called ”the rectangular R-transform”
of [B-G1J], it suffices to prove that for each £ > 0, the probability of the event

1
sup |— > e
{SZZI d }
tends to zero as d,d’, d” tend to infinity as in (6.1), where

A(d,d,d") = M(d,d ,d")M(d,d,d")*

and for M hermitian matrix and 2z complex non real number, R, (M) = (z — M)~ !

TeR, (A(d, d’,d")) — Go(2)

Fix € > 0. It can easily be seen that Pg o 1s the distribution of

d dl Z ud Ud/ s
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where X (cd) is a random variable distributed according to an (unsymmetric) Poisson distribution
with parameter cd and X (cd) is independent of the ugy(k)’s and of the vy (k)’s. Thus by the
previous theorem, with the notation B(d,d’) = N(d,d' )N (d,d")*, the probability of the event

sup
Jz>1

%Tr R, (B(d,d)) — Co(z)| > ¢

tends to zero. Thus it suffices to prove that the probability of the event

sup
Jz>1

Ly (1, (B(d,d)) — %, (Ad, . d”)))‘ >

tends to zero. But for all hermitian dxd matrices A, B, for all z such that &z > 1, we have
9({z(B) - 9({z(A) = _%Z(B)(B - A)%Z(A)7

whose normalized trace is not more than its norm times its rank divided by d. Moreover,
[|R.(B) — R.(A)|] <2, and the rank is not more than the one of B — A. So it suffices to prove
that

%rg (B(d7 d)— A(d,d, d'/))
converges in probability to zero. B(d,d') — A(d,d’,d") can be put in the form
(..)(N(d,d)— M(d,d,d")) + (N(d,d) — M(d,d,d"))...),
SO
érg (B(d, &) — A(d,d',d")) < %rg(N(d, &) — M(d,d,d") < %\X(cd) _d,

which converges in probability to zero, by the weak law of great numbers. [
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