N
N

N

HAL

open science

DAMNED: A Distributed and Multithreaded Neural

Event-Driven simulation framework

Anthony Mouraud, Didier Puzenat, Hélene Paugam-Moisy

» To cite this version:

Anthony Mouraud, Didier Puzenat, Hélene Paugam-Moisy. DAMNED: A Distributed and Multi-
threaded Neural Event-Driven simulation framework. 2006. hal-00015137v2

HAL Id: hal-00015137
https://hal.science/hal-00015137v2

Preprint submitted on 21 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00015137v2
https://hal.archives-ouvertes.fr

ccsd-00015137, version 2 - 21 Mar 2006

DAMNED: A Distributed And Multithreaded Neural Event Drine
simulation framework

Anthony MOURAUD & Didier PUZENAT
GRIMAAG, Université Antilles-Guyane
Pointe-a-Pitre - Guadeloupe - France
{anour aud, dpuzenat }@ni v-ag. fr

Hélene RuGAM-MoOISY
Institute for Cognitive Science, UMR CNRS 5015

67 bld Pinel, F-69675 Bron cedex - Lyon - France
hpaugam@ sc. cnrs. fr

ABSTRACT 1 Introduction
In a Spiking Neural Networks (SNN), spike emissions are
sparsely and irregularly distributed both in time and in thdvancing the knowledge on cognitive functions, simu-
network architecture. Since a current feature of SNNslégions of Spiking Neural Networks (SNNs) represent a
a low average activity, efficientimplementations of SNNsridge between theoretical models and experimental mea-
are usually based on an Event-Driven Simulation (EDSurements in neuroscience. Unlike usual threshold or sig-
On the other hand, simulations of large scale neural neteid neurons, models of spiking neurons take into ac-
works can take advantage of distributing the neurons eount the precise times of spike emissions. Therefore,
a set of processors (either workstation cluster or paral8\Ns help to simulate biologically plausible interactions
computer). This article presents DAMNED, a large scali®tween neurons and to study the influence of local pa-
SNN simulation framework able to gather the benefits pdimeters, at the neuron level, on the network global be-
EDS and parallel computing. Two levels of parallelishavior, at the functional level. Results of very large scale
are combined: Distributed mapping of the neural topd&NN simulations can be analyzed the same way as ex-
ogy, at the network level, and local multithreaded allocperiments on animal or human, e.g. LHP [1] or EE[5 [2]
tion of resources for simultaneous processing of evemscording, thus helping to understand how the brain works
at the neuron level. Based on the causality of eventsja[l]. From a complementary point of view, theoretical
distributed solution is proposed for solving the complestudies [[5[6] give large hope in the computational power
problem of scheduling without synchronization barrier. of SNNs. Subject to the discovery of convenient learning
rules ﬂﬂi] simulations of large scale SNNs would pro-
vide efficient new solutions for many applications such as

KEY WORDS computer vision [[9], adaptive control, real-time systems
Spiking Neural Networks, Event-Driven Simulationsgr autonomous robotics.
Parallel Computing, Multi-threading, Scheduling. For developing very large scale SNNs, supporting a

wide variety of spiking neuron models, a general pur-

Accepted in : IASTED- PDCN 2006, Internationapose and fast running simulation framework is necessary.
conference on Parallel and Distributed Computing afthe well known GENESIS@O] and NEUROIﬂll] are
Networks good for simulating precise biophysical models of neu-



rons, but based on time driven simulation, i.e. scrollirficity of temporal events in SNNSs. SectitEh 3 defines the
all the neurons and synapses of the network at each tidigtributed multiprocessor architecture and specifies the
step, they are not specifically designed for fast simulatioole of the multithreaded processes. Secﬂon 4 details the
of very large scale SNNs. In accordance with biologidgorithms and addresses the synchronization problem. In
cal observations, the neurons of an SNN are sparsely aedtiorﬂs, we conclude with an outlook on DAMNED ex-
irregularly connected in space (network topology), anoitation.
the variability of spike flows implies they communicate
irregularly in time (network dynamics) with a low aver-
age activity. Since the activity of an SNN can be fullp Temporaj eventsin SNNs
described by emissions of dated spikes from pre-synaptic
neurons towards post-synaptic neurons, an Event-Driv@r typical neural network, at any time, each neuron can
Simulation (EDS) is clearly suitable for sequential sinfeceive on its dendritic tree some signals emitted by other
ulations of spiking neural networkf j1R,]13] {4] L5, 16heurons. An incoming signal arrives with a detay and
More generally, event-driven approaches substantially [ weighted by a synaptic strengih; to be processed by
duce the computational charge of simulators that contgak soma. The values df; andw,; are specific to a given
exchanges of dated events between event-driven cells Eénnection, from a presynaptic neurdito a postsynap-
without checking each cell at each time step. On the othgeuronV;. The membrane potential of a neuron varies
hand, since parallelism is an inherent feature of neufdlfunction of time and incoming signals. The neuron
processing in brain, simulations of large scale neural nehnits a spike, i.e. an outgoing signal on its axon, when-
works could take advantage of parallel comput{ng [1J, 18Jer its membrane potential overcomes a given threshold
or hardware implementations [19] 40] 21]. A few studigs In experimental setting, and thus for simulations, fir-
coupled parallel computing and EDS, for general purpoigg times are measured with some resolution yielding
systems[[22], and for SNN simulatiop [73] 4] 25]. a discrete time representation. Hence each spike can be
Our simulator belongs to the latter family and is closgonsidered as an event, with a time stamp, and each neu-
to Grassmann's worf [?8, P5], with some additional chafon can be considered as an event-driven Eell;, able
acteristics. Although it is known for lond [P6] that ao forecast its next spike emission time, as result from the

fine grain mapping of the network (e.g. one neuron pgitegration of incoming spikes.
processor) is dramatically inefficient, due to high com-

munication overhead, we think that a multithreaded i

Potential (mV) out goi ng spi ke

- N
i ; i Ni f t to be emitted
p]ementau_on of neurons as event-driven cells EC is eff 2'5 foecastto be emited
cient. Unlike several simulator§ [RP,]24] 25], we avoid\ i I Sk canceled aftenwards)
]

the implementation of a unique controller or farmer pro- 7
incoming spikes, from S

cessor for scheduling the network simulation. We Pras; presynaptic neurons -
pose to direct the timing of execution through the times @feitatory from Niy at t=0

excitatory from Ni, at t=1

events, without an explicit synghronization bar_rier. HENC.citatory rom N, at -3 § " | Membrane Potential
we propose DAMNED, a “Distributed And Multithreadednhibitory from Nig at =4 N ST DO

H ” oAl - and delayed impacts on Exc1(0) Exc2(1) Inhib(4) Exc3(3) Time (ms)
Neural Event Driven” simulation framework that gather§,enapic neuron nj W G, T S o ng spi kes

the benefits of EDS and distributed computing, and com-

bines two levels of parallelism (multiprocessor and multFigure 1: variations of membrane potential for a postsynap-
thread) for taking full advantage of the specific featuresf neuronV;. Three successive incoming Excitatory spikes let
SNNs, whatever the models of spiking neurons to be ifiorecast an outgoing spike that must be cancelled aftesyard
plemented. Designed for efficient simulations either stwe to a further incoming Inhibitory spike, with a smalletaje
workstation cluster or on parallel computer, the simuldss;-

tor is written in the object-oriented language C++, with However, the way to compute the future time of spike
the help of the MPI library to handle communications bemission can be complex, depending on the model of neu-
tween distant processors. Sect@n 2 develops the spewit. For instance, iEC; manages the incoming delays, a



further incoming spike, with inhibitory synapse, can camuns simultaneously two main threads so called CMC and
cel the forecast of an outgoing spike before the stamp &RC, for “ComMunication Controller” and “ComPuta-
sociated to this event (see FigL[r|e 1). Hence we havetitin Controller” respectively and as many extra threads as
address the delayed firing problem (seé [28[1}4, 13]). simultaneously computing neurons (see Figlire 2). Incom-
Since the activity in the network is unpredictable, in oirg spikes intended to be computed by every neurgns
der to preserve the temporal order of events, for the sdledonging to processdrr, are stored in a priority queue
of biological plausibility, we ought to control the unceref CM events, ordered by their spike time stamp. Out-
tainty of spike prediction. In the context of C++ languaggoing spikes resulting from computations of neurdvs
programming, we have chosen the following data strugelonging to processdrr, are stored in a priority queue
ture for classes of “events objects” : of CP events, ordered by their spike time stamp. They
are intended to be sent by the CMC process to all the tar-
get neuronsV; of N;, whatever they belong tér, or
to another processor. Processdr, knows the tables of
postsynaptic neurons (neuron numb&rsand numbern
of processotPr,, implementingN;) for all its neurons
N;. For local target neurons, i.&V; € Pr,, a CP event
[N;, st;, ert] from the CPC queue generates CM events
[N;, N;, st;] in the CMC queue of the same processor.
For distant target neurons, each CM evgNy,, N;, st;]
is packeted into a message to be sent to proceBsgr
implementingNy,.
) . _ . As illustrated by FigurE|2, each processor runs in paral-
wherecrt is m_‘e only if the typical time _Of Igcal run, ONje|: two main threads, CMC and CPC, with mutual exclu-
the processor implementing the neufsp is high enough 4, o, accessing each other priority queue. The CMC

to guarantee that no further incoming spike could evgry cpc threads continuously run each an infinite loop,
cancel the CP event (see sectﬂ)n 4 for further details). on the following procedures

Each class of “event-driven cells” EC objects is in
charge of the computation methods associated to a mo@dM C, ComM unication Controller

of spiking neuron, e.g. Integrate-and-Fire (IF, LIF), Spik 1 message receptiorif messages from other proces-
Response Model (SRM), or other (s¢e][27, 28]), so that  gorg gre available, then place all the received CM
different neuron types can be modeled in an heteroge- events[N;, N;, st;] inside the CMC priority queue,
neous SNN. Classically, aiC; object modeling a neu- ordered by their time stamyg; (or by arrival time, if

CM event (resulting fron€omMunicatiof
= incoming spike, to be computed

label of label of time stamp of
target neuron | source neuron| spike emission

Nj (integer) N; (integer) st, (integer)

CP event (resulting froffomPutatiof
= outgoing spike, to be emitted

label of time stamp of |  certification
source neuron | spike emission flag

N; (integer) st; (integer) crt (boolean)

ron N; has among its attributes the firing threshéjdof
the neuron, the synaptic weights; and the delays;; of
the connections from all the presynaptic neurdisable
to emit a spike toward4/;.

3 Distributed
threads

architecture and

The neural network topology must be distributed Bn

equal time stamps exist),

2. emission control If the next outgoing spike
[N;, st;, crt], at the top of the CPC queue, is autho-
rized, then look at the table of target neurons\of
create the CM evenisV;, N;, st;] for all the postsy-
naptic neuronsV; and place them either in the local
CMC queue, iftN; € Pr,, or in packets prepared for
further message sending,

3. message sendinglf packets are ready, then send
them to the target processors.

processors according to a static mapping, to be defined as
convenient for the application to be simulated. Each pro-All messages are sent and received according to MPI
cessorPr, implements a certain amount of EC objectsommunication protocols. Theceiveand sendproce-

labelled by their neuron numbéy;. Each processaPr,

dures do not stall waiting for effective messages at each



CMC ComMunication Controller process top cM event (step cpc 1) CPC ComPutation Controlle

|
CM event o ‘
NINTst =< ) @ Jlaunchthread| _ | g
spikes coming from an == cmMC CPC for neuron W
other processor (step CMC 1 ueue ueu compute the
P (step ’)(/ - d a potential new spike P )
\ dynamics of
ikes | ) - ] (step CPC 2) neuron Ny
spikes leaving to N - =
- ? : ---=| Nj|st
others processors NG/ < ! >
= CP event

(step CMC 2)

process top CP event (step CMC 2)

Figure 2: Architecture of a processdpr,, for p # 0. Several threads run simultaneously: A CMC thread, a CP&thand

as many threads as currently computing neurons. CMC rexspi&e events coming from other processors (step CMC 1). CMC
inserts the incoming events in the CM priority queue acewdb their time stampt;. CPC checks if the top CM event is
authorized for computation (step CPC 1). If authorisat®granted, the thread associated?6’; processes theN;,N;,st;] CM
event. IfN; triggers, the resulting spike generates a new CP eventathatserted in the CPC priority queue (step CPC 2). CMC
checks if the top CP event is authorized for emission. Ifise spike event is dispatched towards all the target neugemgrating

CM events that are inserted either in the CMC queue or in gadtkede sent to other processors.

loop step. They only check if messages are presentaithread ends. The EC object keeps a pointer to every CP
their communication buffers. They process them if relevent it has generated as far as the event is present in the

vant, otherwise the loop goes on. CPC queue. Hence the EC object can modify some certifi-
. cation flags if a new information allows it to authenticate
CPC, ComPutation Controller some old-queued events that have not yet been emitted.

1. computation starter If the next incoming spike For complete explanation of how to manage the delayed
[N;, N;, st;] at the top of the CMC queue, is authofiring problem, let us define two other local variables:
_rized, then launch the thread associated'd; that et, is the currenemission timen processoPr,
implements neurov; pt, is the currenprocessing timen processoPr,

2. result collector If a new spike[N;, st;, crt] has
been gene_rat_ed byC;, then place t_he _event InSIde’l’he variable:t,, switches to its opposite negative value if
the CPC p“o”.ty queus, ordered by |ts_ time stamp o cpc gueue (spikes to be emitted) becomes empty, and
(or default, arrival time if some other time stamps Al&vitch back to opposite positive value when new events
equal) arrives in CPC queue. Same behavior for the variable

Each time an incoming spike is computed by a neficcording to the state of the CMC queue (spikes to be
ron N;, the associated thread is activated. Since the CP@Cessed). Those two variables play a fundamental role
runs an infinite loop on theomputation starteandre- for controlling the scheduling on the set of processors and
sult collector procedures, several other threads, on Her defining the conditions of emission and computation
objects, can be active simultaneously, thus impleme@tthorizations, as detailed in sectign 4.
ing concurrent computation of several neurons, locally onA last point about the distributed architecture: The neu-
processorPr,, (Figure@). On each processe#th, rep- ral network topology is spread oni® processors. How-
resents the number of active threadsiam,. The variable ever, a realistic simulation requires an interaction whii t
nbth,, is incremented by theomputation starteproce- environment. Hence an extra processby is necessary
dure each time a thread is activated for an EC object, andsend the environment stimuli to input neurons (dis-
decremented by theesult collectorprocedure each timetributed on severaPr,, with p > 1) and to receive the

4



response from output neurons (also distributed on sevérahll the packets with time stamfis— 1 are ready for im-

Prq, with ¢ > 1). We prevent the processétry to be a mediate sending. Messages are sent to all the processors
controller or a farmer, but the way it helps the schedulingr,,,, m > 1, with the following information:

of the whole simulation is also fundamental, as explained

in next section. e the current update of the cloaklk(0), whereet,

has just been incrementedto

. . o if relevant, all the CM eventgV,, Ext, T — 1] that
4 Synchronlzatlon control methods will generate spike emissions at tiriieon N; input

neurons owned by processBr,,

The main point is to keep an exact computation of firing
times for all the neurons of the network, and to prevebven if a processoPr,, does not own input neurons,
all the processors from deadlock situations, despite of ¥keif it owns input neurons that do not trigger at time
may-be irregularly distributed firing dynamics that can ré-, it will receive a message with the cloakik(0).
sult from the environment data. The procesBoy is in  Note that the environment processBr, is the only
charge to send to the neural network all the input stim@ihe that can send messages reduced to the clock. Since
generated by the environment (e.g. translation in tem@d- the processors are aware of the last updatetgf
ral coding of an input vector) and to receive all the spikégnmediately”, or as soon as the message can be trans-
emitted by the output neurons of the network. mitted [we assume reliable communication channels],

Prq knows the actual tim@ of the environment, andthe argumentm) will be next omitted in notationt (m).
its currentemission timexty. At initial time, all the pro-
cessors emission times,, are set to). While the sim- ~ The simulation starts running by the incrementation of
ulation runs, each processor, includiRg,, may have a 7" to 1. Since spike events communication must respect a
partial and obsolete view of the clocks of the other préausal order, the following conditions are always true, on
cessors. Each process®r,,,, 0 < m < P, owns a local every processaPr,, (arguments have been omitted):
clock arrayClk(m) storing the emission times it currently 7" > 0 andet, > 0 all along the run, after simulation start

knows, for all the processofér,, 0 <p < P (Vp > 1) eto > |etp]
T and(Vp > 0) |et,| are never decreasing
Clk(m) = [ eto(m) | eti(m) | ... [ etp(m) | (¥p > 0) |pt,| is never decreasing

. > >
Each time a processdPr, sends a packet of events. (¥p > 1) eto > |pty|

(spike emissions) to a processdr,,,, the message is en- he links betweermission timet, andprocessing time
ma e .
capsulated with the local cloakik(p). Hence the clock ptp. are clarified below_, where a_lgo_rlthms that govem
Clk(m) can be updated each ti receives a mes. EMission and computation authorizations are detailed.
nier,, -

sage. We assess that the whole network scheduling can . . .
) . ach timePr( receives an output event packet, it for-
achieved this way, due to the local management of even

. . . . . wards all the CM event$Ext, N;, st;] to environment
causality. Since this way of controlling synchronization : . .
. p manager for further external processing, it updates its
does not require “look-ahead” query-messages, we PIs .
. p : . .clockClk(0), from the received clock'lk(q), as follows:
pose a more flexible method than the “safe window” sG- :
; . . (Vp > 1)if |etp(q)| > |etp(0)] thenet,(0) — etp(q);
lution described in[[33]. M
if (35>1)|et;j(q)|=T thenT — T +1;eto — T,
If T has been incremented, thér, sends the appropri-
Environment processor Processory is the only one ate messages to all ther,,,. Note thatPry may receive
that is not subject to the delayed firing problem since tkeveral output spike events, coming from different pro-
environment processor relays all the input stimuli towardsssors, between two successive incremenfs.o€on-
the neural network. HencBry knows exactly the datesversely, it is possible that no output neuron send spike
of all the external spikes that will trigger the input neusoremission, at a given tim&, and thenPr, does not re-

of the SNN. Each timér, increments the actual time toceive any message and does not update its clock. Such a



case would result quickly in stalling all the processors, by else ifcrt then emission is authorized;
blocking their emission and computation authorizations. else ifst; < pt, then emission is authorized;
For preventing the system from deadlock, we assume that  else ifnbth, = 0 then

a time-out is running orPry and thatT" is incremented if pt, < 0and(Vm # p)[st; < etm OF et < 0]
when time-out expired, which is coherent with the notion then emission is authorized;

of actual time represented Y. Henceet, is updated to else emission is delayed;

T and, provided that the time-out is sufficiently long, all else emission is delayed;

theet,,(0) can be set up td" — 1. Messages are sent tdf the emission is authorized, the CMC process updates
all the processors, with updated clo€kk(0) and possi- the local emission time: et, « st;
bly new spike events generated by external stimuli. THisthe CP event is authorized then it is removed from
time-out is rarely activated but it prevents the system tile CPC queue. Each time the CPC queue becomes
fall into deadlock when the dynamics of the SNN is reempty, the local emission time is changed to its opposite
duced to very low overall activity or activity loops thatt, «— —et, in order to indicate that there are no more
risk to be localized on a single processor or on a clusspike emissions to communicate, at present time, on
with no output spikes. processotPr,. If the emission authorization generates,
from the postsynaptic table of neurdf, new CM events
) o o to be further processed by one or more neurons local to
CMC algorithmsfor emission authorization Pr,, then the processing time,, takes back a positive
value:pt, «— |pt,|.
On each processdrr,, for p > 1, the CMC runs an
infinite loop on the successive procedures of messag&he present algorithm controls that an authorization
reception, emission controland message sending (Seg, pe emitted can not be delivered to a spike event
section[B). [N, st;, crt] before its validity has been assured, regard-
ing to the overall run of the simulated SNN. The emis-
At each message sending, procesBoy, checks if a sjon of the spike event is authorized if we are sure that
packet of required size (minimal packet sizéinpak 3| the further computations of neurd¥; can not invali-
is a parameter) is ready to be sent to another procesggte the present spike, either due to other computations lo-
Prm. In case of successful checking, processdy, cally running on processdpr, (controls onet,, pt, and
encapsulates the ready-to-be-sent packet with its currgpfy, ) or to distant spike events further incoming from
clock arrayC'lk(p) and sends it to the target processor. Ajther processors (controls ety,, for all m # p). Even if
each message reception from a proces3qy, the CMC 3 spike emission has been delayed only because the local
of Pry, inserts the incoming CM events in its priorityciock C'lk(p) was not correctly updated, we avoid to over-
queue, sets back the processing time to a positive valigd the communication network with query messages,
pty < |pty|, and updates its local knowledge of thk,, since the possible idle state is guaranteed to be ended by
on other processors as follows: the reception of either new incoming events from other
(Vm # p) if |etm(q)| = |etm(p)| thenetm (p) — etm(q); processors or clock messages coming firg.

The emission controlprocedure picks up a new CP
event [N;, st;, crt] form the top of the CPC priority CPC algorithms for computation authorization On
queue. This event has been computed by a local thré@¢h processoPr,, the CPC runs an infinite loop on
activated by the neuroV; and has generated a spikée successive proceduresmputation starteandresult
emission forecasted for time;,. In order to respect thecollector (see sectiofi3).
causality of events, the CMC process has to check the
authorization to communicate this event, by the following The computation starteiprocedure picks up the top
algorithm: CM event [N;, N;, st;] of the CMC process priority
if st; = et, then emission is authorized; gueue. This event notifies that the neurénhas emitted



a spike at timest; towards neuroV,. The CPC processinduces the certification of old eventd;, st;, crt] still
is in charge to deliver the computation authorizatiopresent in the CPC queuert < “true” each timest; is
according to the following algorithm: less or equal to the currently processedplus the mini-
if the thread associated #6C; is already active mal delayd}""" = min;(d;;) of neuronn;.
then{ EC; gets priority status [for further computation];
computation is delayed;

else ifst; = pt, then computation is authorized; 5 Conclusion
else ifnbth, = 0 then
if (Ym)[sti < ety OF ety < 0] We have designed a framework dedicated to event-driven
then computation is authorized; simulation of very large neural networks of biologically
else if local deadlock is detected then plausile spiking neurons. The DAMNED simulator is
if st; < st;(next event top of CPC queue)  based on two levels of parallelism: At a coarse grain
then computation is authorized; level, the SNN is distributed on several processors; At a
else computation is delayed; fine grain level, local computations of neurons are mul-
with the following condition for local deadlock detectiontithreaded on each processor. Since local clock updates,
if et, < st; and(Vm # p)[st; < ety OF ety < 0] based on event causality, are managed via spike events
If the computation is authorized, the CPC updates bdttessage passing, both time-consuming synchronization
the local processing time: pt, « st; barrier and centralized farmer processor can be avoided.

and the number of locally active threaﬂ&th;““. Each  Presently, the simulator has been successfully tested on

time the CMC queue becomes empty, the local processitpy SNN, with a basic model of spiking neuron. Further

time is changed to its opposite, — —pt,,. work will include implementation of large heterogeneous

SNNs. Time measurements and speed-up evaluations will

The present algorithm authorizes the computatid®e performed both on workstation clusters and on parallel

of only one event at a time by a given neurdh (the computers (e.g. at IN2P3 and C3I computation centers).

computation is delayed if the thread &iC; is active)

and regulates the computations, via the vari

accordi%g to the Wh0|£ network advanceme??j&stagefermces

known by way OT the CIOCIC_’lk(p) (cont_rols_ on all the Jl] W. Singer. Neural synchrony: A versatile code for the

Ctim). _Once aga'f" W.e avoid communication overhead, definition of relations™euron 24:49-65, 1999.

even if computation is delayed for a moment, due to

an obsolete clock, since the problem will be soIvediZ] C. Tallon-Baudry, O. Bertrand, and C. Fischer. Osailist

by further reception of messages coming from other synchrony between human extrastriate areas during visual
Processors short-term memory maintenanck Neuroscience21:1-5,

2001.

The result collectorscans the active threads, first for[3] E-M. Izhikevich, J.A. Gally, and G.M. Edelman. Spike-
an EC with priority status (if relevant) or in a loop on the ~ timing dynamics of neuronal groupsCerebral Cortex
number of the currently active threads. If a neutsn 14:933-944, 2004.
computation of an event is over (i.e. thread ended), thdd] D. Meunier and H. Paugam-Moisy. Inhibition and spike-
the number of active threads is decremem};j The time-dependent plasticity govern the formation and disrup
result of the computation is either null or a new outgoing tiqn of a distributed synchronized neural assembly. (sub-
spike even{N;, st;, crt] that theresult collectorinserts mitted), 2005.
in the CPC queue. If the CPC queue was previouslfp] W. Maass. Networks of spiking neurons: The third
empty, then the emission timg,, takes back a positive generation of neural network model®Neural Networks

Va'ue:etp — |€tp|- 10(9)1659—1671, 1997.
[6] J.J. Hopfield and C.D. Brody. What is a moment? tran-
Moreover, the computation of an event for a neuhgn sient synchrony as a collective mechanism for spatiotem-



(7]

(8]

poral integrationProc. Natl. Acad. S¢i98(3):1282-1287, [20]
2001.

R. Legenstein, C. Naeger, and W. Maass. What can a neu-
ron learn with spike-time-dependent plasticityReural [21]
Computation17(11):2337-2382, 2005.

J. Sima and J. Sgall. On the nonlearnability of a single
spiking neuron.Neural Computation17(12):2635-2647,

2005. [22]

[9] A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

SpikeNET: A simulator for modeling large networks of in-
tegrate and fire neuronlleurocomputing26-27:989-996, [23]
1999.

J.M. Bower and D. BeemarThe Book of GENESIS: Ex-
ploring Realistic Neural Models with the GEneral Simula-
tion SystemSpringer, 1998. 2nd edition. [24]

M.L. Hines and N.T. Carnevale. The NEURON simulation
environment.Neural Computation9:1179-1209, 1997.

L. Watts. Event-driven simulation of networks of spigi
neurons. In J. D. Cowan, G. Tesauro, and J. Alspector, i?é]
itors, Advances in Neural Information Processing Syste
volume 6, pages 927-934. MIT Press, 1994.

M. Mattia and P. Del Giudice. Efficient event-driven sim
lation of large networks of spiking neurons and dynamic?%]
synapsesNeural Computation12:2305-2329, 2000.

T. Makino. A discrete event neural network simulator fo
general neuron modelNeural Computation and Applic.
11(2):210-223, 2003. [27]

O. Rochel and D. Martinez. An event-driven frame-
work for the simulation of networks of spiking neurons.

In ESANN’03, European Symposium on Atrtificial Neure&s]
Network pages 295-300, 2003.

J. Reutimann, M. Giugliano, and S. Fusi. Event-driven
simulation of spiking neurons with stochastic dynamics.
Neural Computation15(4):811-830, 2003.

Y. Boniface, F. Alexandre, and S. Vialle. A library toim
plement neural networks on MIMD machines. Rroc. of
Euro-Par, pages 935-938, 1999.

P.A. Estévez, H. Paugam-Moisy, D. Puzenat, and
M. Ugarte. A scalable parallel algorithm for training a
hierarchical mixture of neural networkBarallel Comput-
ing, 28:861-891, 2002.

A. Jahnke, T. Schoneauer, U. Roth, K. Mohraz, and
H. Klar. Simulation of spiking neural networks on dif-
ferent hardware platforms. WMCANN’1997, Int. Conf. on
Artificial Neural Networkspages 1187-1192, 1997.

U. Seiffert. Artificial neural networks on massivelyrpa
allel computer hardware Neurocomputing57:135-150,
2004.

H. H. Hellmich, M. Geike, P. Griep, M. Rafanelli, and
H. Klar. Emulation engine for spiking neurons and adap-
tive synaptic weights. IRJCNN’2005, Int. Joint Conf. on
Neural Networkspages 3261-3266. IEEE-INNS, 2005.

A. Fersha. Parallel and distributed simultation ofcoét
event systems. In A. Y. Zomaya, editBiarallel and Dis-
tributed Computing HandboolvcGraw-Hill, 1995.

C. Grassmann and J. K. Anlauf. Distributed, event-eiiv
simulation of spiking neural networks. IMNC’'98, Inter-
national ICSC/IFAC Symposium on Neural Computation
pages 100-105. ICSC Academic Press, 1998.

R. Preis, K. Salzwedel, C. Wolff, and G. Hartmann. Ef-
ficient parallel simulation of pulse-coded neural networks
(pcnn). INPDPTA’2001, International Conference on Par-

allel and Distributed Processing Techniques and Applica-
tions 2001.

C. Grassmann, T. Schoenauer, and C. Wolff. Pcnn neu-
rocomputeurs - event driven and parallel architectures. In
ESANN’02, European Symposium on Artificial Neural Nrt-
work, pages 331-336, 2002.

H. Paugam-Moisy. Multiprocessor simulation of neural
networks. In M. Arbib, editor,The Handbook of Brain
Theory and Neural Networkpages 605-608. MIT Press,
1995.

W. Gerstner and W. KistlerSpiking Neuron Models: Sin-
gle Neurons, Populations, PlasticityCambridge Univer-
sity Press, 2002.

W. Maass and C.M. Bishop, editor®ulsed Neural Net-
works MIT Press, 1999.



