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ABSTRACT
We present a maximum-likelihood analysis of galaxy–galaxy lensing effects in galaxy clusters
and in the field. The aim is to determine the accuracy and robustness of constraints that can
be obtained on galaxy halo properties in both environments: the high-density cluster and the
low-density field. This paper is theoretically motivated, therefore we work exclusively with
simulated data (nevertheless defined to match observations) to study the accuracy with which
input parameters for mass distributions for galaxies can be extracted. We model galaxies in
the cluster and the field using a wide range of mass profiles: the truncated pseudo-isothermal
elliptical mass distribution, the Navarro–Frenk–White profile, and a power-law model with a
core radius. We find that independent of the choice of profile the mean mass of galaxies (of
the order of 1012 M�) can be estimated to within 15 per cent from ground-based data and
with an error of less than 10 per cent with space observations. Additionally, robust constraints
can be obtained on the mean slope of the mass profile. The two standard parameters that
characterize galaxy halo models, the central velocity dispersion and the truncation radius,
can also be retrieved reliably from the maximum-likelihood analysis. We find that there is an
optimal scale Rmax which marks the boundary between lenses that effectively contribute to
the measured shear. Lenses beyond Rmax in fact dilute the shear signal. Furthermore, going
beyond the usual formulation, we propose a reparametrization of the mass models that allows
us to put yet stronger constraints on the aperture mass of a galaxy halo (with less than 10 per
cent error). The gain in signal-to-noise using space observations, expected for instance with
the proposed SuperNova/Acceleration Probe (SNAP) satellite compared to ground-based data
in terms of accuracy of retrieving input parameters, is highly significant.

Key words: gravitational lensing – galaxies: general – galaxies: haloes – cosmology: miscel-
laneous – dark matter.

1 I N T RO D U C T I O N

Gravitational lensing has now become a popular tool to measure the
mass distribution of structure in the Universe on a range of scales.
Recently, there has been considerable progress in mapping the mass
distribution on relatively large scales using cosmic shear (Refregier
2003), and on cluster scales combining strong and weak lensing
features (Gavazzi et al. 2003; Kneib et al. 2003). On the scale of
individual galaxies as well, there has been much work carried out
on modelling and understanding multiple quasar systems (Fassnacht
et al. 1999; Phillips et al. 2000). In fact, in many cases it has become
clear that it is almost never a unique lens that is responsible for
the detected lensing and the presence of a nearby galaxy, group or

�E-mail: marceau@ast.obs-mip.fr

cluster along the line of sight plays an important role in inducing the
shear and amplification (Keeton, Kochanek & Seljak 1997; Kneib,
Cohen & Hjorth 2000; Mø̈ller et al. 2002). In other words, there
are likely no clean lines of sight and comprehensive modelling is
needed to map the lensing configuration accurately. Therefore, the
mass mapping problem is best tackled using an ‘inverse’ approach
where the adopted method is to model the distribution of matter
around many lines of sight, and to optimize the mass distribution to
match the observations as closely as possible.

Analysing galaxy–galaxy lensing using maximum-likelihood
lensing techniques is an example of such a method. Indeed, the
goal of galaxy–galaxy lensing is to obtain constraints on the physi-
cal parameters that characterize the dark matter haloes of galaxies.
This is accomplished directly using lensing because the deformation
in the shapes of background galaxies produced by the foreground
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lenses, although weak, is observationally detected statistically. The
difficulty is that multiple deflections frequently occur along the line
of sight, and therefore nearby groups or clusters can have an impor-
tant effect yet again on the resultant distortions. This introduces a
systematic bias in the mass obtained for the deflectors when using
simple models.

Galaxy–galaxy lensing work began with the first detection of the
signal from ground-based data (Brainerd, Blandford & Smail 1996,
hereafter BBS) and later with the Hubble Space Telescope (HST)
data (Griffitths et al. 1996). Maximum-likelihood techniques have
been developed by Schneider & Rix (1997), Natarajan & Kneib
(1997) and Geiger & Schneider (1998) to obtain constraints on
galaxy halo properties in clusters and in the field. The results of these
analyses suggest that galaxy haloes in clusters are significantly less
massive but more compact compared to galaxy haloes around field
galaxies of equivalent luminosity (Natarajan et al. 1998; Natarajan,
Kneib & Smail 2002a). Besides, in the case of galaxy haloes in the
field no clear edge is detected to the mass distribution even on scales
of the order of a few hundred kpc (Fisher et al. 2000; McKay et al.
2001). Only two published studies to date by Hoekstra et al. (2003)
and Hoekstra, Yee & Gladders (2004) have been able to put an upper
bound on the characteristic extension of a field halo at about 290+139

−82

and 185+30
−28 h−1 kpc, which are only marginally consistent with each

other. Besides, these large values do not impose a stringent con-
straint for typical galaxy mass distributions because at these typical
radii the galaxy density is only a few times above the mean density
of the Universe.

Galaxy–galaxy lensing studies provide information on average
properties of the halo population; therefore, the results depend on
the specific parametrized model chosen to fit the observational data.
From a purely observational point of view, the reliability of the
galaxy–galaxy lensing signal depends on the number density of
galaxies whose distorted shapes can be reliably measured, as well
as any additional constraints that can be added to the analysis, for in-
stance, redshifts of the lens galaxies, redshifts of the source galaxies,
galaxy type, dynamical constraints, and the presence of larger-scale
structure such as groups or clusters in the vicinity.

Other methods to determine the masses of galaxies are gener-
ally based on the dynamical properties of the luminous matter: the
measurement of the rotation curve or velocity dispersion; the study
of the velocity field of nearby objects such as planetary nebulae,
globular clusters and satellite galaxies. These dynamical methods
are complementary to lensing, but often probe much smaller scales.
The study of the velocity field around galaxies, for instance, is gener-
ally limited to local galaxies. However, with the large spectroscopic
surveys such as the Two-Degree Field (2dF) and the Sloan Digital
Sky Survey (SDSS), it is now possible to extend such analyses to
larger scales (Brainerd & Specian 2003; Prada et al. 2003). Prob-
ing the dynamics of stars in galaxies is limited to the inner regions
when studying high-redshift galaxies. Therefore, at the present time
there is limited direct overlap between lensing and dynamical stud-
ies in terms of scales probed. However, this situation is likely to
change in the very near future when large spectroscopic surveys
of distant galaxies, such as the DEEP2 survey (Davis et al. 2003),
the VIRMOS-VLT Deep Survey (VVDS; Le Fevre et al. 2003) or
the z-COSMOS survey (http://webast.ast.obs-mip.fr/zCosmos), are
completed.

The inner slopes of density profiles provide a strong test of struc-
ture formation in cold dark matter (CDM) models and lensing pro-
vides an unbiased way to estimate the slopes. Treu & Koopmans
(2004) and Koopmans & Treu (2003) have studied the slope of the
mass distribution at small radii (on scales ranging from a few to

about 20 kpc) by combining dynamical estimates and strong lens-
ing constraints. They find that the mass distribution profile is flatter
than the singular isothermal sphere (SIS) profile but steeper than the
Navarro–Frenk–White (NFW) profile. Therefore, there is mounting
evidence for the lack of cores (a constant density region) in galaxies
as well as in clusters.

The galaxy–galaxy lensing results from the SDSS have also pro-
vided (McKay et al. 2001; Sheldon et al. 2003) interesting con-
straints on the distribution of light and dark matter in galaxies. Mass
and light trace seem to trace each other reasonably well. The power
of galaxy–galaxy lensing is that it provides a probe of the gravita-
tional potential of the haloes of galaxies out to large radii, where no
other methods are viable for intermediate-redshift as well as high-
redshift galaxies, independent of the dynamical state of the system.
A similar approach combining dynamical estimates of the central
part of galaxies and galaxy–galaxy lensing is planned in the future
as part of the GEMS and COSMOS projects.

This paper is organized as follows. In Section 2, we describe the
method adopted to model galaxy lenses, source galaxies, the sim-
ulations performed to recover the input parameters of the lenses
and the calculation of the aperture mass. In Section 3, we present
the results for three different classes of lens models considered in
this work. In Section 4, we explore the results of reparametrizing
the models. Whenever necessary, our results are scaled to the cur-
rently preferred flat, low-matter density �CDM cosmology with
�M = 0.3, �� = 0.7 and a Hubble constant H 0 = 65 h65 km s−1

Mpc−1. In such a cosmology, at z = 0.2, 1 arcsec corresponds to
3.55 h−1

65 kpc.

2 G A L A X Y – G A L A X Y L E N S I N G

We briefly review the basic principles of gravitational lensing of
distant galaxies before describing the mass distributions adopted to
model them. This section concludes with the presentation of our
method to recover the lensing galaxy parameters.

2.1 Lensing equation

The light rays emitted by a distant galaxy are deflected en route to
us by the presence of mass concentrations along the line of sight.
The distortion can produce strong effects such as multiple images
or arcs if there is close alignment between the distant source and a
foreground source. However, most of the time only a weak distortion
occurs in the galaxy shape.

Let us consider the multiple lensing equation (Schneider, Ehlers
& Falco 1992). For two lenses A and B, the lens equation becomes

β = θ − αA
DAS

DOS
− αB

DBS

DOS
(1)

where β is the source position, αA is the deflection due to the lens
A, αB is the deflection due to the lens B and DAS, DBS and DOS are
the angular diameter distances between source plane S and lens A,
lens B and the observer, respectively (note that we must have zA <

zB < zS). The deflection angle αX due to the lens X is proportional
to the angular distance DOX between observer and lens X and to the
gradient of the projected gravitational potential φ generated by the
lens X.

For a given background galaxy (i) and its associated lens (j),
we can construct the amplification matrix aij, which provides the
mapping between the source plane and the image plane

ai j =
(

1 − κ i j − γ
i j
1 −γ

i j
2

−γ
i j
2 1 − κ i j + γ

i j
1

)
(2)
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where κ is the convergence and γ 1 and γ 2 are the two compo-
nents of the shear. In the case of multiple deflections (more than
one lens contributing to the observed distortion), we will assume
that the total amplification matrix ai of the distant galaxy (i) is
equal to the sum of the individual contributions aij from each
lens:

ai =
∑

j

ai j . (3)

This assumption relies on the fact that we are in the weak lensing
regime and that the distance between the lenses is large compared
to the Einstein radius of each individual lens. For instance, in the
simulations performed in this paper, the separation between two
lenses is larger than 3 arcsec, when a typical value for the Einstein
radius is about 1 arcsec.

2.2 Modelling the mass distribution of galaxies

Lensing probes the two-dimensional projected mass along the line of
sight; therefore, we deal with the two-dimensional potential, φ(R),
resulting from the three-dimensional density distribution ρ(r ) pro-
jected on to the lens plane. The related projected surface mass den-
sity � is then given by

4πG�(R) = ∇2φ(R). (4)

Moreover, we are interested in the two-dimensional projected
mass inside radius R (the aperture radius Raper) defined as follows:

Maper(R) = 2π

∫ R

0

�(r )r dr . (5)

In this paper, we study three different mass models: (i) the two-
component pseudo-isothermal mass distribution (PIEMD; Kneib
et al. 1996), which is a more physically motivated mass profile than
the isothermal sphere profile (SIS) but sharing the same profile slope
at intermediate radius; (ii) the NFW (Navarro, Frenk & White 1997)
profile; (iii) a power-law (PL) profile with core radius. These enable
us to explore a wide range of mass distributions and to reveal the
important parameters to which lensing is sensitive. The character-
istic scales used to describe the different mass profiles are given in
arcsec. We assume that the lenses have a circular geometry and are
at a redshift of 0.2.

2.2.1 PIEMD profile

The density distribution for this model is given by

ρ(r ) = ρ0(
1 + r 2/r 2

core

)(
1 + r 2/r 2

cut

) (6)

with the core radius rcore of the order of 100 pc, and a truncation
radius rcut. We also introduce a shape parameter a = r cut/r core. In the
centre, ρ � ρ 0/(1 + r 2/r 2

core), which describes a core with central
density ρ 0. The transition region (r core < r < r cut) is isothermal,
with ρ � r−2. In the outer parts, the density falls off as ρ � r−4,
as is usually required for models of elliptical galaxies. Fig. 1 illus-
trates this behaviour. These models have been successfully used by
Natarajan et al. (1998, 2002a) to fit observed early-type galaxies in
cluster lenses.

Figure 1. The density profile ρ(r ), the rotation velocity V rot(R) and the
aperture mass M aper(R) for the three different mass profiles studied in this
paper. For each of these model profiles, the relevant parameter choices are
shown in the figure, for a circular lens at z = 0.2.
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Integrating equation (6), we obtain the two-dimensional surface
mass density distribution

�(R) = σ 2
0 rcut

2G(rcut − rcore)

(
1√

r 2
core + R2

− 1√
r 2

cut + R2

)
. (7)

Here, σ 0 is the central velocity dispersion for a circular potential
related to ρ 0 by the following relation:

ρ0 = σ 2
0

2πG

(
rcut + rcore

r 2
corercut

)
. (8)

It can be shown that, for a vanishing core radius, the surface mass
profile obtained above becomes identical to the surface mass profile
used by BBS for modelling galaxy–galaxy lensing. The enclosed
two-dimensional aperture mass interior to radius R is

Maper(R) = πrcutσ
2
0

G

(
1 −

√
r 2

cut + R2 −
√

r 2
core + R2

rcut − rcore

)
. (9)

The total mass of such a model is finite and is given by

Mtot = πσ 2
0

G

r 2
cut

rcut + rcore
� πσ 2

0 rcut

G
. (10)

Fig. 1 shows the behaviour of Maper as a function of the aper-
ture radius Raper and of ρ(r ) for such a profile, with σ 0 = 220 km
s−1, r core = 0.1 arcsec, r cut = 30 arcsec. ρ(r ) is also shown, nor-
malized to the critical density of the Universe ρ crit, where ρ crit =
3H 2

0/8πG.

2.2.2 NFW profile

The NFW density profile (Navarro et al. 1997) provides the best fit
to the haloes that form in N-body simulations of collisionless dark
matter. In fact, the NFW profile reproduces with good accuracy
the radial distribution of structures in these simulations over nine
orders of magnitude in mass (from the scale of globular clusters to
that of massive galaxy clusters). Because it is thought that matter in
the Universe is dominated by a form of dissipationless CDM, this
‘universal profile’ offers an interesting and natural way of describing
mass concentrations. The density distribution of the NFW profile is
given by

ρ(r ) = ρs

(r/rs)(1 + r/rs)2
(11)

where ρ s is a characteristic density. It is possible to parametrize this
model in terms of M200, which is the mass contained in a radius r200

where the criterion ρ = 200ρcrit holds, and δc the density contrast
(or equivalently c = r 200/r s, the concentration parameter). We have
the following relations between the two parametrizations:

ρs = δcρc, M200 = 800

3
πr 3

200ρc,

δc = 200

3

c3

ln(1 + c) − (c/1 + c)
. (12)

The properties of the projected quantities depend on the ratio r/r s,
so it is useful to introduce the dimensionless radial coordinate, x =
r/r s = R/r s. Moreover, the velocity dispersion σ (r ) of this po-
tential, computed with the Jeans equation assuming an isotropic
velocity distribution, gives an unrealistic central velocity dispersion
[σ (0) = 0]. In order to compare the NFW potential with other po-
tentials used to model lenses, we define a characteristic velocity σ s

as follows:

σ 2
s = 4

3
Gr 2

s ρs. (13)

The surface mass density for the NFW is given by

�(x) =
∫ +∞

−∞
ρ(rs, x, z) dz = 2ρsrs F(x) (14)

with

F(x) =




1

x2 − 1

(
1 − 1√

1 − x2
argch

1

x

)
(x < 1)

1

3
(x = 1)

1

x2 − 1

(
1 − 1√

x2 − 1
arccos

1

x

)
(x > 1)

. (15)

The two-dimensional aperture mass Maper contained within the di-
mensionless radius x is (Bartelmann 1996)

Maper(R) = 3πσ 2
s rs

2G
g(x) (16)

with

g(x) =




ln
x

2
+ 1√

1 − x2
argch

1

x
(x < 1)

1 + ln

(
1

2

)
(x = 1)

ln
x

2
+ 1√

x2 − 1
arccos

1

x
(x > 1)

. (17)

The mass M200 can be written as a function of σ s, r 200 and c:

M200 = 200π
c2

δc

σ 2
s r200

G
. (18)

Fig. 1 shows the behaviour of Maper as a function of the aperture
radius Raper and of ρ(r ), with σ s = 225 km s−1 and r s = 3 arcsec. This
profile has a concentration parameter c = r 200/r s � 12, a typical
value for a galaxy, and a projected mass inside r 200 : M 200 of ∼3 ×
1012 M�.

2.2.3 Power-law profile with a core

Another simple model to describe the mass distribution of a galaxy is
a PL model with a core. In a CDM-dominated hierarchical structure
formation scenario, mass profiles are expected to be independent of
the mass scale, and therefore a PL profile is of interest. The PL mass
distribution has three parameters: a core radius rcore of the order of a
kpc for an average galaxy, a central velocity dispersion, σ 0 measured
in km s−1, and an exponent (α) which defines the gradient of the
mass distribution. The three-dimensional density profile is (Kneib
1993)

ρ(r ) = ρ0
1 + (1 − 2α/3)(r/rcore)2[

1 + (r/rcore)2
]2+α

. (19)

Introducing x = r/r core, the density profile falls off as ρ � x−2(1+α).
Note that the case α = 0 corresponds to an isothermal sphere with
a core radius, and α > 0 defines density profiles steeper than an
isothermal sphere with a core radius. The relation between ρ 0 and
σ 0 is given by

ρ0 = σ 2
0

r 2
core

9(1 − 2α)

4πG
. (20)

The surface mass density is

�(x) = �0
1 + (1 − 2α/2)x2

(1 + x2)3/2+α
(21)
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and the two-dimensional aperture mass contained within the dimen-
sionless radius x is

Maper(R) = 3(1 + 2α)σ 2
0 rcore

G

x2 + x4

(1 + x2)3/2+α
I1+α (22)

with

I1+α =
∫ ∞

0

dx

(1 + x2)1+α
. (23)

Fig. 1 shows the behaviour of ρ(r ) and M aper(r ) for such a profile,
with σ = 400 km s−1 and α = 0.4 (in this case, I 1.4 = 1.06).

2.3 Comparing these profiles

Beginning with the Boltzmann equation to describe the behaviour
of the CDM collisionless particles that constitute a galaxy halo, the
Jeans equation for a spherical potential and for an isotropic velocity
distribution (σ ≡ σ r ) is given by

1

ρ

d(σ 2ρ)

dr
= −d�

dr
(24)

where � is the three-dimensional potential. Considering the limit at
+∞, wherein σ (r ) → 0 and ρ(r ) → 0 to perform the integration,
we have

σ 2(r ) = − 1

ρ(r )

∫ +∞

r

ρ(r ′)
d�(r ′)

dr ′ dr ′. (25)

Solving this equation does not lead generally to a simple analytical
expression for the velocity dispersion.

Hence, one usually uses the rotation velocity defined as

V 2
rot(R) = G Maper(R)

R
. (26)

Fig. 1 shows the behaviour of V rot(R) for the three different mass
profiles studied here.

It can be shown that for any spherically symmetric profile, the
mass inside the Einstein radius RE is proportional to R2

E, so that
profiles for which RE is constant can be compared. It is easy to
show (e.g. Kneib 1993) that

Maper(RE) = π�crit R
2
E. (27)

Thus, we adjust the parameters of the different mass profiles in
order to have the same Einstein radius, and therefore the same mass
within the Einstein radius. The results are illustrated in Fig. 2; this
plot allows us to rescale the velocity dispersions derived for each
profile. We can immediately see from this plot that for r > 4 arcsec,
the shears computed from the three profiles are comparable. Note
that in the case of the PL profile there is a strong dependence of the
velocity dispersion on the value of the exponent α. For example,
the PL profile with σ 0 = 660 km s−1 and an exponent of 0.3 induces
the same shear as one with σ 0 = 400 km s−1 and an exponent of 0.4.
Therefore, there is degeneracy between the value of σ 0 and α for
the PL profile. In order to illustrate the behaviour of the PL profile,
we include this latter profile in Figs 1 and 2.

3 S I M U L AT I N G G A L A X Y – G A L A X Y L E N S I N G

3.1 Measurement of background galaxy shapes

We study in detail the lensing effects in two observational scenar-
ios: (i) a ground-based survey using a wide field camera and (ii)

Figure 2. The reduced shears (γ /1 − κ) for the three different models
for which the Einstein radius RE = 1 arcsec (upper panel), and differences
between them expressed as a percentage where we have used the PIEMD as
the reference profile (lower panel).

data from space-based observations. Ground-based data are char-
acterized by the following image quality: seeing of about 0.6–0.8
arcsec, and a galaxy number density of 20–40 galaxies per arcmin2,
of which only 50–70 per cent can generally be used to measure their
shapes reliably. The above estimates were obtained from two hours
of observation in the R band with the CFH12k camera with a field
of view of 44 × 28 arcmin2.

Space observations have a significantly better image quality, with
a point spread function of about 0.1–0.15 arcsec, and a galaxy
number density of about 40–100 galaxies per arcmin2 [Super-
Nova/Acceleration Probe (SNAP) mission sensitivities; see Rhodes
et al. 2004], of which about 80 per cent can be used in a weak lensing
study because their shapes can be measured to the requisite degree
of precision. Half an hour of observation in the R band of A2218
with the HST has provided the above estimates.

The measurement of shapes of lensed background galaxies is
made using the second moment of the intensity of their light dis-
tribution. The quantity that is extracted for each galaxy is its com-
plex ellipticity, e, defined as e = e1 + ie2. The magnitude of the
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ellipticity is e =
√

e2
1 + e2

2, the mean ellipticity m = (
∑

i ei )/N ,
and the dispersion of the ellipticity is equal to the square root of
the variance, defined by var = (

∑
i (ei − m)2)/N , where N is the

number of objects.

3.2 Scaling the mass distribution from the light distribution

The foreground lenses are described by a mass profile with known in-
put parameters. The parameters used to describe the different lenses
are scaled as a function of luminosity. The scaling relation for σ 0

assumes that mass traces light, and its origin resides in the Tully–
Fisher or Faber–Jackson relations. The scaling relation for the ra-
dial parameter assumes that the mass-to-light ratio is constant for
all galaxies. We do not take into account the scatter in these scaling
relations. Note that there are other possible scaling relations, and
that in principle we can test them with lensing.

3.2.1 PIEMD profile

We have for this profile

σ0 = σ ∗
0

(
L

L∗

)1/4

and rcut = r∗
cut

(
L

L∗

)1/2

. (28)

The parameter rcore is kept fixed at 0.1 arcsec, a fairly typical value
for a galaxy.

From equation (13), we can scale the total mass with the lumi-
nosity as

Mtot = πσ 2
0 rcut

G
= πσ ∗2

0 r∗
cut

G

(
L

L∗

)3/4

. (29)

3.2.2 NFW profile

Similar to the PIEMD profile, we have

σ0 = σ ∗
0

(
L

L∗

)1/4

and rs = r∗
s

(
L

L∗

)1/2

. (30)

3.2.3 PL profile

For the PL profile, we have

σ0 = σ ∗
0

(
L

L∗

)1/4

and rcore = r∗
core

(
L

L∗

)1/2

. (31)

In order to illustrate the coherence of these scaling laws, we show
the shear profiles obtained for a typical faint (L = L∗/10) and bright
(L = 3L∗) galaxy (see Fig. 3).

3.3 Background galaxies

The way we simulate the background source population is the same
for the two cases when the lenses belong to a cluster versus when
they are field galaxies, as follows.

(i) They are allocated random positions.
(ii) The number counts are generated in consonance with galaxy

counts typical for a 2-h integration time in the R band. The magni-
tudes are assigned by drawing the number count observed with the
Canada–France-Hawaii Telescope (CFHT).

Figure 3. The reduced shears (γ /1 − κ) for each profile (panels 1 and 3)
and differences between them expressed in percentages (panels 2 and 4), for
L = L∗/10 and L = 3L∗ respectively, where once again the PIEMD is the
reference profile.
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Constraining the mass distribution of galaxies 315

Figure 4. Galaxy counts from CFH12k and HST data (left panel), and the ellipticity distributions for the CFH12k and HST data (centre panel). The value in
parentheses is the mean value of the ellipticity in each case. The right panel shows the redshift distribution of the background population in our simulations.

(iii) The shapes are assigned by drawing the ellipticity from a
Gaussian distribution similar to the observed CFHT ellipticity dis-
tribution (see Fig. 4).

(iv) Redshift distribution. We use the R band to define the number
counts of galaxies and use the Hubble Deep Field prescription in
terms of the mean redshift per magnitude bin, and the same redshift
distribution as BBS.

Note that from ground as well as from space, we use the same
redshift distribution and do not take into account the effect of the
geometry of the survey in these simulations. Moreover, the assumed
redshift distribution shows a lack of any sources at redshift less than
about 0.8. This is unrealistic, but the sources at z < 0.8 typically do
not contribute significantly to the galaxy–galaxy lensing signal due
to the functional form of the lensing efficiency. At low redshifts,
intrinsic alignments of galaxies are also a contaminant but only at
the few per cent level.

3.4 Lens galaxies

The way we simulate the foreground lenses galaxies is different
in the case of galaxies inside the cluster and in the field. In both
cases, the luminosity distribution is drawn from a luminosity func-
tion modelled on observational data.

3.4.1 Cluster galaxies

We put the individual lenses constituting a cluster at a redshift of
0.2, and model it as a superposition of large-scale smooth cluster
component and a few clumps. In order to obtain a better match to
the real data, the positions and the magnitudes of the foreground
cluster galaxies are drawn from the positions and the magnitudes of
ellipticals in the cluster A1689 at z = 0.18.

3.4.2 Field galaxies

For simplicity, the lenses are randomly distributed in position and
uniformly distributed in a redshift range from 0.2 to 0.5. This distri-
bution is a crude approximation of reality and we do not introduce
any clustering of the lens galaxies.

4 M A X I M U M - L I K E L I H O O D A NA LY S I S

4.1 Methodology

Using the foreground cluster and field galaxies as the lens for
the sheet of generated background galaxies, we use LENSTOOL to

solve the lensing equation and produce a catalogue of lensed back-
ground galaxies. This catalogue contains the following information
for each lensed object: the position, the shape parameters and the
redshift. Then this catalogue is processed through a numerical code
that retrieves the input parameters of the lenses using a maximum-
likelihood method as proposed by Schneider & Rix (1997) and as
implemented by Natarajan & Kneib (1997). For each image (i),
given a mass model for the foreground lensing galaxies, we can
compute the amplification matrix ai as a sum of the contribution
from all the foreground galaxies j ; zj < zi that lie within a circle of
inner radius Rmin, and outer radius Rmax measured from the centre
of the image (i):

ai =
∑
z j <zi

d(i, j)<Rmax

ai j . (32)

The total shear experienced by a background galaxy γ i can be ob-
tained by summing the contributions from all the foreground galax-
ies j ; zj < zi that lie within an annulus with inner and outer radii,
respectively, at Rmin and Rmax.

Given the observed ellipticity εi
obs [defined as ε = (a − b)/(a +

b)] and the associated amplification matrix ai, we are able to retrieve
the intrinsic ellipticity εs

i of the source before lensing:

εs
i = F

(
εi

obs, ai

)
. (33)

In the weak lensing regime, this relation can be simplified as

εs
i = εi

obs + γ i . (34)

In order to assign a likelihood to the parameters used to describe the
lensing galaxies, we use Ps, the ellipticity probability distribution
in the absence of lensing. Repeating this procedure for each image
in the catalogue, we construct the likelihood function

L =
∏

i

Ps
(
εs

i

)
, (35)

which is a function of the parameters used to define the mass models
of the lenses. For each pair of chosen parameters, we can compute
a likelihood function. The larger the likelihood function, the more
accurate the retrieved parameters used to describe the lenses. The
inversion from the observed ellipticity to the intrinsic ellipticity is
fully analytical and takes into account all the non-linearities arising
in the strong lensing regime, which may occur in the configuration
with a cluster component.

The likelihood function for the parametric mass model for the
lenses does have interesting convergence properties. The likelihood
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316 M. Limousin, J.-P. Kneib and P. Natarajan

surface is topologically complex because the degeneracies in the
problem tend to produce several maxima. However, the conver-
gence in both the cluster lens case and the field lens case is driven
essentially by the width of the intrinsic ellipticity distribution of the
sources. The degeneracies in this scheme are the generic ones that
plague all lensing analyses: the mass sheet degeneracy (essentially
the addition of a constant sheet of mass to the lens plane does not
produce any discernible effect on the lensing of the background
sources), the shot noise due to the finite number of sampled back-
ground sources and the details of the truncation of the mass profile
of the lenses. The mass sheet degeneracy cannot be circumvented
because we are necessarily measuring both the magnification κ and
the shear γ from the same data points. Note that these are implicitly
needed in computing the amplification matrix. Shot noise is more
of a limitation in ground-based surveys when the number count
of background galaxies is more sparse compared to the space-based
data, despite the fact that lensing helps by magnifying fainter sources
that normally would not make it into a magnitude-limited survey.
The details of the mass profile and, in fact, the prescription used
to truncate the mass at large radii influence the likelihood results.
Because in galaxy–galaxy lensing (both in the field and interior
to a cluster) we are most sensitive to the mass enclosed within an
aperture and are less sensitive to the density profile in the inner re-
gions, the truncation of the mass distribution at large radii drives
the convergence of the likelihood function. This can be clearly seen
in the plots where the influence of Rmax shows up directly in the
likelihood contours (see Fig. 5). Note that the parameters chosen to
characterize the mass model – the central velocity dispersion and
the truncation radius – also contribute to the noise in the likelihood,
thereby pointing to more efficient reparametrizations that we also
explore in the final section of this paper.

Figure 5. The PIEMD profile, in a field configuration. In the panels from
left to right, the value of Rmax increases from 30, 60, 90 to 150 arcsec. When
Rmax > 100 arcsec, the contours converge along the rcut axis. Note that the
convention throughout this paper is that the dot marks the value of the input
parameters and the cross marks the retrieved output values.

4.2 Cluster weak lensing mass estimates

We construct a composite mass model for the cluster by superposing
a large-scale smooth mass component and individual galaxies. As a
first guess for the smooth mass model we use the averaged shear field
obtained by simply binning up the shear in radial bins from the centre
outward. This is a prior in the analysis that becomes modified with
every iteration once the clumps are added to the model. We simulate
the deformations induced by a clump with known parameters (which
can be easily derived from a weak lensing analysis, for example).
Then we add in the individual cluster galaxies and derive the shear
of this composite system, which turns out to be larger than the
shear for the clump alone as expected; this implies that we need
to simultaneously modify the smooth component and the clumps
during the optimization process. In massive lensing clusters, about
10 per cent of the total mass is associated with the individual galaxies
(Natarajan et al. 2002a). This large-scale clump is described by a
PIEMD profile with the following parameters: σ 0 = 1070 km s−1,
r cut = 930 kpc and r core = 60 kpc. This gives a total integrated
mass of 7.3 × 1014 M�. The mass we partition to galaxies is of
the order of 7.3 × 1013 M�. How do we modify the parameters
of the large-scale clump in order to match the shear field? We find
that the velocity dispersion of the large-scale clump needs to be
reduced by about 5 per cent, keeping the others parameters fixed to
accommodate the clumpiness.

5 R E S U LT S

We present the results obtained for the simulated data set, for the
PIEMD, NFW and truncated PL models for two different configura-
tions (Figs 6–8). The points mark the value of the input parameters
used in order to generate the simulated catalogue, and the cross
denotes the value of the output parameters as estimated from the
maximum-likelihood analysis. We refer to the different plots by
assigning them a number: the first is the upper-left plot, and the
last (plot 9) is the lower-right plot. The first plot shows the refer-
ence field situation: 25 000 elliptical sources in a field of 26 × 26
arcmin2, which translates into a number density of about 35 galax-
ies per arcmin2. Then the following plots (2, 3 and 4) show the
results obtained with 25 000 circular sources, then with 40 000 el-
liptical sources mimicking typical space observations with a density
of 60 galaxies per arcmin2, then with 12 500 elliptical sources, cor-
responding to the ground-based configuration with a galaxy density
of 17 per arcmin2, in a field configuration. Note that, in the case
of circular sources, we do not have to deal with the intrinsic ellip-
ticity noise; the detection is therefore improved and the contours
are tighter. Plots 5 and 6 demonstrate the effect of the unknown red-
shift distribution for the background sources in a field configuration,
when the redshift of the lenses is assumed to be known. The last
row represents the cluster configuration: the ‘standard’ configura-
tion (plot 7), then configurations where an uncertainty on the cluster
has been introduced (plots 8 and 9). For each plot, the contours rep-
resent the 3σ , 4σ and 5σ confidence levels and, along the dotted
lines, the mass within a projected radius R aper = 100 kpc is constant,
equal to the value indicated on the plot.

5.1 Number of background lenses

For each profile, in the field configuration, we explore the influence
of the background density on the detection. The ‘standard’ configu-
ration has 25 000 background sources (a density of 35 galaxies per
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Constraining the mass distribution of galaxies 317

Figure 6. Results for the PIEMD profile. The top-left plot (plot 1) is the reference field situation with 25 000 elliptical background sources in a field of 26 ×
26 arcmin2, corresponding to a density of background sources equal to about 35 galaxies per arcmin2. Then the following plots (2, 3 and 4) show the results
obtained with 25 000 circular sources, then with 40 000 elliptical sources mimicking typical space observations with roughly 60 galaxies per arcmin2, then
with 12 500 elliptical sources, corresponding to the ground-based configuration with a galaxy number density of 17 galaxies per arcmin2. Plots 5 and 6 show
the effect of introducing an uncertainty in the mean redshift of the source population; this uncertainty is equal to −20 per cent (left) and +20 per cent (right),
and no uncertainty is introduced for the lens redshift. The last row shows the results from the cluster configuration: the reference cluster configuration (plot 7),
then configurations where an uncertainty on the cluster modelling is introduced, knowing the central velocity dispersion of the cluster to within ±10 per cent.
The contours in this figure represent the 3σ , 4σ and 5σ confidence levels, and along the dotted lines in every panel, the mass within a projected radius Raper of
100 kpc is kept constant at the value indicated on the plot. Note that the dot indicates input values and the cross denotes the retrieved output.

arcmin2). We explore what happens when we increase this number
to 40 000 (60 per arcmin2), or reduce it to 12 500 (17 per arcmin2).
17 galaxies per arcmin2 corresponds to simulating ground-based
survey data, whereas 60 galaxies per arcmin2 corresponds to the
space-based survey data. The main difference between the ground
and space configurations is that from space the statistics are sig-

nificantly improved, and so the detection contours are significantly
narrower.

5.2 Effect of assigning redshifts from an assumed distribution

To quantify the uncertainty arising from not knowing the redshifts
for background sources, we performed the analysis after assigning
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318 M. Limousin, J.-P. Kneib and P. Natarajan

Figure 7. Results from the NFW profile. The top-left plot (plot 1) is the reference field situation with 25 000 elliptical background sources in a field of 26
× 26 arcmin2, corresponding to a density of background sources equal to about 35 galaxies per arcmin2. The following plots (2, 3 and 4) show the results
obtained with 25 000 circular sources, then with 40 000 elliptical sources, corresponding to data obtained from space with 60 galaxies per arcmin2, then with
12 500 elliptical sources, corresponding to the ground-based data of about 17 galaxies per arcmin2. Plots 5 and 6 show the effect of introducing an uncertainty
in the mean redshift of the source population; this uncertainty is equal to −20 per cent (left) and +20 per cent (right), and no uncertainty is introduced for the
lens redshift. The last row shows the results from the cluster configuration: the reference cluster configuration (plot 7), the effect of introducing an uncertainty
of ±10 per cent in the central velocity dispersion of the cluster model used. Contours in these figures represent the 3σ , 4σ and 5σ confidence levels and, along
the dotted lines in each panel, the mass within a projected radius Raper of 100 kpc is kept constant, with Maper at the quoted value indicated on the plot. Note
that the dot indicates input values and the cross denotes the retrieved output.

redshifts drawn from a distribution. The 25 000 sources are put at a
mean redshift zs and images are simulated. When constructing the
simulated catalogue, the background objects are assigned a mean
redshift of z s + δ z . This catalogue is then input into the maximum-
likelihood code. Because the strength of the shear is proportional to

the distance between the sources and the lenses, underestimating the
source redshifts leads to an overestimate of the lens masses and tends
to shift the confidence contours toward higher values for the velocity
dispersion. For the same reason, systematically overestimating the
source redshifts leads to an underestimate of the galaxy masses. In
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Constraining the mass distribution of galaxies 319

Figure 8. Results from the PL profile. The top-left plot (plot 1) is the reference field situation with 25 000 elliptical background sources in a field of 26 ×
26 arcmin2, corresponding to a density of background sources equal to about 35 galaxies per arcmin2. Then the following plots (2, 3 and 4) show the results
obtained with 25 000 circular sources, then with 40 000 elliptical sources corresponding to a typical space-based observation yielding 60 galaxies per arcmin2,
then with 12 500 elliptical sources corresponding to ground-based data with a galaxy number density of about 17 galaxies per arcmin2. Plots 5 and 6 show the
effect of introducing an uncertainty in the mean redshift of the source population; this uncertainty is equal to −20 per cent (left) and +20 per cent (right), and
no uncertainty is introduced for the lens redshift. The last row shows the results from the cluster configuration: the reference cluster configuration (plot 7), and
then configurations where uncertainty has been introduced in the cluster modelling. The contours in all these panels represent the 3σ , 4σ and 5σ confidence
levels. Note that the dot indicates input values and the cross denotes the retrieved output.

any case, we find that a redshift uncertainty of ±0.2 does not dra-
matically modify the conclusions. This is typically the precision we
can obtain with photometric redshift estimation, which is encourag-
ing for future surveys. These results are coherent with a recent study
by Kleinheinrich et al. (2004) based on the galaxy–galaxy lensing
results from the COMBO-17 survey. The 17 filters used in this sur-

vey provide a good estimation of a photometric redshift for both
lens and source galaxies. This allows the authors to investigate how
galaxy–galaxy lensing measurements are influenced by the knowl-
edge of redshifts for lens and source galaxies. They found that it is
of great importance to know the redshifts of individual lens galax-
ies in order to constrain the properties of their dark matter haloes,
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Table 1. Influence of an uncertainty in the mean redshift of the sources.
An error of δzS corresponds to a variation of E(zL, zS) equal to δE ,
which corresponds to a variation on σ 0 of the order of δσ 0. We see from
this table that this estimated variation on σ 0 is coherent with the variation
in the detection range as derived from the maximum-likelihood analysis.

δzS (per cent) δE δσ 0 σ 0

0 0 0 [174–196]
20 0.05 −7 [170–190]

−20 −0.05 7 [180–208]

but that the knowledge of individual source redshifts improves the
measurements only very little over use of statistical source redshift
distribution. The sensitivity of the measurements on the lens redshift
uncertainty is discussed by Kleinheinrich et al. (2004).

To be more quantitative, let us consider the lensing equation and
express it for a constant deflection angle. For a PIEMD profile with
a given σ 0, we have

σ 2
0

DLS

DS
= constant and

DLS

DS
= E(zl , zs) (36)

as introduced in Golse (2002). Therefore, the equation can be rewrit-
ten as

σ 2
0 E(zL, zS) = constant. (37)

The lenses are kept at a redshift of 0.2, and the mean redshift of
the sources is changed by δz = ±20 per cent. We then evaluate
the corresponding δσ 0 error introduced in the retrieval of the cen-
tral velocity dispersion in the likelihood analysis; Table 1 gives the
results. When we put an error of δzS (per cent), this gives a varia-
tion of E(zL, zS) equal to δE , and the corresponding variation on σ 0

is of the order of δσ 0. This range of values is given by the projection
of the 3σ contours along the σ 0 axis. We can see that the variation
in the detection range is in agreement with the calculations made.

5.3 Influence of the uncertainty in the cluster modelling

When working with the real data, we will have to put in by hand the
description of the cluster. The reliability of the results will depend on
the accuracy with which we describe the cluster. In order to study the
influence of the uncertainty of the cluster profile, the cluster compo-
nent is described by a PIEMD profile with a velocity dispersion of
σ cluster = 1000 km s−1. When constructing the simulated catalogue,
the cluster component is assigned a velocity dispersion of σ cluster +
δσ . The likelihood is then computed for this case.

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 Constraints obtained on mass profiles

For the PIEMD and NFW profiles, we have found that we are able to
retrieve the characteristic halo parameters with a reasonable preci-
sion, for every configuration. In fact, interestingly enough, the dot-
ted lines in Figs 6 and 7 show us that the aperture mass is retrieved
very accurately. This immediately suggests the reparametrization
of models considered here: rather than fitting in the (σ 0, r ) plane,
we can fit the deformations directly in the (M aper, R aper) plane. This
formulation is explored in the next section.

For the PL profile, we find that we can put some constraints on α,
the slope of the density profile, but not on the velocity dispersion,
because the likelihood function does not always converge along
that direction. So we can use this profile to estimate the slope of

Figure 9. Comparing the signal-to-noise for an estimate of the optimal
choice for Rmax. The solid lines correspond to the characteristic ellipticity
(due to the width of the ellipticity distribution), 0.25/

√
N as a function of

radius, from ground and space. The other line types (dot, dashed and dot-
dashed) correspond to the signal – the reduced shear as a function of radius
for typical luminosities.

dark matter haloes, without trusting the constraints we obtain on the
velocity dispersion for the profile.

6.2 Influence of Rmax

When working with real data, the results we obtain depend on the
value chosen for Rmax. When we take a low value for Rmax, the shear
for the image (i) is calculated with fewer lenses, and we find that
the contours do not close in rcut. When the value of this parameter
is increased, the contours converge and close. On the other hand,
picking a high value for Rmax introduces some noise in calculating
the shear, and can dilute the galaxy–galaxy lensing signal signif-
icantly: lenses that do not effectively participate in the lensing of
an image if utilized in the calculation become a source of noise.
Fig. 5 illustrates precisely this situation: for a given value of Rmax,
we obtain a good estimate of σ 0, but the robustness of the constraint
on rcut is directly related to the value of Rmax. Others authors have
reported that their results are sensitive to the value of this parameter
(e.g. Kleinheinrich 2003).

The choice of Rmax is therefore important. To obtain the order of
magnitude of this parameter, we compare the characteristic noise
in the problem, i.e. 0.25/

√
N , to the signal we are sensitive to, i.e.

the reduced shear; the factor of 0.25 is the width of the intrinsic
ellipticity distribution and N is the number of background objects at
a distance r from a lensing galaxy. This noise has been estimated by
analysing data from the ground-based CFH12k observations of the
cluster A1763 at a redshift of z = 0.22. From space, we expect the
number of background objects to be about six/seven times higher.
Fig. 9 shows that a value of about 100 arcsec can be used for Rmax. On
the other hand, the choice of the parameter Rmin does not influence
the results, so we fix this parameter to be of the order of a few kpc.

7 R E PA R A M E T R I Z AT I O N O F T H E P RO B L E M

Thus far, we have performed the likelihood analysis to optimize
the values of two parameters σ 0 and rcut (or rs). A different set of
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parameters can be chosen for maximizing the likelihood, for instance
Maper and Raper, which we explore below.

We have

L = L(σ0, rcut) and Maper = Maper(Raper, σ0, rcut) (38)

so we can write

σ0 = σ0(Maper, Raper, rcut). (39)

The likelihood function then becomes

L(Maper, Raper, rcut) (40)

and by summing over rcut, we obtain

L′ =
∑
rcut

L(Maper, Raper, rcut) (41)

L′ = L′(Maper, Raper). (42)

The sum is performed for a set of rcut values around the input
value used to simulate the catalogue and the range defined by the
projection of the 3σ contour level along the rcut axis. The results
do not depend strongly on the range used to do the sum. Figs 10
and 11 show the L′ contours we obtain for the NFW and PIEMD

Figure 10. The likelihood L′(Maper, Raper) for the NFW (upper panel) and
PIEMD (lower panel) profiles. The crossed line represents the M aper(Raper)
contour obtained with the input parameters used to describe the foreground
lenses in the cluster configuration.

Figure 11. The likelihood L′(Maper, Raper) for the NFW (upper panel) and
PIEMD (lower panel) profiles. The crossed line represents the M aper(Raper)
contour obtained with the input parameters used to describe the foreground
lenses in the field configuration.

profiles. Because the PL profile does not have a cut-off radius, we
cannot compare it easily with the reparametrized PIEMD and NFW
profiles. The plots above show that we can put strong constraints on
the aperture mass; the crossed line represents the line M aper(R aper)
as computed with the input model used to generate the simulated
catalogue.

The motivation of such a reparametrization is that we deal with
more direct physical quantities than halo parameters, i.e. an aperture
mass calculated within an aperture radius. The primary motivation
for galaxy–galaxy lensing studies was to measure halo masses, so
this offers a more convenient parametrization for this purpose. This
is also a different way of measuring masses compared to the aperture
densitometry method. Moreover, it is more suited to the case of
clustered galaxies because we are not able to integrate the shear
profile for any individual galaxy.

To conclude in this paper, we have discussed galaxy–galaxy lens-
ing in the context of measuring masses of field and cluster galax-
ies. We compare the robustness of recovering input parameters for
the mass distribution of lenses from a ground-based survey and
space-based observations. We explore a wide range of input mass
models for galaxy haloes. We simulate the galaxy–galaxy lensing
effect and generate synthetic catalogues. A maximum-likelihood
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322 M. Limousin, J.-P. Kneib and P. Natarajan

method is applied to the catalogues to successfully recover the lens
parameters in various configurations. Going beyond the standard
parametrization of a dark matter halo, we propose a reparametriza-
tion of the problem in terms of more direct physical quantities: the
aperture mass calculated within an aperture radius. The main result
of this reparametrization is that we are able to put even stronger
constraints on the aperture mass for an L∗ galaxy.
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