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Spatial smoothness of the stationary solutions of the 3D

Navier–Stokes equations
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AVENUE ROBERT SCHUMAN, CAMPUS DE KER LANN, 35170 BRUZ (FRANCE).

AND
IRMAR, UMR 6625 DU CNRS, CAMPUS DE BEAULIEU, 35042 RENNES CEDEX

(FRANCE)

Abstract: We consider stationary solutions of the three dimensional Navier–Stokes
equations (NS3D) with periodic boundary conditions and driven by an external
force which might have a deterministic and a random part. The random part of
the force is white in time and very smooth in space. We investigate smoothness
properties in space of the stationary solutions.

Classical technics for studying smoothness of stochastic PDEs do not seem to ap-
ply since global existence of strong solutions is not known. We use the Kolmogorov
operator and Galerkin approximations. We first assume that the noise has spatial
regularity of order p in the L2 based Sobolev spaces, in other words that its paths
are in Hp. Then we prove that at each fixed time the law of the stationary solutions
is supported by Hp+1.

Then, using a totally different technic, we prove that if the noise has Gevrey
regularity then at each fixed time, the law of a stationary solution is supported
by a Gevrey space. Some informations on the Kolmogorov dissipation scale are
deduced.
Key words: Stochastic three-dimensional Navier-Stokes equations, invariant mea-
sure, Gevrey spaces, Kolmogorov operator, Kolmogorov dissipation scale.

Introduction

We are concerned with the stochastic Navier–Stokes equations in dimension 3
(NS3D) with periodic boundary conditions and zero mean value. These equations
describe the time evolution of an incompressible fluid and are given by

(0.1)



































dX + ν(−∆)X dt + (X,∇)X dt + ∇p dt = φ(X)dW + g(X)dt,

(div X) (t, ξ) = 0, for ξ ∈ D, t > 0,
∫

D X(t, ξ)dξ = 0, for t > 0,

X(0, ξ) = x0(ξ), for ξ ∈ D,

where D = (0, 2π)3. We have denoted by X(t, ξ) the velocity and by p(t, ξ) the
pressure at time t and at the point ξ ∈ D, also ν denotes the viscosity. The external
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Spatial smoothness of the stationary solutions of the 3D Navier–Stokes equations

force acting on the fluid is the sum of a random force of white noise type φ(X)dW
and a determinist one g(X)dt.

As is well known, in the deterministic case, global existence of weak (in the
PDE sense) solutions and uniqueness of strong solutions hold for the Navier-Stokes
equations. In space dimension two, weak solutions are strong and global existence
and uniqueness follows. Such a result is an open problem in dimension three. (See
for instance [4], [7], [16], [20], [21], [22], [23], [28] and [32]).

In the stochastic case, the situation is similar. However due to the lack of
uniqueness, we have to work with global weak (in the PDE sense) solutions of the
martingale problem. (See for instance [1], [2], [3], [5], [6], [13], [14], [24], [30] and
[31]). Roughly speaking, this means that in (0.1), we take X , p and W for unknown.

As is usual in the context of the incompressible Navier-Stokes equation, we get
rid of the pressure thanks to the Leray projector. Let us denote by (X, W ) a weak
(in the PDE sense) stationary solution of the martingale problem (0.1) and by µ the
the law of X(t), which is an invariant measure if we can prove that (0.1) defines a
Markov evolution. In this article, we establish that µ admits a moment in spaces of
smooth functions provided the external force is sufficiently smooth. We think that
this is an interesting question to study. First, it can be seen that if we were able to
prove that µ has a moment of sufficiently high order in a well chosen Sobolev norm
(order 4 in H1 or 2 in H2 for instance) then this would imply global existence of
strong solutions for µ almost every initial data.

Moreover, this result is an important ingredient if one tries to follow the method
of [8] to construct a Markov transition semi-group in Hp(D) under suitable condi-
tions on φ and f . Since even uniqueness in law is not known for NS3D, such result
might be important.

We first prove that if the external force is in Hp−1(D) and the noise term has
paths in Hp(D) then µ admits a moment in the Sobolev space Hp+1(D)

Note that analogous results are well-known for the two dimensional Navier–
Stokes equations (NS2D). Actually a stronger result is true for NS2D. Namely, for
any square integrable x0, the unique solution of NS2D is continuous from (0,∞)
into Hp(D) and is square integrable from (t0, t1) into Hp+1(D). It follows that µ
admits moments of any orders in Hp(D) and a moment of order 2 in Hp+1(D).
This stronger result is linked to the global existence of strong solutions for NS2D.

This kind of idea cannot be used for NS3D and we use a generalization of an idea
used in [8] for the case p = 1. The method is based on the use of the Kolmogorov
operator applied to suitable Lyapunov functional. These functionals have already
been used in the deterministic case in [29], chapter 4.

Using a totally different method, we establish also that the invariant measure
µ admits a moment in a Gevrey class of functions provided the external force is
also in such a class. Gevrey regularity has been studied in the deterministic case
in [15] and [17]. Our method is based on tools developed in [15]. In [27], these
tools have been used to obtain an exponential moment for the invariant measure
in Gevrey norms in the two dimensional case. The arguments used in [27] do not
generalize to the three dimensional case since there strong existence and uniqueness
is used. The three dimensional case NS3D requires substantial adaptations. We
develop a framework which gives a control on a Gevrey norm by using a control of
the H1(D)–norm of X only at fixed time.
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Spatial smoothness of the stationary solutions of the 3D Navier–Stokes equations

In this way, we are able to generalize to NS3D the results of [27]. However, we
do not have exponential moments. We deduce that the Kolmogorov dissipation
scale is larger than ν−(4+δ). This is certainly not optimal since it is expected that
the scale is of order ν− 3

4 . Note that our result is rigorous and does not use any
heuristic argument.

1. Notations

For m ∈ N, we denote by H
m
per(D) the space of functions which are restrictions of

periodic functions in Hm
loc(D; R3) and whose average on D is zero. We set

H =
{

X ∈ H
0
per(D) | div X = 0 on D

}

,

and

V = H ∩ H
1
per(D).

Let π be the orthogonal projection in L2(D; R3) onto the space H . We set

A = π (−∆) , D(A) = V ∩ H
2
per(D) and B(u) = π ((u,∇)u) .

It is convenient to endow H
m
per(D) with the inner product ((·, ·))m = (Am·, ·)L2(D;R3).

The corresponding norm is denoted by ‖·‖m. It is classical that this defines a norm
which is equivalent to the usual one. For m = 0 we write | · | = ‖·‖0 and for m = 1
we write ‖·‖ = ‖·‖1. Note that, since we work with functions whose average is zero
on (0, 2π)3, we have the following Poincaré type inequality

‖x‖m1
≤ ‖x‖m2

, m1 ≤ m2, x ∈ H
m2
per(D; R3).

We also use the spaces Lp(D; R3) endowed with their usual norm denoted by |·|p.

Moreover, given two Hilbert spaces K1 and K2, L2(K1; K2) is the space of Hilbert-
Schmidt operators from K1 to K2 .

The noise is described by a cylindrical Wiener process W defined on a Hilbert
space U and a mapping φ defined on H with values in L2(U ; H). We also consider a
deterministic forcing term described by a mapping g from H into H . More precise
assumptions on φ and g are made below.
Now, we can write problem (0.1) in the form

(1.1)











dX + νAXdt + B(X)dt = φ(X)dW + g(X)dt,

X(0) = x0,

where W is a cylindrical Wiener process on a Hilbert space U .
In all the paper, we consider (X, W ) a H–valued stationary solution of the martin-
gale problem (1.1). Existence of such a solution has been proved in [13]. We denote
by µ the law of X(t). We do not consider any stationary solutions but only those
which are limit in distribution of stationary solutions of Galerkin approximations
of (1.1). More precisely, for any N ∈ N, we denote by PN the eigenprojector of A
associated to the first N eigenvalues and consider the following approximation of
(1.1)

(1.2)











dXN + νAXNdt + PNB(XN )dt = PNφ(XN )dW + PNg(XN)dt,

XN (0) = PNx0.
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It is easily shown that (1.2) has a stationary solution XN . Proceeding as in [14],
we can see that their laws are tight in a well chosen functional space and, for a
subsequence, (XN , W ) converges in law to (X, W ) a stationary solution of (1.1).
We only consider stationary solutions constructed in that way.

All the computations made in this paper are derived formally and are not totally
rigorous. A rigorous proof could easily be obtained by making all the computations
on the Galerkin approximations and then letting N go to infinity in the final esti-
mate. This type of argument is classical and, in order to lighten the redaction, we
chose to write all the computations directly on (X, W ).
Some of our results described properties of µ in Gevrey type spaces. According to
the setting given in [15], we set for any (α, β) ∈ R

+
∗ × (0, 1]











(·, ·)G(α,β) =

(

A
1
2 eαA

β
2 ·, A

1
2 eαA

β
2 ·

)

, ‖·‖G(α,β) =

∣

∣

∣

∣

A
1
2 eαA

β
2 ·

∣

∣

∣

∣

,

G(α, β) =
{

X ∈ H
∣

∣

∣ ‖X‖G(α,β) < ∞
}

.

Clearly,
(

G(α, β), (·, ·)G(α,β)

)

is a Hilbert space.

We are not interested in large viscosities and in all the article it is assumed that
ν ≤ 1. We will use various constants which may depend on some parameter such
as p, ν, . . . When this dependance is important, we make it explicit.

2. H
p
per(D)–regularity

2.1. Statement of the result. Let p ∈ N. We now make the following smoothness
assumptions on the forcing terms.

Hypothesis 2.1. The mapping φ (resp. g) takes values in L2

(

U ; H ∩ H
p
per

(D)
)

(resp. H ∩H
p−1
per

(D)) and φ : H → L2

(

U ; H ∩ H
p
per

(D)
)

and g : H → H ∩H
p−1
per

(D)
are bounded.

We set, when Hypothesis 2.1 holds,

Bp = sup
H

(

‖φ‖
2
L2(U ;Hp

per(D)) + ‖g‖
2
p−1

)

.

It is also convenient to define

B̄p = sup
H

‖φ‖
2
L2(U ;Hp

per(D)) +

(

2

ν
sup
H

‖g‖
2
p−1

)

∧

(

sup
H

‖g‖
2
p+1

)

.

The aim of this section is to establish the following result.

Theorem 2.2. Let µ be the invariant law of a stationary solution of the three
dimensional Navier-Stokes equation and assume that Hypothesis 2.1 holds for some
p ≥ 1. There exists cp,ν depending on p, ν and Bp such that for any ν ≤ 1

∫

H

‖x‖
2

2p+1

p+1 dµ(x) ≤ cp,ν .

This result is proved in sections 2.2 to 2.5. We now wish to make few comments.
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Note that it would be very important to obtain an estimate on
∫

H ‖x‖
δp

p+1 dµ(x)
with pδp > 3. Indeed, by Agmon inequality , we have

∫

H

|x|2∞ dµ(x) ≤ c

∫

H

|x|2−3/p ‖x‖
3
p
p dµ(x)

and this would give an estimate on the right hand side. Since uniqueness is easily
shown to hold for solutions in L2(0, T ; L∞(D; R3)), a classical argument could be
used to deduce that for µ almost every initial data there exists a unique global
weak solution. Combining with the result in [12], this would partially solve Leray’s
conjecture.

Consider the case g = 0, U = H and φ = A−s− 3
2 . Then Hypothesis 2.1 holds for

any p < s and the unique invariant measure of the three dimensional linear stochas-
tic Stokes equation in H is in H

r+1
per (D) with probability zero if r > s. Therefore it

seems that ‖·‖p+1 is the strongest norm we can control under Hypothesis 2.1.
Remark that in the two dimensional case a much stronger result holds. Indeed,

standard arguments imply that under Hypothesis 2.1 we have for any invariant
measure µ and any q ∈ N

∗

∫

H

‖x‖
2q
p dµ(x) < ∞,

∫

H

‖x‖
2
p+1 dµ(x) < ∞.

In the proof, we use ideas developped in [29]. Similar but more refined techniques
have been used in [17] to derive interesting properties on the decay of the Fourier
spectrum of smooth solutions of the deterministic Navier-Stokes equations. Using
such techniques does not seem to yield great improvement of our result. Indeed,
trying to do so, we have been able to precise the estimate of Theorem 2.2 as follows

ν

∫

H

‖x‖
c∗
p

p+1 dµ(x) ≤ B̄p + c2p(1 + B̄0),

where c and c∗ are positive constants and c∗ is close to 1.02. We have not been able
to derive very interesting results from this improved estimate and therefore have
preferred to give the simpler one which follows from easier arguments.

2.2. Proof of Theorem 2.2.

The proof is based on the fact that for any suitable f

(2.1)

∫

H

Lf(x)dµ(x) = 0,

where L is the Kolmogorov operator associated to the stochastic Navier-Stokes
equations (1.1)

Lf(x) =
1

2
tr
(

φ(x)φ∗(x)D2f(x)
)

− (νAx + B(x) − g(x), Df(x)) .

As already mentionned, this is not fully rigorous. Indeed, (2.1) is valid only for the
Galerkin approximations and for smooth and bounded functions. The sequence of
Galerkin approximations described in section 1 should be used. Moreover, for a
better understanding, we only consider the case g = 0. The generalization is easy.

Step 1: p = 0

Applying (2.1) to f = |·|
2
, we obtain

∫

H

(νAx + B(x), x) dµ(x) =
1

2

∫

H

tr (φ(x)φ∗(x)) dµ(x),
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which yields, since (B(x), x) = 0,

ν

∫

H

‖x‖
2
dµ(x) ≤

1

2
B̄0.(2.2)

Step 2: Estimate of a quotient of norms.
We set

εp =
1

2p− 1

and

R′
p = ν

∫

H

‖x‖
2
p+1

(

1 + ‖x‖
2
p

)1+εp
dµ(x),

Rp = ν

∫

H

1 + ‖x‖
2
p+1

(

1 + ‖x‖
2
p

)1+εp
dµ(x),

In order to establish Theorem 2.2 for p ≥ 1, we prove now that there exists cp such
that

(2.3) Rp ≤ B̄p + cpB̄0 + 1

Let us set

f =
1

(

1 + ‖·‖2
p

)εp
.

We have

Df(x) = −2εp
Apx

(

1 + ‖x‖
2
p

)1+εp
,

and

D2f(x) = −2εp
Ap

(

1 + ‖x‖
2
p

)1+εp
+ 4εp(1 + εp)

Apx ⊗ Apx
(

1 + ‖x‖
2
p

)2+εp
,

which yields

(Lf)(x) =
2εp

(

1 + ‖x‖
2
p

)1+εp

(

ν ‖x‖2
p+1 + (Apx, B(x)) −

1

2
‖φ(x)‖2

L2(U ;Hp
per(D))

)

+
2εp(1 + εp)

(

1 + ‖x‖
2
p

)2+εp

∑

n

|(Apx, φ(x).e′n)|
2
,

where (e′n)n is an orthonormal basis of U . Hence we have

2ν
‖x‖

2
p+1

(

1 + ‖x‖
2
p

)1+εp
≤

1

εp
Lf(x) + B̄p −

2
(

1 + ‖x‖
2
p

)1+εp
(Apx, B(x)) .

Integrating with respect to µ and applying (2.1), it follows

(2.4) 2R′
p ≤ B̄p − 2

∫

H

(Apx, B(x))
(

1 + ‖x‖
2
p

)1+εp
dµ(x).
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It is proved in [29] (see equation (4.8) chapter 4) that there exists a constant cp,ν

such that

(2.5) − (Apx, B(x)) ≤ cp,ν ‖x‖
2 ‖x‖4p/2p−1

p +
ν

2
‖x‖2

p+1 .

Then taking into account (2.2) and (2.4), (2.3) follows.

Step 3: Estimate of
∫

H ‖x‖
2/2p−1
p dµ(x).

We estimate Ap = ν
∫

H

(

1 + ‖x‖
2
p

)1/2p−1

dµ(x) by induction. The case p = 1

has been treated in step 1.
Using Hölder inequality yields

ν

∫

H

(

1 + ‖x‖
2
p+1

)1/2p+1

dµ(x)

= ν

∫

H







(

1 + ‖x‖
2
p+1

)

(

1 + ‖x‖
2
p+1

)1+εp







1/2p+1

(

1 + ‖x‖2
p+1

)(1+εp)/2p+1

dµ(x)

≤ R1/2p+1
p

(

ν

∫

H

(

1 + ‖x‖
2
p+1

)(1+εp)/2p

dµ(x)

)2p/2p+1

.

Since (1 + εp)/2p = 1/2p− 1, we deduce

Ap+1 ≤ R1/2p+1
p A2p/2p+1

p .

The result follows.

3. Gevrey regularity

3.1. Statement of the result. We prove in this section that if the external force
is bounded in a Gevrey class of functions, then µ have support in another Gevrey
class of function.
The main assumption in this section is the following

Hypothesis 3.1. There exists (α, β) ∈ R
∗
+× (0, 1] such that the mappings g : H →

H ∩ G(α, β) and φ : H → L2 (U ; H ∩ G(α, β)) are bounded.

We set

B′
0 = sup

x∈H
‖φ(x)‖2

L2(U ;G(α,β)) + sup
x∈H

‖g(x)‖2
G(α,β) .

The aim of this section is to establish the following results proved in the following
subsections.

Theorem 3.2. Assume that Hypothesis 3.1 holds. There exist a family (Cγ)γ only
depending on (α, β, B′

0) and a family (αν)ν∈(0,1) of measurable mappings H → (0, α)
such that for any ν ∈ (0, 1)

∫

H

‖x‖2γ
G(ναν(x),β) dµ(x) ≤ Cγν− 3

4 ,(3.1)

∫

H

(αν(x))−
γ
4 dµ(x) ≤ Cγν− 3

4 ,(3.2)

for any γ ∈ (0, 1).
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This result gives some informations on the Kolmogorov dissipation scale. Indeed,
it follows from (3.1), (3.2) that

|x̂(k)| ≤ ‖x‖G(ναν(x),β) |k| e
−ναν(x)|k|β ,

where (x̂(k))k∈Z3 are the Fourier coefficients of x.
Hence, if Hypothesis 3.1 holds with β = 1, then |x̂(k)| decreases faster than any
powers of |k| for |k| >> (ναν(x))−1. By (3.2), for any δ > 0

1

αν(x)
≤ cδ,ν(x)ν−3(1+δ) with

∫

cδ,ν(x)
1

4(1+δ) µ(dx) ≤ Θδ < ∞,

and Θδ not depending on ν. It follows that |x̂(k)| decreases faster than any powers
of |k| for |k| >> ν−(4+3δ). This indicates that the Kolmogorov dissipation scale
is larger than ν−(4+3δ). Note that by physical arguments it is expected that the

Kolmogorov dissipation scale is of order of ν− 3
4 .

We can also control a moment of a fixed Gevrey norm.

Corollary 3.3. Under the same assumptions, there exists a family (Cγ,α′,β′,ν)γ,α′,β′,ν

only depending on (α, β, B′
0, ν) such that

(3.3)

∫

(

ln+ ‖x‖
2
G(α′,β′)

)γ

dµ(x) ≤ Cγ,α′,β′,ν ,

where ln+ r = max{0, ln r} and provided α′ > 0 and β′, γ > 0 verify

β′ < β and 4γ <
β

β′
− 1.

3.2. Estimate of blow-up time in Gevrey spaces.

Before proving Theorem 3.2, we establish the following result which implies that
the time of blow-up of the solution in Gevrey spaces admits a negative moment.

Lemma 3.4. Assume that Hypothesis 3.1 holds. For any stationary solution of
the Navier-Stokes equations and any ν ∈ (0, 1), there exist K only depending on
(α, β, B′

0) and a stopping time τ > 0 such that

E

(

sup
t∈(0,τ)

‖X(t)‖
2
G(νt,β)

)

≤ 4(B̄0 + 1),(3.4)

P (τ ≤ t) ≤ Kt
1
4 ν− 3

4 .(3.5)

This result is a refinement of the result developed by Foias and Temam in [15] and
is strongly based on the tools developed in this latter article. Let us set

(3.6) τ = inf
{

t ≥ 0
∣

∣

∣
‖X(t)‖2

G(νt,β) > 4
(

‖X(0)‖2 + 1
)}

.

Clearly

E

(

sup
t∈(0,τ)

‖X(t)‖
2
G(νt,β)

)

≤ 4E

(

‖X(0)‖
2
+ 1
)

and (3.4) follows from (2.2). It remains to prove (3.5).

We apply Ito Formula to ‖X(t)‖
2
G(νt,β) for t ∈ (0, α)

(3.7)

d ‖X(t)‖2
G(νt,β) + 2ν

∥

∥

∥A
1
2 X(t)

∥

∥

∥

2

G(νt,β)
dt = ν

∥

∥

∥A
β
4 X(t)

∥

∥

∥

2

G(νt,β)
dt + dM(t) + I(t)dt,
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where


























I(t) = 2Ig(t) + 2IB(t) + Iφ(t), IB(t) = − (X(t), B(X(t)))G(νt,β) ,

Iφ(t) = ‖φ(X(t))‖
2
L2(U ;G(νt,β)) , Ig(t) = (g(X(t)), X(t))G(νt,β) ,

M(t) = 2

∫ t

0

(X(s), φ(X(s))dW (s))G(νt,β) .

The following inequality is proved in [15] for β ≤ 1

(3.8) 2IB(t) ≤ ν
∥

∥

∥A
1
2 X(t)

∥

∥

∥

2

G(νt,β)
+

c

ν3
‖X(t)‖

6
G(νt,β) .

By Hypothesis 3.1 we have

(3.9) Iφ(t) + 2Ig(t) ≤ ‖X(t)‖
6
G(νt,β) + B′

0 + 1.

Combining (3.7), (3.8) and (3.9), we obtain since β, ν ≤ 1

(3.10) d ‖X(t)‖
2
G(νt,β) ≤ dM(t) +

c

ν3
‖X(t)‖

6
G(νt,β) dt + (B′

0 + 1)dt.

Applying Ito formula to
(

1 + ‖X(t)‖
2
G(νt,β)

)−2

, we then deduce from (3.10) and

from Hypothesis 3.1 that for any t ∈ (0, α) and any ν ≤ 1

(3.11) −d
(

1 + ‖X(t)‖2
G(νt,β)

)−2

≤ dM(t) + C0ν
−3dt,

where C0 = c(B′
0 + 1) and

M(t) = 4

∫ t

0

(

1 + ‖X(s)‖
2
G(νt,β)

)−3

(X(s) , φ(X(s))dW (s))G(νt,β) .

Setting














τ0 = inf

{

t ∈ (0, α)

∣

∣

∣

∣

M(t) > 1

4(1+‖X(0)‖2)2

}

,

τ1 = τ0 ∧

(

ν3

4C0(1+‖X(0)‖2)2

)

,

we obtain by integration of (3.11) on [0, t] for t ∈ (0, τ1)

‖X(t)‖2
G(νt,β) ≤ 4

(

1 + ‖X(0)‖2
)

.

We deduce that τ ≥ τ1 and

(3.12) P (τ ≤ t) ≤ P (τ0 ≤ t) + P

(

(

1 + ‖X(0)‖
2
)2

≥
ν3

4C0t

)

.

Since µ is the law of X(0), we have

P

(

(

1 + ‖X(0)‖
2
)2

≥
ν3

4C0t

)

= µ

(

x

∣

∣

∣

∣

∣

√

1 + ‖x‖
2
≥

ν
3
4

(4C0t)
1
4

)

.
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Applying Chebyshev and Schwartz inequalities, we deduce from (2.2)

(3.13)

P

(

(

1 + ‖X(0)‖
2
)2

≥
ν3

4C0t

)

≤ 2ν− 3
4 (C0t)

1
4

√

∫

H

(1 + ‖x‖
2
)dµ(x)

≤ 2ν− 3
4

√

1 + B̄0 (C0t)
1
4 .

Moreover

P (τ0 ≤ t) = P

(

4

(

(

1 + ‖X(0)‖
2
)2

sups∈[0,t] M(s)

)

> 1

)

≤ 2E

((

1 + ‖X(0)‖2
)

sups∈[0,t] |M(s)|
1
2

)

.

Conditionning by F0 the σ-algebra generate by X(0), it follows

P (τ0 ≤ t) ≤ 2E

(

(

1 + ‖X(0)‖
2
)

E

(

sup
s∈[0,t]

|M(s)|
1
2

∣

∣

∣

∣

∣

F0

))

.

By Burkholder-Davis-Gundi inequality (see Theorem 3.28 page 166 in [19]) we
obtain

E

(

sup
s∈[0,t]

|M(s)|
1
2

∣

∣

∣

∣

∣

F0

)

≤ cE
(

〈M〉
1
4 (t)

∣

∣

∣ F0

)

,

and

(3.14) P (τ0 ≤ t) ≤ 2E

((

1 + ‖X(0)‖
2
G(νt,β)

)

E

(

〈M〉
1
4 (t)

∣

∣

∣ F0

))

.

We have

〈M〉 (t) = 4

∫ t

0

(

1 + ‖X(s)‖
2
G(νt,β)

)−6
∣

∣

∣

∣

(

A
1
2 eνtA

β
2 φ(X(s))

)∗(

A
1
2 eνtA

β
2 X(s)

)∣

∣

∣

∣

2

U

ds.

Therefore

〈M〉 (t) ≤ 4

∫ t

0

(

1 + ‖X(s)‖
2
G(νt,β)

)−6

‖φ(X(s))‖
2
L(U ;G(νt,β)) ‖X(s)‖

2
G(νt,β) ds ≤ 4B′

0t.

Hence we infer from (3.14) that

P (τ0 ≤ t) ≤ c (B′
0t)

1
4 ν

∫

H

(

1 + ‖x‖
2
)

dµ(x),

which yields by (2.2)

(3.15) P (τ0 ≤ t) ≤ c(1 + B̄0)(B
′
0)

1/4t
1
4 .

Combining (3.12), (3.13) and (3.15), we deduce (3.5) from B̄0 ≤ B′
0.

3.3. Proof of Theorem 3.2.

Setting

αν(x) = inf

{

s ≥ 0

∣

∣

∣

∣

‖x‖
2
G(νs,β) >

4

s
1
4

(

B̄0 + 1
)

}

,

it follows that for any γ ∈ (0, 1)

(3.16)

∫

‖x‖2γ
G(ναν(x),β) dµ(x) ≤ 4γ

(

B̄0 + 1
)γ
∫

(αν(x))−
γ
4 dµ(x).
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Hence (3.1) is consequence of (3.2) and of B̄0 ≤ B′
0. Then in order to establish

Theorem 3.2, it is sufficient to prove (3.2).
Clearly

P

(

‖X(t)‖2
G(νt,β) >

4

t
1
4

(

B̄0 + 1
)

)

≤ P

(

sup
s∈[0,τ ]

‖X(s)‖2
G(νs,β) >

4

t
1
4

(

B̄0 + 1
)

)

+P (τ < t) ,

where τ is defined in section 3.2. Applying Chebyshev inequality, we infer from
Lemma 3.4 that for any t > 0

(3.17) P

(

‖X(t)‖
2
G(νt,β) >

4

t
1
4

(

B̄0 + 1
)

)

≤ (K + 1)t
1
4 ν− 3

4 .

Since µ is the law of X(t), we have

µ (x |αν(x) ≤ t ) = P (αν(X(t)) ≤ t) ,

which yields

µ (x |αν(x) ≤ t ) = P

(

‖X(t)‖
2
G(νt,β) >

4

t
1
4

(

B̄0 + 1
)

)

.

Hence we deduce from (3.17) that for any t > 0

(3.18) µ (x |αν(x) ≤ t ) ≤ (K + 1)t
1
4 ν− 3

4 .

It is well-known that (3.18) for any t > 0 implies (3.2), which yields Theorem 3.2.

3.4. Proof of Corollary 3.3.

To deduce Corollary 3.3 from Theorem 3.2, it is sufficient to prove that for any
(α′, α, β′, β) ∈ (0,∞)2 × (0, 1]2 such that β′ < β, we have

(3.19) ‖x‖G(α′,β′) ≤ exp

(

c(β, β′) (α′)
β

β−β′ (α)
− β′

β−β′

)

‖x‖G(α,β) .

Indeed, (3.19) implies that for any γ ∈ R
+
∗

(

ln+ ‖x‖
2
G(α′,β′)

)γ

≤ cγ

(

c(β, β′) + (α′)
γβ

β−β′ (ναν(x))
− γβ′

β−β′ +
(

ln+ ‖x‖
2
G(ναν(x),β)

)γ
)

,

which yields Corollary 3.3 provided Theorem 3.2 is true.
We now establish (3.19). It follows from arithmetico-geometric inequality that for
any k ∈ Z

3

(3.20) α′ |k|
β′

≤ c(β, β′) (α′)
β

β−β′ (α)
− β′

β−β′ + α |k|
β

.

Recalling that

‖x‖
2
G(α′,β′) =

∑

k∈Z3

|k|
2
exp

(

2α′ |k|
β′
)

|x̂(k)|
2
,

we infer (3.19) from (3.20).
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