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INFINITELY DIVISIBLE DISTRIBUTIONS FOR RECTANGULAR FREE

CONVOLUTION: CLASSIFICATION AND MATRICIAL INTERPRETATION

FLORENT BENAYCH-GEORGES

Abstract. In a previous paper ([B-G1]), we defined the rectangular free convolution ⊞
λ
. Here,

we investigate the related notion of infinite divisiblity, which happens to be closely related the
classical infinite divisibility: there exists a bijection between the set of classical symmetric in-
finitely divisible distributions and the set of ⊞

λ
-infinitely divisible distributions, which preserves

limit theorems. We give an interpretation of this correspondance in term of random matrices:
we construct distributions on sets of complex rectangular matrices which give rise to random
matrices with singular laws going from the symmetric classical infinitely divisible distributions
to their ⊞

λ
-infinitely divisible correspondants when the dimensions go from one to infinity in a

ratio λ.
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Introduction

In a previous paper ([B-G1]), we modeled the asymptotic behaviour of rectangular random
matrices with freeness with amalgamation. Therefore we defined, for each λ ∈ [0, 1], the rect-
angular free convolution with ratio λ, denoted by ⊞λ. It is a binary operation on the set of
symmetric probability measures on the real line defined in the following way. Let us call the
singular law of a matrix M the uniform law on its singular values, i.e. on the spectrum of its

Date: December 4, 2005.
MSC 2000 subject classifications. 15A52, 46L54, 60E07, 60F05
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2 FLORENT BENAYCH-GEORGES

absolute value |M | = (MM∗)1/2. Consider µ, ν symmetric probability measures on the real line,
consider two sequences q1(n), q2(n) of integers tending to +∞ such that

q1(n)

q2(n)
−→
n→∞

λ,

and consider, for each n, M(n), N(n) independent q1(n)×q2(n) random matrices, one of them
being biunitarily invariant (i.e. having a distribution invariant under the left and right actions
of the unitary groups) such that the symmetrization of the singular law of M(n) (resp. of N(n))
converges weakly in probability to µ (resp. ν). Then the symmetrization of the singular law of
M(n) +N(n) converges weakly in probability to a probability measure which depends only on
µ, ν, and λ, denoted by µ⊞λν, and called the rectangular free convolution with ratio λ of µ and
ν.

In the present paper, we study the notion of infinite divisibility for ⊞λ, which leads to a Lévy-
Kinchine formula for the rectangular R-transform (whose definition we shall recall in section 1):
a symmetric probability measure µ is ⊞λ-infinitely divisible if and only if there exists a positive
finite symmetric measure G (called its Lévy measure) such that the rectangular R-transform
with ratio λ of µ is given by the formula:

Cµ(z) = z

∫

R

1 + t2

1 − zt2
dG(t).

Therefore we can define a bijection Λλ between the set of classical symmetric infinitely divisible
distributions and the set of ⊞λ-infinitely divisible distributions: Λλ maps a symmetric ∗-infinitely
divisible distribution to the ⊞λ-infinitely divisible distribution with the same Lévy measure. This
bijection happens, like the one of Bercovici and Pata ([BPB99]) between ∗- and ⊞-infinitely
divisible distributions, to have deep properties. It is a semi-groups morphism:

Λλ(µ ∗ ν) = Λλ(µ)⊞λΛλ(ν),

and it preserves limit theorems: for all sequences (µn) of symmetric distributions and (kn) of
positive integers tending to infinity, we have, for all probability measure µ,

µ∗kn
n −→

n→∞
µ ⇐⇒ µ

⊞λkn
n −→

n→∞
Λλ(µ).

Λλ will be called the rectangular Bercovici-Pata bijection with ratio λ.

In the section 4, we characterize the image, by Λλ, of the standard Gaussian distribution:
when λ > 0, it has density

[
4λ− (x2 − 1 − λ)2

]1/2

2πλ|x|
on its support [−1 − λ1/2,−1 + λ1/2] ∪ [1 − λ1/2, 1 + λ1/2]. An interesting interpretation of this
result is made in a forthcoming paper ([B-G2]) where we construct analogues of Voiculescu’s free
entropy and free Fisher information for operators between different Hilbert spaces, and where
the maximum of entropy and the minimum of Fisher information are realized for operators
which absolute value has this (symmetrized) distribution. Another consequence of this result is
a new formula for the moments of the Marchenko-Pastur distribution (which is closely related
to this distribution): for all a > 0, for all n ≥ 1, the n-th moment of the Marchenko-Pastur

distribution with parameter a (see [HP00] p. 65) is equal to
∑

π a
o(π), where the sum is taken

over all noncrossing pairings of [2n], and where o(π) is the number of blocks of a partition π
which first element is odd.
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In section 5, we shall construct a matricial model for the ⊞λ-infinitely divisible laws and
present in a maybe more palpable way the Bercovici-Pata bijection with ratio λ (whereas the
proofs of the other sections rely on integral transforms and complex analysis): we are going to
construct, in the same way as in [B-G04] and in [C-D04], for each d, d′ ≥ 1, for each symmetric
∗-infinitely divisible distribution µ, an infinitely divisible distribution P

µ
d,d′ on the set of d×d′

complex matrices such that for all µ, ν, P
µ
d,d′ ∗ Pν

d,d′ = P
µ∗ν
d,d′ and such that the symmetrization of

the singular law of M (with M random matrix distributed according to P
µ
d,d′) goes from µ to its

image by the rectangular Bercovici-Pata bijection with ratio λ when d, d′ → ∞, d
d′ → λ.

In the last section, we shall give a representation of the image of the symmetric Poisson
distribution by the rectangular Bercovici-Pata bijection with ratio λ as the distribution of the
absolute value of sums of rank-one matrices.

Aknowledgements. We would like to thank Philippe Biane, our advisor, for usefull discus-
sions. Also, we would like to thank Cécile Martineau for her contribution to the english version
of this paper.

1. Preliminaries

In this section, we shall recall definition and basic results from [B-G1] about the rectangular
R-transform Cµ of a symmetric probability measure µ.

Let us denote by z 7→ z1/2 (resp. z 7→ √
z) the analytic version of the square root on

the complement of the real non positive (resp. non negative) half line such that 11/2 = 1
(resp.

√
−1 = i). Let us define the analytic function function on a neighborhood of zero

U(z) =
−λ−1+[(λ+1)2+4λz]

1/2

2λ (when λ = 0, U(z) = z). Then one can summarize the different
steps of the construction of the rectangular R-transform with ratio λ in the following chain

µ
sym. prob.
measure

−→ Gµ(z) =

∫
dµ(t)

z − t
Cauchy transform

−→ Hµ(z) = λGµ

(
1√
z

)2

+ (1 − λ)
√
zGµ

(
1√
z

)

−→

Cµ(z) = U

(
z

H−1
µ (z)

− 1

)

,

rect. R-transf. with ratio λ

where H−1
µ is the inverse (for composition) of Hµ. Proposition 1.1 and theorem 1.2 bellow,

which have first been established in [B-G1], prove that such an inverse exists, give its domain,
and prove that for any tight set A of symmetric probability measures, the properties and the
domains of the functions H−1

µ (µ ∈ A) are “uniform”.

Proposition 1.1. Let A be a set of symmetric probability measures on the real line. Then the
following assertions are equivalent

(i) A is tight,
(ii) for every 0 < θ < π, lim

z→0
|arg z−π|<θ

1
zHµ(z) = 1 uniformly in µ ∈ A,

(iii) lim
x→0

x∈(−∞,0)

1
xHµ(x) = 1 uniformly in µ ∈ A.

Define, for α ∈ (0, π), β > 0, ∆α,β to be the set of complex numbers z such that | arg z−π| < α
and |z| < β.
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Let H be the set of functions f which are analytic in a domain Df such that for all α ∈ (0, π),
there exists β positive such that

∆α,β ⊂ Df .

A family (fa)a∈A of functions of H is said to be uniform if for all α ∈ (0, π), there exists β
positive such that

∀a ∈ A, ∆α,β ⊂ Dfa .

Theorem 1.2. Let (Ha)a∈A be a uniform family of functions of H such that for every α ∈ (0, π),

lim
z→0

| arg z−π|<α

Ha(z)

z
= 1 uniformly in a ∈ A.

Then there exists a uniform family (Fa)a∈A of functions of H such that for every α ∈ (0, π),

lim
z→0

| arg z−π|<α

Fa(z)

z
= 1 uniformly in a ∈ A,

and there exists β positive such that

∀a ∈ A, Ha ◦ Fa = Fa ◦Ha = Id on ∆α,β.

Moreover, the family (Fa)a∈A is unique in the following sense: if a family (F̃a)a∈A of functions
of H satisfies the same conditions, then for all α ∈ (0, π), there exists β positive such that

∀a ∈ A, Fa = F̃a on ∆α,β.

Using the theory of cumulants in operator-valued free probability theory, we prove (equation
(42) of [B-G1]) the additivity of rectangular R-transform: for all µ, ν, symmetric probability
measures, we have

Cµ⊞λν = Cµ + Cν .

We shall mention here two other results, proved in [B-G1]. The second of them allows us to
claim that ⊞λ is continuous with respect to weak convergence.

Lemma 1.3 (Tightness and rectangular R-transform). Let A be a set of symmetric probability
measures. Then we have equivalence between :

(i) A is tight,
(ii) for any 0 < α < π, lim

z→0
|arg z−π|<α

Cµ(z) = 0 uniformly in µ ∈ A,

(iii) lim
x→0

x∈(−∞,0)

Cµ(x) = 0 uniformly in µ ∈ A.

Theorem 1.4 (Paul Lévy’s theorem for rectangular R-transform). Let (µn) be a sequence of
symmetric probability measures. Then we have equivalence between:

(i) (µn) converges weakly to a symmetric probability measure;
(ii) there exists α, β such that

(a) lim
z→0

| arg z−π|<α

Cµn(z) = 0 uniformly in n,

(b) the sequence (Cµn) converges uniformly on every compact set of ∆α,β when n→ ∞;
(iii) (a) lim

x→0
x∈(−∞,0)

Cµn(x) = 0 uniformly in n,
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(b) there exists β > 0 such that the sequence (Cµn) converges pointwise on [−β, 0) when
n→ ∞.

Moreover, in this case, denoting by µ the weak limit of (µn), for every α, there exists β such
that the sequence (Cµn) converges uniformly to Cµ on every compact set of ∆α,β when n→ ∞.

2. Lévy-Kinchine Formula for ⊞λ-infinitely divisible distributions

⊞λ-infinitely divisible distributions are defined in the same way as ∗- and ⊞-infinitely divisible
distributions:

Definition 2.1. A symmetric probability measure ν is said to be ⊞λ-infinitely divisible if for

each n ∈ N∗, there exists a symmetric distribution νn such that ν
⊞λn
n = ν.

As for ∗- and ⊞-, we have the following characterization of ⊞λ-infinite divisibility.

Theorem 2.2. Let ν be a symmetric distribution. Then ν is ⊞λ-infinitely divisible if and only

if there exists a sequence (νn) such that ν
⊞λn
n converges weakly to ν.

Proof. If ν is ⊞λ-infinitely divisible, it is clear. Assume the existence of a sequence (νn) such

that ν
⊞λn
n converges weakly to ν. Consider k ≥ 1. Let us show that their exists a symmetric

probability measure σ such that σ⊞λk = ν. We have lim
y→0
y<0

nCνn(y) = 0 uniformly in n, so

lim
y→0
y<0

nCνkn
(y) = 0 uniformly in n. So by lemma 1.3, the sequence

(

ν
⊞λn
kn

)

is tight. If the

symmetric distribution σ is the limit of one of its subsequences, we have

σ⊞λk = lim
(

ν
⊞λn
kn

)
⊞λk

= lim ν
⊞λnk
kn = ν.

�

Corollary 2.3. The set of ⊞λ-infinitely divisible distributions is closed under weak convergence.

Proof. If a sequence (µn) of ⊞λ-infinitely divisible distributions converges weakly to a distribu-

tion µ, then if for every n, ν
⊞λn
n = µn, the sequence (ν

⊞λn
n ) converges weakly to µ. �

To prove the Lévy-Kinchine formula for ⊞λ-infinitely divisible distributions, we need the fol-
lowing lemma, which is the analogue of propositions 2.6 and 2.7 of [BPB99].

Lemma 2.4. Let (νn) be a sequence of measures that converges weakly to δ0. Consider α ∈
(0, π). Then there exists β > 0 such that on ∆α,β,

Cνn(z) =

(
1√
z
Gνn

(
1√
z

)

− 1

)

(1 + vn(z))

where the functions vn, defined on ∆α,β, are such that

(i) ∀n,∀z, |vn(z)| ≤ 1/2 and lim
z→0

vn(z) = 0 uniformly in n,

(ii) ∀z, lim
n→∞

vn(z) = 0.
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Proof. First, note that unless νn = δ0 (in which case vn = 0 is suitable), for all z,
1√
z
Gνn

(
1√
z

)

− 1 6= 0, so there is a function vn on the domain of Cνn such that

Cνn(z) =

(
1√
z
Gνn

(
1√
z

)

− 1

)

(1 + vn(z)).

To prove (i), we will only use the tightness of {νn ; n ∈ N}. It suffices to show that

lim
z→0

| arg z−π|<α

Cνn(z)

1√
z
Gνn

(
1√
z

)

− 1
= 1 uniformly in n.

We have

lim
z→0

| arg z−π|<α

1√
z
Gνn

(
1√
z

)

= 1 uniformly in n,

and when a complex number t tends to 1, t− 1 ∼ (λt2 + (1 − λ)t− 1)/(λ + 1), so it suffices to
show that

lim
z→0

| arg z−π|<α

(λ+ 1)Cνn(z)
Hνn(z)

z − 1
= 1 uniformly in n.

We have
Hνn(z)

z
− 1 =

Hνn(z)

z

(

1 − z

Hνn(z)

)

,

and we know, by lemma 1.3, that

lim
z→0

| arg z−π|<α

Hνn(z)

z
= 1 uniformly in n. (2.1)

So it suffices to show that

lim
z→0

| arg z−π|<α

(λ+ 1)Cνn(z)

1 − z
Hνn(z)

− 1 = 0 uniformly in n.

We know, by proposition 1.1 and by theorem 1.2, that

lim
z→0

| arg z−π|<α

H−1
νn

(z)

z
= 1 uniformly in n, (2.2)

and the equivalent of U(x) in the neighborhood of zero is x
λ+1 . So, since Cνn = U

(
z

H−1
νn (z)

− 1

)

,

it suffices to show that

lim
z→0

| arg z−π|<α

z
H−1

νn (z)
− 1

1 − z
Hνn (z)

= 1 uniformly in n.

Choose α′ ∈ (α, π). By theorem 1.2, there exists β1 > 0 such that for all n, H−1
νn

is defined on
∆α′,2β1

, and

Hνn(∆α,β1
) ∪H−1

νn
(∆α,β1

) ⊂ ∆α′,2β1
.

We have, for z ∈ ∆α,β1
,

z
H−1

νn (z)
− 1

1 − z
Hνn (z)

− 1 =

zHνn (z)

H−1
νn (z)

−Hνn(z)

Hνn(z) − z
− 1

=
1

Hνn(z) − z

∫

[z,Hνn(z)]
f ′n(ξ)dξ,
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where fn is the function defined by

fn(ξ) =
H−1(ξ)H(z)

H−1(z)
− ξ.

But the lemma 2.4 of [BPB99] states that

lim
z→0

| arg z−π|<α′

(H−1
νn

)′(z) = 1 uniformly in n.

Hence, using also (2.1) and (2.2) (which stay true if α is replaced by α′), we have

lim
ξ→0

| arg ξ−π|<α′

f ′n(ξ) = 0 uniformly in n.

so

lim
z→0

| arg z−π|<α

z
H−1

νn (z)
− 1

1 − z
Hνn (z)

= 1 uniformly in n.

So we know that there exists a sequence (vn) of functions such that (λ+ 1)Cνn(z) = Hνn (z)
z − 1

(which implies Cνn(z) = ( 1√
z
Gνn

(
1√
z

)

−1)(1+vn(z))) and lim
z→∞

vn(z) = 0 uniformly in n. Hence

we can choose β2 such that ∀n,∀z ∈ ∆α,β2
, |vn(z)| ≤ 1/2.

Let us now prove (ii). First, note that since νn → δ0, the sequence (Gνn) converges uniformly
to Gδ0 : z 7→ 1/z on every compact of the upper half plane (see [A61] or section 3.1 of [HP00]),
so, as in the proof of (i), it suffices to show that

lim
n→∞

(λ+ 1)Cνn(z)
Hνn (z)

z − 1
= 1.

The convergence of νn to δ0 implies too that (Hνn) converges to Hδ0 : z 7→ z . So, since

Hνn(z)

z
− 1 =

Hνn(z)

z

(

1 − z

Hνn(z)

)

,

it suffices to prove that

lim
n→∞

(λ+ 1)Cνn(z)

1 − z
Hνn(z)

= 1.

Furthermore, by theorem 1.4, there exists β3 ≤ β2 such that the sequence Cνn converges uni-
formly to Cδ0 = 0 on every compact of ∆α,β3

. So z/H−1
νn

(z) = (λCνn(z)+1)(Cνn (z)+1) converges
uniformly to 1 on every compact of ∆α,β3

. So, since (λ+ 1)U(z) is equivalent to z as z tends to

zero and since Cνn = U
(
z/H−1

νn
(z) − 1

)
, it suffices to show that for all z ∈ ∆α,β3

,

lim
n→∞

z
H−1

νn (z)
− 1

1 − z
Hνn(z)

= 1.

As in the proof of (i), let us choose β < β3/2 such that for all n, H−1
νn

is defined on ∆α′,β,

Hνn(∆α,β) ∪H−1
νn

(∆α,β) ⊂ ∆α′,2β, and

lim
n→∞

H−1
νn

(z)

z
= 1 uniformly on every compact of ∆α′,2β.

By analycity of the H−1
νn

’s, the last assertion implies that

lim
n→∞

(H−1
νn

)′(z) = 1 uniformly on every compact of ∆α′,2β.
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We have, for z ∈ ∆α,β,

z
H−1

νn (z)
− 1

1 − z
Hνn (z)

− 1 =

zHνn (z)

H−1
νn (z)

−Hνn(z)

Hνn(z) − z
− 1

=
1

Hνn(z) − z

∫

[z,Hνn(z)]
f ′n(ξ)dξ,

where fn is still the function defined by

fn(ξ) =
H−1(ξ)H(z)

H−1(z)
− ξ.

f ′n tends to zero as n tends to infinity, uniformly on every compact of ∆α′,2β, so

z
H−1

νn (z)
− 1

1 − z
Hνn(z)

− 1

tends to zero when n tends to infinity, and the result is proved. �

In the following, we shall refer to weak convergence for sequences of positive finite measures
on the real line: that is convergence for which the test functions are the continuous bounded
functions.

Theorem 2.5 (Lévy-Kinchine formula, part 1). Let µ be a symmetric probability measure, (νn)
be a sequence of symmetric probability measures and kn a sequence of integers tending to infinity

such that ν
⊞λkn
n converges weakly to µ. Then there exists a symmetric positive finite measure G

such that

(1) the sequence of positive finite measures
(

kn
t2

1+t2
dνn(t)

)

converges weakly to G,

(2) the R-transform of µ has an analytic continuation to the complement of the real non-
negative half line and is given by the formula

Cµ(z) = z

∫

R

1 + t2

1 − zt2
dG(t). (2.3)

Moreover, G is symmetric and is the only positive finite measure F such that

Cµ(z) = z

∫

R

1 + t2

1 − zt2
dF (t).

Proof.

(1) The sequence (νn) converges weakly to δ0. Indeed, for every n, C
ν

⊞λkn
n

= knCνn , and by

theorem 1.4, we have
(a) lim

x→0
x<0

knCνn(x) = 0 uniformly in n,

(b) There exists β > 0 such that the sequence (knCνn) converges pointwise on (−β, 0).
So
(a) lim

x→0
x<0

Cνn(x) = 0 uniformly in n,

(b) there exists β > 0 such that the sequence (Cνn) converges pointwise to 0 = Cδ0 on
(−β, 0).
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(2) The sequence of positive finite measures
(

kn
t2

1+t2
dνn(t)

)

is tight. Indeed, for y > 0,

∫

[−1/y,1/y]c
kn

t2

1 + t2
dνn(t) ≤ 2

∫

t∈R

1 + t2

y−2 + t2
· kn

t2

1 + t2
dνn(t)

= −2kn((i/y)Gνn (i/y) − 1).

Let vn be as in the previous lemma. For y > 0 small enough,
∫

[−1/y,1/y]c
kn

t2

1 + t2
dνn(t) ≤ −2knCνn(−y2)

1 + vn(−y2)
≤ 4

∣
∣knCνn(−y2)

∣
∣ ,

which tends to zero uniformly in n when y tends to zero, by tightness of the sequence(

ν
⊞λkn
n

)

.

(3) The sequence of positive finite measures
(

kn
t2

1+t2
dνn(t)

)

is bounded. Indeed, if y > 0 is

such that −y2 is in the domain of the vn’s of the previous lemma and lim
n→∞

knCνn(−y2) =

Cµ(−y2), we have, for each n,
∫

t∈R

kn
t2

1 + t2
dνn(t) ≤ y−2

∫

t∈R

kn
t2

y−2 + t2
dνn(t)

= −y−2kn((i/y)Gνn(i/y) − 1)

= −y−2kn
Cνn(−y2)

1 + vn(−y2)

≤ 4y−2
∣
∣knCνn(−y2)

∣
∣ ,

which is bounded uniformly in n.
(4) Let us now recall a few facts about the Poisson integral of positive measures on the real

line which integrate 1/(1+ t2). If M is such a measure, for y < 0 and x ∈ R, let us define

Py(M)(x) =

∫

t∈R

y

y2 + (x− t)2
dM(t).

Then (x+ iy) 7→ Py(M)(x) is harmonic and determines the measure M ([D74], chapter
II, theorem II).
Moreover, an easy computation shows that for each positive symmetric measure M on
the real line that integrates 1/(1 + t2), the Poisson integral Py(M)(x) is the imaginary

part of
∫

R

√
z

t2z−1
dM(t) (with z /∈ [0,+∞), x + iy = 1/

√
z, as it will be until the end of

this proof). Indeed, since M is symmetric,
∫

R

√
z

t2z − 1
dM(t) =

∫

R

√
z(t

√
z + 1)

t2z − 1
dM(t) =

∫

R

√
z(t

√
z + 1)√

z(t
√
z + 1)(t− 1√

z
)
dM(t) =

=

∫

R

dM(t)

t− 1√
z

=

∫

R

(t− x) + iy

(t− x)2 + y2
dM(t).

Now let us compute the Poisson integral of the measures knt
2dνn(t). Let α, β > 0 and

(vn) be as in the previous lemma, z ∈ ∆α,β. We have

Py(knt
2dνn(t))(x) = ℑ

(∫

R

kn
√
zt2

t2z − 1
dνn(t)

)

.
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But since νn is symmetric, we have
∫

R

kn
√
zt2

t2z − 1
dνn(t) = kn

∫

R

t(1 +
√
zt)

(t
√
z − 1)(t

√
z + 1)

dνn(t) = kn

∫

R

tdνn(t)

t
√
z − 1

,

which is equal, by an easy computation, to

−kn
(1/

√
z)Gνn(1/

√
z) − 1√

z
.

So Py(knt
2dνn(t))(x) = −ℑ

(

kn
Cνn(z)√

z(1 + vn(z))

)

, which tends to the imaginary part of

−Cµ(z)/
√
z, because ν

⊞λkn
n converges weakly to µ and lim

n→∞
vn(z) = 0.

The sequence
(

kn
t2

1+t2
dνn(t)

)

, bounded and tight, is relatively compact in the set of

finite positive measures in the real line endowed with the topology of weak convergence
(i.e. the topology defined by bounded continuous functions). If two measures G,H are

the weak limit of a subsequences of
(

kn
t2

1+t2
dνn(t)

)

, then the measures (1 + t2)dG(t)

and (1 + t2)dH(t) have the same Poisson integral on
√

∆α,β. Indeed, for z ∈ ∆α,β,

Py(knt
2dνn(t))(x) =

∫

t

y(1 + t2)

y2 + (x− t)2
︸ ︷︷ ︸

continuous
bounded fct of t

knt
2

1 + t2
dνn(t)

tends in the same time to Py((1+t2)dG(t))(x), to Py((1+t2)dH(t))(x), and to the imag-
inary part of −Cµ(z)/

√
z. It implies, by harmonicity, that they have the same Poisson

integral on the lower half plane, which implies H = G. So the sequence
(

kn
t2

1+t2 dνn(t)
)

converges weakly to a measure G, such that the Poisson integral Py((1 + t2)dG(t))(x),
is equal to the imaginary part of −Cµ(z)/

√
z. Thus, the functions

Cµ(z)/
√
z and

∫

R

√
z(t2 + 1)

1 − t2z
dG(t)

have the same imaginary part. For z ∈ (−∞, 0), it follows that

Cµ(z) and z

∫

R

t2 + 1

1 − t2z
dG(t)

have the same real part, so, by analycity and since both tend to zero as z goes to zero,
they are equal.

(5) If F is another positive finite measure such that Cµ(z) = z

∫

R

t2 + 1

1 − t2z
dF (t), then

z

∫

R

t2 + 1

1 − t2z
dG(t) = z

∫

R

t2 + 1

1 − t2z
dF (t).

After division by −√
z and extraction of the imaginary part, this gives the equality of

the Poisson integrals of (1 + t2)dG(t) and of (1 + t2)dF (t), which implies G = F .

�

The previous theorem implies that for all ⊞λ-infinitely divisible distribution µ, there exists
a unique positive finite measure G such that Cµ is given by equation (2.3). G is symmetric
(as limit of symmetric measures) and will be called the Lévy measure of µ. By injectivity of
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the rectangular R-transform, two different probability measures cannot have the same Lévy
measure.

Theorem 2.6 (Lévy-Kinchine formula, part 2). Every symmetric positive finite measure on the
real line is the Lévy measure of a ⊞λ-infinitely divisible distribution.

Before the proof of the theorem, let us state a result about the way dilation of probability
measures modify the rectangular R-transform. For c > 0, let us denote by Dc : x 7→ cx. For any
distribution µ, Dc(µ) is the push-forward of µ by Dc, i.e. Dc(µ) : B 7→ µ(c−1B).

We have GDc(µ) =
1

c
Gµ(

z

c
),

so HDc(µ)(z) =
λ

c2

(

Gµ(
1

c
√
z
)

)2

+
(1 − λ)c

√
z

c2
Gµ(

1

c
√
z
) =

1

c2
Hµ

(
c2z
)
,

i.e. HDc(µ) = D 1

c2
◦Hµ ◦Dc2 ,

H−1
Dc(µ) = D 1

c2
◦H−1

µ ◦Dc2,

then CDc(µ)(z) = U

(
c2z

H−1
µ (c2z)

− 1

)

,

that is CDc(µ)(z) = Cµ(c2z). (2.4)

Proof of the theorem. Let us denote by M the set of symmetric positive finite measures G
on the real line such that there exists a symmetric distribution µ whose rectangular R-transform
is given by equation (2.3). We will show that M is the set of symmetric positive finite measures,
proving that cδ0 and c(δu + δ−u) ∈ M for all c, u > 0, that M is stable by addition, and that
M is closed under weak convergence. Note that once this result is proved, it will be clear that
any symmetric probability measure with rectangular R-transform given by equation (2.3) will
be ⊞λ-infinitely divisible. Indeed, denoting

C(G)(z) = z

∫

R

1 + t2

1 − zt2
dG(t) (G ∈ M),

we have C(G) = nC(G
n ).

(1) For every c > 0, cδ0 ∈ M. Indeed, by equation (2.4), if C(δ0) = Cµ, then for every c > 0,

C(cδ0) = Cµ′ , with µ′ = Dc1/2(µ), so it suffices to show that there exists a symmetric

distribution whose rectangular R-transform is C(δ0). This distribution will appear as the
limit in the rectangular free central limit theorem: the sequenceDn−1/2 ((δ1 + δ−1)/2)

⊞λn)

converges weakly to a distribution with rectangular R-transform C(δ0). The proof is
an easy application of additivity of the rectangular R-transform, equation (2.4), and
theorem 1.4. We will see in the following that it stays true if one replaces (δ1 + δ−1)/2
by any symmetric probability measure with variance equal to 1.

(2) For all c, u > 0, c(δu + δ−u) ∈ M. Indeed, we have

C(c(δu+δ−u))(z) = 2c
z(1 + u2)

1 − u2z
= 2

c(1 + u2)

2u2

(u2z)(1 + 12)

1 − (u2z)
= C(c′(δ1+δ−1))(u2z),

where c′ = c(1+u2)
2u2 . So, by equation (2.4), it suffices to show that for all c > 0, there

exists a distribution whose rectangular R-transform is C(c(δ1+δ−1)). It is the same to
prove that there exists a distribution whose rectangular R-transform is C( c

4
(δ1+δ−1)). This

distribution will appear as the limit in the rectangular free Poisson limit theorem: the
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sequence ν
⊞λn
n , with νn =

(
1 − c

n

)
δ0 + c

2n (δ1 + δ−1), converges weakly to a distribution

with rectangular R-transform is C( c
4
(δ1+δ−1)).

Indeed, Gνn(z) = z2−1+c/n
z(z2−1) , so, if (vn) is a sequence of functions on ∆α,β as in the

lemma 2.4, we have

Cνn(z) =

(
1√
z
Gνn

(
1√
z

)

− 1

)

(1 + vn(z)) =
cz

n(1 − z)
(1 + vn(z)),

so for µn = νn⊞λ · · · ⊞λνn
︸ ︷︷ ︸

n times

,

Cµn(z) = nCνn(z) =
cz

1 − z
(1 + vn(z)).

So by hypothesis on the functions vn, we have both

lim
z→0

| arg z−π|<α

Cµn(z) = 0 uniformly on n

and

∀z ∈ ∆α,β, lim
n→∞

Cµn(z) =
cz

1 − z
= C( c

4
(δ1+δ−1))(z).

So, by theorem 1.4, we know that there exists a distribution whose rectangular R-
transform is C( c

4
(δ1+δ−1)).

(3) M is stable by addition because Cµ + Cν = Cµ⊞λν .
(4) M is closed under weak convergence: let (Gn) be a sequence of M that converges to a

finite measure G. Then clearly, the sequence
(
C(Gn)

)
converges pointwise to C(G). So,

by theorem 1.4, to prove that G ∈ M, it suffices to show that

lim
x→0
x<0

C(Gn)(x) = 0 uniformly in n.

For each n and x ∈ (0, 1), since G is symmetric, C(Gn)(−x2) = −
∫

R
x2+t2x2

1+t2x2 dGn(t),

∀t ∈ R,
x2 + t2x2

1 + t2x2
≤
{

x(x+ 1) if −1/x1/2 ≤ t ≤ 1/x1/2,

1 elseif.

So
∣
∣
∣C(Gn)(x)

∣
∣
∣ ≤ x(x+ 1)Gn(R) +Gn

(

R − [−1/x1/2, 1/x1/2]
)

,

which tends to zero uniformly in n when x tends to −∞, by boundness and tightness of
{Gn ; n ∈ N}.

�

Both previous theorems together allow us to state the following corollary.

Corollary 2.7. A symmetric probability measure µ is ⊞λ-infinitely divisible if and only if there
exists a sequence (νn) of symmetric probability measures and a sequence (kn) of integers tending

to infinity such that the sequence
(

ν
⊞λkn
n

)

tends to µ.
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3. Rectangular Bercovici-Pata’s bijection

In this section, we will show that the bijective correspondence between classical symmet-
ric infinitely divisible distributions and rectangular free infinitely divisible distributions is an
homeomorphism, and that there exists a correspondence between limit theorems for sums of
independent symmetric random variables and sums of free rectangular random variables.

Let us recall a few facts about symmetric ∗-infinitely divisible distributions, that can be found
in [GK54] (or [F66], [P97] ... ). A symmetric probability measure µ on the real line is ∗-infinitely
divisible if and only if there exists a finite positive symmetric measure G such that

∀ξ ∈ R,

∫

t∈R

eitξdµ(t) = exp

(∫

t∈R

(cos(tξ) − 1)
1 + t2

t2
dG(t)

)

.

In this case, such a measure G is unique, and we will call it the Lévy measure of µ, and a sequence
of symmetric ∗-infinitely divisible distributions converges weakly if and only if the sequence of
the corresponding Lévy measures converges weakly. Moreover, in this case, the Lévy measure
of the limit will be the limit of the Lévy measures.

We can then define the rectangular Bercovici-Pata bijection with ratio λ, denoted by Λλ, from
the set of symmetric ∗-infinitely divisible distributions to the set of ⊞λ-infinitely divisible distri-
butions, that maps a ∗-infinitely divisible distribution to the ⊞λ-infinitely divisible distribution
with the same Lévy measure. Let µ, ν be two ∗-infinitely divisible distributions with Lévy
measures G, H. Then the Lévy measures of µ ∗ ν and of Λλ(µ)⊞λΛλ(ν) are both G+H, so we
have

Λλ(µ ∗ ν) = Λλ(µ)⊞λΛλ(ν).

Theorem 3.1. The rectangular Bercovici-Pata bijection with ratio λ is an homeomorphism,
which means that a sequence of ⊞λ-infinitely divisible distributions converges weakly if and only
if the sequence of the corresponding Lévy measures converges weakly, and in this case, the Lévy
measure of the limit is be the limit of the Lévy measures.

Remark 3.2. Note that, for G symmetric positive finite measure, the function C(G)(z) can also
be written, by symmetry,

C(G)(z) =

∫

R

z + t
√
z

1 − t
√
z
dG(t).

Proof. Since the rectangular R-transform Cµ with ratio 1 of a symmetric distribution µ is
linked to its Voiculescu transform ϕµ by the relation Cµ(z) =

√
zϕµ(1/

√
z) (see paragraph 5 of

[BV93] for the construction of the Voiculescu transform, and use the fact that for symmetric
distributions, the Lévy measure is symmetric to obtain Cµ(z) =

√
zϕµ(1/

√
z)), the previous

remark and theorem 5.10 of [BV93] shows that the map Λ1 is the restriction of the “usual”
Bercovici-Pata bijection to the set of symmetric distributions. It has been proved in [B-NT02]
that the Bercovici-Pata bijection is an homeomorphism. So the theorem is proved in the case
where λ = 1. But for every ∗-infinitely divisible distribution µ, the formula of the rectangular
R-transform with ratio λ of Λλ(µ) does not depend on λ, so theorem 1.4 allows us to claim that
all Λλ’s are homeomorphisms. �

The next theorem furthers the analogy between the free rectangular convolution and the
classical convolution of symmetric measures. As recalled in Theorem 3.3 of [BPB99], It is proved
in [GK54] that when (νn) is a sequence of symmetric probability measures on the real line and
(kn) is a sequence of integers tending to infinity, the sequence

(
ν∗kn

n

)
converges weakly to a ∗-

infinitely divisible distribution if and only if the sequence
(

knt2

1+t2 dνn(t)
)

of positive finite measures
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converges weakly to its Lévy measure. By the theorem 2.5, we know that it will be the case if the

sequence
(

ν
⊞λkn
n

)

converges weakly to the image of the ∗-infinitely divisible distribution by the

rectangular Bercovici-Pata bijection. The following theorem states the reciprocal implication.
So we have, for all ∗-infinitely divisible distribution µ,

(

ν∗kn
n

)

converges to µ ⇐⇒
(

ν
⊞λkn
n

)

converges to Λλ(µ) (3.1)

Theorem 3.3. Let (νn) be a sequence of symmetric probability measures on the real line and
(kn) be a sequence of integers tending to infinity. The sequence

(
ν∗kn

n

)
converges weakly to an ∗-

infinitely divisible distribution if and only if the sequence
(

ν
⊞λkn
n

)

converges weakly to its image

by the rectangular Bercovici-pata bijection with ratio λ.

Proof. By what precedes, it suffices to prove that if the sequence
(

knt2

1+t2
dνn(t)

)

of positive

finite measures converges weakly to a finite measure G, then the sequence
(

ν
⊞λn
n

)

converges

weakly to the ⊞λ-infinitely divisible distribution with Lévy measure G. Assume the sequence(
knt2

1+t2
dνn(t)

)

of positive finite measures to converge weakly to a finite measure G.

(1) The sequence (νn) converges weakly to δ0:

Indeed, for all ε > 0, as the function t 7→ t2

1+t2
is increasing on R+, we have

νn ([−ε, ε]c) ≤ 1 + ε2

ε2

∫

R

t2

1 + t2
dνn(t),

which tends to zero as n tends to infinity, because the sequence
(

knt2

1+t2
dνn(t)

)

is bounded.

(2) We have pointwise convergence of the rectangular R-transforms:
Let α, β and (vn) be as in the lemma 2.4. On ∆α,β, we have

C
ν

⊞λkn
n

(z) = knCνn(z) = kn

(
1√
z
Gνn

(
1√
z

)

− 1

)

(1 + vn(z)), (3.2)

but we have seen in the proof of theorem 2.5 that

kn

(
1√
z
Gνn

(
1√
z

)

− 1

)

= z

∫

R

t2 + 1

1 − t2z
︸ ︷︷ ︸

continuous
bounded fct of t

knt
2

1 + t2
dνn(t),

so, by pointwise convergence of the sequence (vn) to zero, the rectangular R-transform

of ν
⊞λkn
n converges pointwise to z 7→

∫

R
t2+1
1−t2z

dG(t) on the set ∆α,β.

(3) We have lim
y→0
y>0

C
ν

⊞λkn
n

(−y2) = 0 uniformly in n:

By equation (3.2) and (i) of lemma 2.4, it suffices to prove that

lim
y→0
y>0

kn((i/y)Gνn (i/y) − 1) = 0 uniformly in n,

that is, since νn is symmetric,

lim
y→0
y>0

∫

R

y2 + t2y2

1 + t2y2

knt
2

1 + t2
dνn(t) = 0 uniformly in n.
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When y < 1, t 7→ y2+t2y2

1+t2y2 ≤ 1 is increasing on [0,∞), so we have, for every T > 0,

∫

R

y2 + t2y2

1 + t2y2

knt
2

1 + t2
dνn(t) ≤

∫

[−T,T ]c

knt
2

1 + t2
dνn(t) +

y2 + T 2y2

1 + T 2y2

∫

R

knt
2

1 + t2
dνn(t).

Now fix ε > 0, choose T > 0 such that for all n,
∫

[−T,T ]c
knt2

1+t2
dνn(t) ≤ ε. For y large

enough,
y2 + T 2y2

1 + T 2y2
sup

n

∫

R

knt
2

1 + t2
dνn(t) is less than ε, which closes the proof.

�

The following corollary could have been proved with the equation (2.4), but the proof we give
is shorter and does not use any computations.

Corollary 3.4. The rectangular Bercovici-Pata bijection commutes with the dilations Dc, c > 0.

Proof. Let µ be a ∗-infinitely divisible distribution. Let, for each n ≥ 1, νn be a symmetric
distribution such that ν∗nn = µ. We have

Λλ ◦Dc(µ) = Λλ ◦Dc

(

lim
n→∞

ν∗nn

)

= Λλ

(

lim
n→∞

Dc(νn)∗n
)

= lim
n→∞

Dc(νn)⊞λn.

But from equation (2.4) and additivity of the rectangular R-transform, we know that

∀n ≥ 1,Dc(νn)⊞λn = Dc

(

ν
⊞λn
n

)

,

so, by continuity of Dc,

Λλ ◦Dc(µ) = Dc

(

lim
n→∞

ν
⊞λn
n

)

which is Dc ◦ Λλ(µ) by equation (3.1). �

So, if we define the ⊞λ-stable distributions to be the symmetric distributions whose orbit
under the action of the group of the dilations is stable under ⊞λ, the rectangular Bercovici-Pata
bijection exchanges symmetric ∗-stable and ⊞λ-stable distributions. Moreover, the index of any
∗-stable distribution µ (i.e. the unique α ∈ (0, 2] such that for all n ≥ 1, µ∗n = D

n
1
α
(µ)) is

preserved, i.e. one has Λλ(µ)⊞λn = D
n

1
α
(Λλ(µ)).

Remark This remark could be called missed appointment for the Cauchy distribution. The
Cauchy type, {Ct = 1

π
tdx

x2+t2 ; t > 0}, is well known to be invariant under many transformations.

For example, this set is the set of symmetric ∗- and ⊞-stable distributions with index 1 (Ct has
Lévy measure tC1). But unless λ = 1, the set of ⊞λ-stable distributions with index 1 is not the
Cauchy type. Indeed, for t > 0, the rectangular R-transform with ratio λ of Λλ(Ct) is it

√
z. On

the other hand, from the easy computation GCt(z) = 1/(z − it) on the lower half-plane, one has
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HCt(z) = z 1−(1−λ)it
√

z
(1−it

√
z)2

, and

Ct = Λλ(Ct) ⇔ it
√
z = U

(

z

H−1
Ct

(z)
− 1

)

⇔ (λit
√
z + 1)(it

√
z + 1) =

z

H−1
Ct

(z)

⇔ H−1
Ct

(z) =
z

(λit
√
z + 1)(it

√
z + 1)

⇔ HCt

(
z

A(z)

)

= z, where A(z) = (λit
√
z + 1)(it

√
z + 1)

⇔ 1 − (1 − λ)itV (z) = A(z)((1 − itV (z))2, where V (z) =
√

z/A(z)

⇔ itV (z)(2A(z) − 1 + λ) = A(z) − t2z − 1

⇔ t2z(2A(z) − 1 + λ)2 = A(z)(A(z) − t2z − 1)2,

which can be easily verified using a formal calculus program, and which happens to be false
unless λ = 1.

Question. Inspired by what happens in the cases λ = 0 and λ = 1, we ask the following question:
is there, for each λ in [0, 1], a functionnal fλ from the set of symmetric probability measures on
R to the set of probability measures on R such that for all µ, ν symmetric probability measures,
µ⊞λν is the only symmetric probability measure satisfying

fλ(µ⊞λν) = fλ(µ)⊞fλ(ν) ?

Note that in the case λ = 1, the functionnal fλ(µ) = µ works, and in the case λ = 0,
functionnal which maps a measure to its push-forward by the square function works.

4. Rectangular Gaussian distribution and Marchenko-Pastur distribution

In this section, we will identify the rectangular Gaussian distribution ν, that is the image,
by the rectangular Bercovici-Pata bijection, of the Gaussian distribution with mean zero and
variance one. The corresponding Lévy measure is δ0, so the rectangular R-transform is z. We
will show that unless λ = 0, in which case ν = (δ−1 + δ1)/2, ν is the symmetric distribution
whose push forward by the function x→ x2 has the density

[
4λ− (x− 1 − λ)2

]1/2

2πλx
χ(x),

where χ stands for the characteristic function of the interval [(1−λ1/2)2, (1+λ1/2)2], which means
that for all n ≥ 1, the 2n-th moment of ν is 1/λ times the n-th moment of the Marchenko-Pastur
distribution with expectation λ (the Marchenko-Pastur distributions are presented page 65 of
[HP00]).

Recall that the sequence (c2n(µ))n≥1 of the free cumulants with ratio λ of a symmetric proba-
bility measure µ, defined in the very beginning of section 4.1 of [B-G1], are linked to the sequence
(mn(µ))n≥0 of its moments by the relation (proposition 3.5 of [B-G1]):

∀n ≥ 1, m2n(µ) =
∑

π∈NC’(2n)

λe(π)
∏

V ∈π

c|V |(µ), (4.1)
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where NC’(2n) is the set of noncroissing partitions of {1, . . . , 2n} in which all blocks have even
cardinality, and where e(π) denotes the number of blocks of π with even minimum.

The following lemma will be useful to study distributions coming from rectangular free prob-
ability theory. A function f defined on a conjugaison-stable subset of C is said to be commuting
with the conjugaison (abbreviated by c.w.c.) if f(z̄) = f(z). Note that the function z → z1/2 is
c.w.c., whereas z → √

z is not.

Lemma 4.1. If the rectangular R-transform of symmetric probability measure µ extends to an
analytic c.w.c. function in a neighborhood B(0, r) of zero in the complex plane and tends to zero
at zero, then the probability measure has compact support, and the expansion of Cµ(z) for small
z is given by the formula

Cµ(z) =
+∞∑

n=1

c2n(µ)zn. (4.2)

Proof. Let us define T (z) = (λz + 1)(z + 1). Note that U is the inverse of T − 1. Since the
extension of Cµ tends to zero at zero, z/H−1

µ (z) extends to a neighborhood of zero such that we
have, in this neighborhood,

z

H−1
µ (z)

= T (Cµ(z)) ,

and this function tends to 1 at zero. Thus H−1
µ (z) is one to one in a neighborhood of zero, and

Hµ extends to an analytic c.w.c. function in a neighborhood of zero such that

lim
z→0

Hµ(z)

z
= 1.

So the function Gµ(1/
√
z)/

√
z, which is equal to

λ− 1 +
[
(1 − λ)2 + 4λ(Hµ(z)/z)

]1/2

2λ

if λ > 0 and to Hµ(z) if λ = 0, extends to an analytic c.w.c. function in a neighborhood of zero.
But since µ is symmetric, for all z in the complement of the real nonnegative half line,

Gµ(1/
√
z)√

z
=

1√
z

∫

R

dµ(t)
1√
z
− t

=
1

2
√
z

∫

R

[

1
1√
z
− t

+
1

1√
z

+ t

]

dµ(t)=

∫

R

dµ(t)
1
z − t2

=Gρ(1/z),

where ρ is the push forward of µ by the function t → t2. Hence the Cauchy transform of ρ
extends to an analytic c.w.c. function in a neighborhood of infinity. Thus, by the Stieltjes
inversion formula, ρ is compactly supported, which implies that µ has compact support too.

µ has now been proved to be compactly supported. Then the second part of the lemma,
equation (4.2), has been established in section 4.1 of [B-G1]. �

So ν has compact support, and for all n ≥ 1, c2n(ν) = δ1,n.

Let us first treat the case where λ = 0. By (4.1), all even moment of ν are 1, so ν = (δ−1+δ1)/2.

λ > 0, by (4.1), the moments of ν are given by

∀n ≥ 1, m2n(ν) =
∑

π

λe(π) = λn
∑

π

(
1

λ

)o(π)

,

where the sums are taken over noncrossing pairings of {1, . . . , 2n} (a noncrossing pairing is a
noncrossing partition where all classes have cardinality two, recall also that for π partition, e(π)
and o(π) are respectively the number of classes of π with even and odd minimum).
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Lemma 4.2. Let I = {x1 < · · · < xn} and J = {y1 < z1 < y2 < z2 < · · · < yn < zn} be totally
ordered sets. There is a bijection π → π̈ from the set of noncrossing partitions of I to the set of
noncrossing pairings of J such that for all π,

|π| = o(π̈).

Proof. Let us first construct the map π → π̈ by the induction on n, using the following well
known result : a partition π of a finite totally ordered set is noncrossing if and only if one of
its class V is an interval and π\{V } is noncrossing (page 3 of [S98]). Consider a noncrossing
partition π of I. If π has only one class, we define π̈ to be

{{y1, zn}, {z1, y2}, {z2, y3}, . . . , {zn−1, yn}}.
In the other case, a strict class V of π is an interval, V = {xk, xk+1, . . . , xl}. Then we define π̈
to be

σ̈ ∪ {{yk, zl}, {zk, yk+1}, {zk+1, yk+2}, . . . , {zl−1, yl}},
where σ̈ is the image (defined by the induction hypothesis) of the partition

σ = π − {V }
of I − V (it is easy to see that the result does not depend on the choice of the interval V ).

The relation |π| = o(π̈) follows from the construction of π → π̈.

Let us now prove, by induction on n, that π → π̈ is a bijection. If n = 1, the result is obvious.
Suppose the result to be proved to the ranks 1, . . . , n−1, and consider a noncrossing pairing τ of
J . Let us prove that there exists exactly one noncrossing partition π of I such that π̈ = τ . Con-
sider l ∈ [n] minimal such that there exists k < l such that {yk, zl} is a class of τ (such an l exists
because it is the case of n). Then it is easy to see that {zk, yk+1}, {zk+1, yk+2}, . . . , {zl−1, yl} are
classes of τ , and any partition π of I such that π̈ = τ must satisfy V := {xk, xk+1, . . . , xl} ∈ π,
and

σ̈ = τ − {{yk, zl}, {zk, yk+1}, {zk+1, yk+2}, . . . , {zl−1, yl}},
where σ = π−{V } (partition of I−V ). Thus, by the induction hypothesis, there exists exactly
one noncrossing partition π of I such that π̈ = τ . �

So the moments of ν are given by

∀n ≥ 1, m2n(ν) = λn
∑

π∈NC(n)

(
1

λ

)|π|
.

But for all n ≥ 1,
∑

π∈NC(n) (1/λ)|π| is the n-th moment of a distribution with all free cumulants

being equal to 1/λ, i.e. of the Marchenko-Pastur distribution with parameter 1/λ (see [HP00]
p. 65). Thus the push-forward of ν by t → t2 is the push-forward of the Marchenko-Pastur
distribution with parameter 1/λ by the map t→ λt, and has density

[
4λ− (x− 1 − λ)2

]1/2

2πλx
χ(x),

where χ stands for the characteristic function of the interval [(1−λ1/2)2, (1 +λ1/2)2]. Hence we
have proved the following result:

Theorem 4.3. The rectangular Gaussian distribution ν with ratio λ > 0 has cumulants given
by

∀n ≥ 1, c2n(ν) = δn,1,
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and has density
[
4λ− (x2 − 1 − λ)2

]1/2

2πλ|x| χ(x2).

Its support is [−1 − λ1/2,−1 + λ1/2] ∪ [1 − λ1/2, 1 + λ1/2].

Note that when λ = 1, it is the well-known semi-circle law with radius two.

Remark 4.4 (Moments of the Marchenko-Pastur distribution). Note that the fact that the free
cumulants of the Marchenko-Pastur distribution with parameter a (see [HP00] p. 65) are all a

and the previous lemma give us a formula for its n-th moment: it is equal to
∑

π a
o(π), where

the sum is taken over all noncrossing pairings of [2n]. This formula, proved using a random
matrix approach, appeared already in an unpublished paper of Ferenc Oravecz and Dénes Petz.

5. A matricial model for the rectangular Bercovici-Pata bijection

In the previous section, the proofs rely on integral transforms and complex analysis. We will
construct, in this subsection, a matricial model for the ⊞λ-infinitely divisible laws and present
in a maybe more palpable way the Bercovici-Pata bijection with ratio λ.

In this section, d, d′ will represent dimensions of rectangular matrices, because n will be used
to another role. For any distribution P and any function f on a set of matrices, EP(f(M)) denotes
∫
f(M)dP(M). Let us recall that the singular law of a matrixM designs the uniform distribution

on the spectrum of |M | := (MM∗)
1

2 . Let us define the symmetrization µ̃ of a distribution µ
on the real line: it is the distribution which maps a Borel set B to (µ(B) + µ(−B))/2. The
symmetrization of the singular law of a matrix M will be denoted by µ̃|M |.

We are going to construct, in the same way as in [B-G04] and in [C-D04], for each d, d′ ≥ 1,
for each symmetric ∗-infinitely divisible distribution µ, an infinitely divisible distribution P

µ
d,d′

on the set of d×d′ complex matrices such that for all µ, ν, P
µ
d,d′ ∗ Pν

d,d′ = P
µ∗ν
d,d′ and such that

the symmetrization of the singular law of M (with M random matrix distributed according to
P

µ
d,d′) goes from µ to its image by the rectangular Bercovici-Pata bijection with ratio λ when

d, d′ → ∞, d
d′ → λ.

Let us introduce the heuristic argument that led us to choose the model we will present.
Consider a symmetric ∗-infinitely divisible distribution µ, and two sequences (νn) (symmetric

probability measures), (kn) (integers tending to infinity) such that ν∗kn
n tends weakly to µ.

Define, for each 1 ≤ d ≤ d′ and each n ≥ 1, Qνn
d,d′ to be the law of the d×d′ random matrix

U
[

Xn,iδ
j
i

]

1≤i≤d
1≤j≤d′

V

where U (resp. V ) is a uniform d×d (resp. d′×d′) unitary random matrix, Xn,1, . . . ,Xn,d are
distributed according to νn, and U, V,Xn,1 . . . are independent.

Then if one fixes n and lets d, d′ go to infinity in such a way that d
d′ → λ, the symmetrization of

the singular law of M1(νn)+· · ·+Mn(νn) (with M1(νn), . . . ,Mn(νn) independent and distributed

according to Qνn
d,d′) goes to ν

⊞λkn
n .

Moreover, if one fixes d, d′ and lets n go to infinity, the distribution
(

Qνn
d,d′

)∗kn

of M1(νn) +

· · ·+Mn(νn) converges weakly to a distribution P
µ
d,d′ on the set of d×d′ matrices, whose Fourier
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transform is given by the following formula: for all d×d′ matrix A

EP
µ

d,d′
(exp (iℜ (TrA∗M))) = exp (E (d×ψµ (ℜ (< u,Av >)))) (5.1)

where ψµ is the Lévy exponent of µ, i.e. the unique continuous function f on R such that f(0) = 0

and the Fourier transform of µ is exp ◦f , < ., . > is the canonical hermitian product of Cd, and
u = (u1, . . . , ud), v = (v1, . . . , vd′) are independent random vectors, uniformly distributed on the

unit sphere of respectively Cd, Cd′ . The proof of this weak convergence, analogous to the one
of theorem 3.1 of [B-G04], uses the polar decomposition of d×d′ matrices and the bi-unitarily
invariance of the distributions Qνn

d,d′ . Note that for all µ, ν, P
µ
d,d′ ∗ Pν

d,d′ = P
µ∗ν
d,d′ , and that when

µ = N(0, 1), P
µ
d,d′ is the distribution of a matrix [Mi,j] with (ℜMi,j,ℑMi,j) 1≤i≤d

1≤j≤d′
i.i.d. random

variables N(0, 1
2d′ )-distributed i.i.d..

So the convergence of the symmetrization of the singular law of a P
µ
d,d′ -random matrix is

the expression of the commutativity of the following diagram:

M1(νn) + · · · +Mn(νn)
n→∞

−−−−→ P
µ
d,d′

| |
d, d′ go to ∞

d/d′≃λ
d, d′ go to ∞

d/d′≃λ

↓ ↓
symmetrized
singular law:

ν
⊞λkn
n

n→∞
−−−−→

symmetrized
singular law:

Λλ(µ)

To prove this result, we need a preliminary result about cumulants of ⊞λ-infinitely divisible
laws with compactly supported Lévy measure. First, note that by lemma 4.1, such laws are
compactly supported. Recall that free cumulants with ratio λ have been defined in the beginning
of section 4 by (4.1).

Theorem 5.1. Let µ be a ∗-infinitely divisible distribution with compactly supported Lévy mea-
sure, and let, for n integer, µn be a probability measure such that µ∗nn = µ. Then for each k ≥ 1,
the sequence (n×m2k(µn))n tends to the 2k-th classical cumulant c∗2k(µ) of µ, which is equal to
c2k(Λλ(µ)).

Proof. Recall that classical cumulants of a probability measure ν (whose moments of all orders
are defined) linearize the classical convolution and are linked to its moments by the formula

∀k ≥ 1, mk(ν) =
∑

π∈Part(k)

∏

V ∈π

c∗|V |(ν).

So one has

n×m2k(µn) = n
∑

π∈Part(2k)

∏

V ∈π

c∗|V |(µn)
︸ ︷︷ ︸

n−1c∗
|V |

(µ)

=
∑

π∈Part(2k)

n1−|π|c∗π(µ) = c∗2k(µ) + o(1).

Let us denote νn = µ⊞λn
n . By the line above, for all k, m2k(µn) = O(n−1), so c2k(µn) = O(n−1),

so c2k(νn) = O(1), and m2k(νn) = O(1). Moreover, by equation (3.1), the sequence (νn)
converges weakly to Λλ(µ). So the moments of νn tend to the moments of Λλ(µ) (cf [B68]). But
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thanks to proposition 3.5 of [B-G1],

n×m2k(µn) = n
∑

π∈NC′(2k)

λe(π)
∏

V ∈π

c|V |(µn)
︸ ︷︷ ︸

n−1c|V |(νn)

=
∑

π∈NC’(2k)

λe(π)n1−|π| ∏

V ∈π

c|V |(νn),

which tends to
∑

π∈NC’(2k)

λe(π)δ
|π|
1

∏

V ∈π

c|V |(Λλ(µ)) = c2k(Λλ(µ)).

�

We will first prove the result when µ has a compactly supported Lévy measure. We will work
with a sequence (d′d)d such that 1 ≤ d ≤ d′d, and d/d′d tends to λ ∈ (0, 1] (even though the proof
can be adaptated to the case λ = 0, we assume that λ > 0 in order to simplify). To simplify
notations, d′ will stand for d′d.

Proposition 5.2. Let µ be a symmetric ∗-infinitely divisible distribution with compactly sup-
ported Lévy measure. Then for all integer k,

(a) lim
d→∞

EP
µ

d,d′

(
mk(µ̃|M |)

)
= mk (Λλ(µ)) .

(b) The variance, under P
µ
d,d′, of mk(µ̃|M |) tends to zero as d goes to infinity.

Proof. For n integer, [n] will denote {1, . . . , n}, and NC(n) will denote the set of noncrosing
partitions of [n]. Recall that NC’(n) denotes the set of noncrosing partitions of [n] in which all
blocks have even cardinality.

(a) First, for every complex d×d matrix M , for all integer k, mk

(
µ̃|M |

)
is null if k is odd

and is equal to tr (MM∗)
k
2 (tr denotes normalized trace) if k is even. Λλ(µ) is symmetric, so it

suffices to show that for all k ∈ N∗,

lim
d→∞

EP
µ

d,d′

(

tr (MM∗)k
)

= m2k (Λλ(µ)) .

Let, for n ∈ N∗, µn be the probability measure such that µ∗nn = µ. Consider, for d ≥ 1 and

n ≥ 1,
(

M
(i)
d,n

)

1≤i≤n
i.i.d. random matrices with distribution Q

µn

d,d′ . By definition, for every

d ≥ 1, the sum of the M
(i)
d,n’s (i = 1 . . . n) converges in distribution to P

µ
d,d′ when n goes to ∞.

We know, by theorem 5.1 that for all k ∈ N∗, the sequence (n×mk(µn))n is bounded, and so
(see [B68]) for all k, d ∈ N∗,

EP
µ

d,d′

(
m2k

(
µ̃|M |

))
= lim

n→∞
E



tr

((
n∑

i=1

M
(i)
d,n

)(
n∑

i=1

M
(i)∗
d,n

))k


 . (5.2)

Let us fix k ∈ N∗.
We are going to use the formula (5.2).
Let, for d, n ≥ 1,

bd,n = E



tr

((
n∑

i=1

M
(i)
d,n

)(
n∑

i=1

M
(i)∗
d,n

))k


 .
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From now on, we do not write anymore the index d in M
(i)
d,n. We denote, for l, n non-negative

integers, by Al
n the number of one-to-one maps from [l] to [n], i.e. n(n − 1) · · · (n− l + 1). For

π partition of [2k], for 1 ≤ l ≤ 2k, we denote by π(l) the index of the class of l, after having
ordered the classes according to the order of their first element (for example, π(1) = 1; π(2) = 1

if 1
π∼ 2 and π(2) = 2 if 1

π
≁ 2). Then we have

bd,n = tr



E




∑

f∈{1,...,n}2k

M (f(1))
n M (f(2))∗

n · · ·M (f(2k))∗
n









= tr



E




∑

π∈Part(2k)

A|π|
n M (π(1))

n M (π(2))∗
n M (π(3))

n · · ·M (π(2k))∗
n







 .

But E




M

(1)∗
n M (1)

n · · ·M (1)∗
n

︸ ︷︷ ︸

2l + 1 alterned factors




 = E




M

(1)
n M (1)∗

n · · ·M (1)
n

︸ ︷︷ ︸

2l + 1 alterned factors




 = 0,

E



M (1)∗
n M (1)

n · · ·M (1)
n

︸ ︷︷ ︸

2l alterned factors



 =
d

d′
m2l(µn)Id′ ,

E



M (1)
n M (1)∗

n · · ·M (1)∗
n

︸ ︷︷ ︸

2l alterned factors



 = m2l(µn)Id.

So, using many times the fact that a partition π of a finite totally ordered set is noncrossing
if and only if one of its class V is an interval and π\{V } is noncrossing (page 3 of [S98]) and
integrating successively with respect to the different independent random matrices, one has

π ∈ NC’(2k) ⇒ tr E

(

M (π(1))
n M (π(2))∗

n · · ·M (π(2k))∗
n

)

=

(
d

d′

)e(π) ∏

B∈π

m|B|(µn)

︸ ︷︷ ︸

:=mπ(µn)

,

π ∈ NC(2k)\NC’(2k) ⇒ tr E

(

M (π(1))
n M (π(2))∗

n · · ·M (π(2k))∗
n

)

= 0.

But A
|π|
n ∼ n|π|, so, by the preceding theorem, the limit, when n goes to infinity, of

tr



E




∑

π∈Part(2k)

A|π|
n M (π(1))

n M (π(2))∗
n · · ·M (π(2k))∗

n









is
∑

π∈NC’(2k)

(
d
d′

)e(π)
mπ(µ), which tends to

∑

π∈NC’(2k)

λe(π)mπ(µ) = m2k (Λλ(µ)) when d goes to

infinity.

So it suffices to prove that

b′d,n :=
∑

π∈Part(2k)
π/∈NC(2k)

A|π|
n tr E

{

M (π(1))
n M (π(2))∗

n M (π(3))
n · · ·M (π(2k))∗

n

}
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vanishes when n, and then d, go to infinity. Let us expand the trace: b′n,d is equal to

1

d

∑

π∈Part(k)
π/∈NC(k)

∑

j∈[d′]2k

∀r odd, jr≤d

A|π|
n E

{[

M (π(1))
n

]

j1,j2

[

M (π(2))∗
n

]

j2,j3
· · ·
[

M (π(2k))∗
n

]

j2k,j1

}

.

Using the fact that
(

M
(i)
d,n

)

1≤i≤n
are independent copies of a matrix with distribution Q

µn

d,d′ , we

deduce (with the notation j2k+1 = j1)

b′d,n =
1

d

∑

π∈Part(k)
π/∈NC(k)

A|π|
n

∑

j∈[d′]2k

∀r odd, jr≤d

∏

B∈π

EQ
µn
d,d′







∏

r∈B
r odd

Mjr,jr+1

∏

r∈B
r even

M∗
jr ,jr+1







=
1

d

∑

π∈Part(k)
π/∈NC(k)

A
|π|
n

n|π|

∑

j∈[d′]2k

∀r odd, jr≤d

∏

B∈π

nE







∑

l∈[d]B

∏

r∈B
r odd

ujr,lrvlr,jr+1
Xn,lr

∏

r∈B
r even

v̄lr ,jrXn,lr ūjr+1,lr







,

where U, V,Xn,1, . . . ,Xn,d are independent, with respective distribution the Haar measure on
the group of d×d unitary matrices, the Haar measure on the group of d′×d′ unitary matrices,
and µn.

For all B ⊂ [2k], for all j ∈ [d′]2k such that for all r odd, jr ≤ d, summing over the partition
generated by l, one has

nE







∑

l∈[d]B

∏

r∈B
r odd

ujr,lrvlr,jr+1
Xn,lr

∏

r∈B
r even

v̄lr ,jrXn,lr ūjr+1,lr







=
∑

σ∈Part(B)

∑

l∈[d]σ

n1−|σ|
[
∏

B∈σ

nm|B|(µn)

]

E







∏

r∈B
r odd

ujr,lrvlr ,jr+1

∏

r∈B
r even

v̄lr ,jr ūjr+1,lr







which tends, according to theorem 5.1, to

d∑

l=1

c|B|(µ)E







∏

r∈B
r odd

ujr,lvl,jr+1

∏

r∈B
r even

v̄l,jr ūjr+1,l







.

Which is equal, by invariance of uniform distributions on unitary groups by permutation of rows
and columns, to

d×c|B|(µ)E







∏

r∈B
r odd

ujrvjr+1

∏

r∈B
r even

v̄jr ūjr+1







,

where u, v are independent uniform random vectors on the unit spheres of Cd,Cd′ .
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So the limit, when n goes to infinity, of b′d,n is

1

d

∑

π∈Part(k)
π/∈NC(k)

∑

j∈[d′]2k

∀r odd, jr≤d

∏

B∈π

d×c|B|(µ)E







∏

r∈B
r odd

ujrvjr+1

∏

r∈B
r even

v̄jr ūjr+1







,

which absolute value is less or equal, by invariance of the distributions of u and v under permu-
tation of coordinates, to

1

d

∑

π,τ∈Part(k)
π/∈NC(k)

d′|π|+|τ |
cπ(µ)

∏

B∈π

∣
∣
∣
∣
∣
∣
∣

E







∏

r∈B
r odd

ujrvjr+1

∏

r∈B
r even

v̄jr ūjr+1







∣
∣
∣
∣
∣
∣
∣

.

Moreover, by invariance of the distribution of u under the action of unitary diagonal matrices,
for every pair (π, τ) of partitions of [2k], if

∏

B∈π

E







∏

r∈B
r odd

uτ(r)vτ(r+1)

∏

r∈B
r even

uτ(r+1)vτ(r)







is non zero, then for every class B of π, there exists φ, permutation of B, which maps odd
numbers to even numbers and vice versa, such that for all r ∈ B, τ(r) = τ(φ(r) + 1). It implies,
by lemma 4.4 of [B-G04], that |τ | + |π| ≤ 2k. So one has, using the Hölder inequality and
equation (4.2.11) of [HP00],

lim
n→∞

b′n,d = O(d−1),

which closes the proof of (a).

One notes that the proof of (a) is a very closed adaptation of the proof of Proposition 4.1
of [B-G04], by adaptation of the arguments to the context of non hermitian and non square
matrices. Using again the same adaptation, the proof of (b) is along the same lines as the proof
of Proposition 5.1 of [B-G04]. �

To conclude this section, we have to state its main theorem. The proof of the theorem is
similar to the one of Theorem 7.6 of [B-G04], based on the previous proposition and on an
approximation by compound Poisson laws. The only modification is to work with products of
the type MM∗ rather than M∗M .

Theorem 5.3. Let µ be a symmetric ∗-infinitely divisible distribution. Let, for d ≥ 1, Md be a
random matrix with distribution P

µ
d,d′.

Then the symmetrization µ̃|Md| of the singular law of Md converges in probability to Ψ(µ).

Remark 5.4. In the case where µ is a normal law, one recovers the well known result about
asymptotic spectral distribution of Wishart random matrices.

6. Rectangular symmetric Poisson distributions as limits of sums of rank-one

matrices

Let us define the symmetric Poisson distribution with parameter a > 0 to be the ∗-infinitely
divisible distribution with Lévy measure c

4 (δ1 + δ−1). It can also be seen as the law of X − Y ,
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where X,Y are independent random variables with (unsymmetric) Poisson law with parameter
c/2, or as the weak limit of

((

1 − c

n

)

δ0 +
c

2n
(δ−1 + δ1)

)∗n
.

Note that rectangular analogues of Gaussian distributions have been identified to subsection 4,
but rectangular analogues of symmetric Poisson distributions are still not characterized, whereas
free analogues of (unsymmetric) Poisson distributions are Marchenko-Pastur laws. But the
computations for symmetric Poisson laws are harder than for the unsymmetric ones (even for
free analogues of symmetric Poisson distributions, the densities are not possible to express).
Nevertheless, we have the following characterization of the rectangular analogue of symmetric
Poisson distributions.

Proposition 6.1. Consider λ ∈ (0, 1], and c > 0. Then the image, by the Bercovici-Pata
bijection with ratio λ, of the symmetric Poisson distribution with parameter c is the limit, for
convergence in probability, of the symmetrization of the singular law of the random matrix

M(d, d′, d′′) :=
d′′∑

k=1

ud(k)vd′(k)
∗

when

d→ ∞,
d

d′
→ λ,

d′′

d
→ c, (6.1)

where ud(k), vd′(k) (k ≥ 1) are independent uniform random vectors of the unit spheres of Cd,Cd′

(considered as column matrices).

Remark 6.2. Note that when λ = 1, the image, by the Bercovici-Pata bijection with ratio λ,
of the symmetric Poisson distribution with parameter c is τ+⊞τ−, where τ+ is the Marchenko-
Pastur distribution with parameter c/2, and τ− is the push-forward, by the function t → −t, of
τ+.

Proof. Let us denote by µ the symmetric Poisson distribution with parameter c, and by σ the
push-forward by t → t2 of its image by the Bercovici-Pata bijection with ratio λ. As explained
in the beginning of the proof of theorem 4.6 of [B-G1], it suffices to prove that for each ε > 0,
the probability of the event

{

sup
ℑz≥1

∣
∣
∣
∣

1

d
Tr Rz

(
A(d, d′, d′′)

)
−Gσ(z)

∣
∣
∣
∣
> ε

}

tends to zero as d, d′, d′′ tend to infinity as in (6.1), where

A(d, d′, d′′) = M(d, d′, d′′)M(d, d′, d′′)∗.

Fix ε > 0. It can easily be seen that P
µ
d,d′ is the distribution of

N(d, d′) :=

X(cd)
∑

k=1

ud(k)vd′(k)
∗,

whereX(cd) is a random variable distributed according to an (unsymmetric) Poisson distribution
with parameter cd, and X(cd) is independent of the ud(k)’s and of the vd′(k)’s. Thus by the
previous theorem, with the notation B(d, d′) = N(d, d′)N(d, d′)∗, the probability of the event

{

sup
ℑz≥1

∣
∣
∣
∣

1

d
Tr Rz

(
B(d, d′)

)
−Gσ(z)

∣
∣
∣
∣
> ε

}



26 FLORENT BENAYCH-GEORGES

tends to zero. Thus it suffices to prove that the probability of the event
{

sup
ℑz≥1

∣
∣
∣
∣

1

d
Tr
(
Rz

(
B(d, d′)

)
− Rz

(
A(d, d′, d′′)

))
∣
∣
∣
∣
> ε

}

tends to zero. But for all hermitian d×d matrices A,B, for all z such that ℑz ≥ 1, we have

Rz(B) − Rz(A) = −Rz(B)(B −A)Rz(A),

whose normalized trace is not more than its norm times its rank divided by d. Moreover,
||Rz(B) − Rz(A)|| ≤ 2, and the rank is not more than the one of B −A. So it suffices to prove
that

1

d
rg
(
B(d, d′) −A(d, d′, d′′)

)

converges in probability to zero. B(d, d′) −A(d, d′, d′′) can be puten in the form

(. . .)(N(d, d′) −M(d, d′, d′′))∗ + (N(d, d′) −M(d, d′, d′′))(. . .),

so
1

d
rg
(
B(d, d′) −A(d, d′, d′′)

)
≤ 2

d
rg(N(d, d′) −M(d, d′, d′′)) ≤ 2

d
|X(cd) − d′′|,

which converges in probability to zero, by the weak law of great numbers. �
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