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2Università degli Studi di Napoli ‘Federico II’, Via Cinthia, Complesso Universitario Monte S. Angelo, 80126 Naples, Italy
3INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy

Accepted 2004 December 1. Received 2004 September 1; in original form 2004 January 9

ABSTRACT
We evaluate the effect of small-scale inhomogeneities on large-scale observations within the
statistics of gravitationally lensed quasars. To this end, we consider a cosmological model
whose large-scale properties (dynamics, matter distribution) are the same as in Friedmann–
Lemaı̂tre models, but whose matter distribution is locally inhomogeneous. We use the well-
known Dyer–Roder distances to allow a simple analytical expression of the optical depth τ , and
pay particular attention to the different roles played by the different notions of distance (filled
beam angular diameter distance and Dyer–Roder distances) when calculating this quantity,
following the 1986 prescription of Ehlers & Schneider for a coherent formalism. We find
that the expected number of gravitationally lensed quasars is a decreasing function of the
clumpiness parameter α.

Key words: gravitational lensing – cosmological parameters – cosmology: observations.

1 I N T RO D U C T I O N

One of the major tasks in modern cosmology is the precise determi-
nation of the parameters that characterize the assumed cosmolog-
ical model. In this direct approach (according to the terminology
of Ellis 1995), a theoretical description of space–time is postulated,
the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) model, and
its parameters are determined by fitting the observational data.

The cornerstone of observational support for the FLRW model is
the existence and high isotropy of the relic cosmic microwave back-
ground radiation (CMWB). Ehlers, Geren & Sachs (1968) showed
that, if the background radiation appears to be exactly isotropic to
a given family of observers, then the space–time is exactly FLRW.
Therefore, together with the Copernican principle, we can prove
the Universe to be FLRW just from our own observations of the
CMWB. Stoeger, Maartens & Ellis (1995) extended this result to
the case of an almost isotropic background radiation, which implies
an almost FLRW space–time. This important result is firmer ground
for the assumption of the FLRW model to describe the large-scale
structure of the Universe, but it also makes clear that we need to un-
derstand the departures from a spatially homogeneous model when
interpreting observational data. Indeed, departures from perfect ho-
mogeneity change the distance–redshift relation, and this has to be
taken into account when fitting the FLRW parameters to observa-
tions. However, cosmological observations are usually fitted just
using relationships derived for homogeneous models.

�E-mail: giovanni.covone@oamp.fr
†Deceased.

In recent years, several authors have addressed this problem in
the context of the observations of distant Type Ia supernovae (e.g.
Holz 1998; Holz & Wald 1998; Kantowski, Kao & Thomas 2000;
Sereno, Piedipalumbo & Sazhin 2002; Wang, Holz & Munshi 2002;
Pyne & Birkinshaw 2004). It has been shown that the noise due
to weak lensing magnification from small-scale matter inhomo-
geneities yields large errors on the luminosity measurement of
high-z supernovae.

In this paper we investigate the possible systematic errors due
to neglect of the effects of local inhomogeneities in the distribu-
tion of matter when evaluating the cosmological constant � from
gravitational lens statistics. The statistics of gravitationally lensed
multiply imaged quasars have long been considered a useful tool to
constrain the cosmological parameters, in particular the cosmolog-
ical constant (Turner, Ostriker & Gott 1984; Fukugita et al. 1992;
Kochaneck 1996), and the properties of the lensing galaxies (e.g.
Maoz & Rix 1993; Kochaneck 1993). Recently, Chae (2003) has
shown that the observed gravitational lensing rate in the CLASS
radio survey yields strong support to a flat cosmological model
dominated by vacuum energy, with �m � 0.3 and �� � 0.7. The
precision of these results is limited at the moment by the uncertainty
in the luminosity function of the lensing galaxy population, the den-
sity profile and their evolution since z � 1 (e.g. Mao 1991; Chae
2003). For instance, Cheng & Krauss (2000) have shown that con-
straints on the cosmological parameter are strongly dependent on the
choice of galaxy parameters (see also the discussion in Kochaneck
et al. 1999).

Another major limitation is the fact that only a few system-
atic surveys for multiply imaged quasars have been completed up
to now (Claeskens & Surdej 2002); today, in fact, the statistical
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774 G. Covone, M. Sereno and R. de Ritis

uncertainties on �� are still dominated by the Poisson errors from
the small number of gravitationally lensed quasars. In the near
future, the most promising source of new lensed quasars will be
wide-field surveys (Kuhlen, Keeton & Madau 2004) and targeted
follow-ups of newly discovered quasars (Morgan 2002; Morgan
et al. 2004). For instance, the Sloan Digital Sky Survey1 will al-
most double the number of known gravitational lenses. The next
considerable increase in the number of gravitational lenses is ex-
pected by new telescopes like the VLT Survey Telescope,2 which
will allow very wide and deep optical surveys in the Southern hemi-
sphere. See also Kuhlen et al. (2004) for a discussion of other
gravitational lensing surveys to become operational in the next
future.

While these large observational projects will considerably im-
prove the precision of the results and the importance of the tool,
they also make it necessary to consider more realistically the details
of light propagation through the observed inhomogeneous Universe.
As pointed out by Ellis (1995), small-scale inhomogeneities in the
matter distribution have a considerable effect on both observations
(Dyer & Oattes 1988) and dynamics (Russ et al. 1997) at a large
scale. Moreover, since the lensing effects of small inhomogeneities
on the propagation of light change the angular diameter distance–
redshift relation (Schneider, Ehlers & Falco 1992), we focus here
on this specific problem. Many different approaches have been
developed to study gravitational lensing in inhomogeneous cos-
mological models, but the simplest one from an analytical point
of view, and yet efficient, is the one proposed by Dyer & Roeder
(1972, 1973), in which the effects of local inhomogeneities along
the light bundles are described by the so-called clumpiness parame-
ter α (see definition in next section). In the following, we allow the
clumpiness parameter to be a direction-dependent quantity, which
is a function of both the line of sight to the source and its redshift
(see e.g. Wang 1999).

The statistical properties of a sample of gravitational lenses in-
clude the frequency of multiply imaged quasars, the distribution
of the lenses and source redshifts, the angular separation distribu-
tion and the image multiplicity. In this work we will focus on a
discussion of the total lensing probability, leaving a detailed dis-
cussion of the other statistical properties for a subsequent paper.
Moreover, as we focus our attention on an effect that is independent
of our present knowledge of the galaxy luminosity function and the
dark matter velocity dispersion, we do not consider these aspects in
detail.

The paper is organized as follows. In Section 2 we define the
cosmological model and discuss the relevant distances in the study
of the propagation of light. In Section 3 we calculate the gravita-
tional lensing rate, and in Section 4 we discuss its behaviour as a
function of α, considering different gravitational lens models. Fi-
nally, systematic effects on the estimate of the cosmological con-
stant are discussed in Section 5, and in Section 6 we sum up our
results.

2 RO L E O F C O S M O L O G I C A L D I S TA N C E S

While cosmological models that are homogeneous at all scales are
very successful in describing the overall dynamics and evolution
of the Universe, they do not allow a detailed description of lensing
phenomena. In fact, all the gravitational lensing phenomena (the

1 http://www.sdss.org/
2 http://www.na.astro.it/

bending of light rays, the deformation of images, and the formation
of multiple images) are only possible in a clumpy Universe (see e.g.
the discussion by Krasińsky 1997). Therefore, a coherent approach
needs an inhomogeneous model.

However, in the statistical analysis of gravitational lenses, as well
as in the analysis of other astronomical observations, perfect homo-
geneity is often assumed (see e.g. the discussion in Buchert 2000
on this point). An important reason for this choice is the fact that
in homogeneous space–times we have simple relations between
the proper distance and cosmological distances, i.e. the luminosity
distance and the angular diameter distance (e.g. Kayser, Helbig &
Schramm 1997). In inhomogeneous cosmological models, these re-
lations are much more complicated, and Friedmann–Lemaı̂tre (FL)
distances are not generally a good approximation to be used in
the determination of cosmological parameters from a given set of
observational data.

The relevant distance in gravitational lensing, the angular diam-
eter distance D, is operationally defined as the square root of the
ratio of the area dA of a celestial body to the solid angle d� that it
subtends at the observer (Schneider et al. 1992):

D ≡
√

dA

d�
. (1)

In a homogeneous Universe, the angular diameter distance can be
derived from the proper distance Dp using the relation

D(z) = Dp(z)

1 + z
. (2)

This relation no longer holds in a clumpy Universe. The basic rea-
son lies in the fact that the proper distance is related to the global
geometry of the Universe, while the relation between the angular
diameter distance and the redshift is determined mainly by the local
matter distribution.

In this paper, we assume a cosmological model that is locally
inhomogeneous, but homogeneous at very large scale, according
to some density averaging rule (see e.g. Krasińsky 1997). In other
words, we assume that the overall dynamics does not differ from the
dynamics of a homogeneous cosmological model. This approxima-
tion is well justified: By averaging the Friedmann equation, Russ
et al. (1997) showed that the influence of small-scale clumpiness on
the global expansion factor is negligible (so, for instance, the age
of the Universe can be evaluated using the FLRW relation with the
Hubble constant, with negligible errors), while the distance–redshift
relation is significantly affected (so that measurements of the Hubble
constant via measurements of the magnitudes of standard candles
do not have negligible systematic errors).

In order to describe the degree of inhomogeneity in the local
distribution of matter, we use a generalized notion of the so-called
clumpiness parameter (e.g. Dyer & Roeder 1972; Schneider et al.
1992), introduced by Wang (1999). The clumpiness parameter α was
first introduced by Dyer & Roeder (1972, 1973, hereafter DR), when
writing a differential equation for the angular diameter distance
in locally clumpy cosmological models, and it was defined as the
fraction of homogeneously distributed matter within a given light
cone.

Starting from the equations for scalar optics (e.g. Zel’dovich
1964; Kristian & Sachs 1965), DR derived a second-order differ-
ential equation for the diameter of the light ray bundle propagating
far away from any clumps (i.e. in regions where α < 1), assuming
a negligible shear. For a pressure-less Universe with cosmological
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Gravitational lenses in a clumpy Universe 775

constant �, the DR equation reads

(1 + z)
[
�m(1 + z)3 + �K(1 + z)2 + ��

] d2 D

dz2

+ [
7
2 �m(1 + z)3 + 3�K(1 + z)2 + 2��

] dD

dz

+ 3
2 α�m(1 + z)2 D = 0, (3)

with initial conditions D(0) = 0 and D′(0) = c/H 0. Here �K ≡ 1 −
�m − ��, since we neglect the contribution from any relativistic
fluid or radiation. For α = 1 (filled beam case), we recover the an-
gular diameter distance, while for α = 0 we have the well-known
empty beam approximation. For a detailed discussion of the solu-
tions of equation (3) within quintessence cosmological models, we
refer the reader to Sereno et al. (2000). For the following, it is useful
to introduce the dimensionless distance r,

r (z, �m, ��, α) ≡ H0

c
D(z, H0, �m, ��, α), (4)

and the symbol r1 for the dimensionless angular diameter distance
in the filled beam case.

Note, however, that the DR equation (3) is well defined for any
α > 0, and in its derivation the mass density is never required to
be uniform. This allows us to consider the clumpiness parameter
as a local variable, as done in Wang (1999) to describe the weak
lensing magnification of distant standard candles. Therefore, in the
following, we assume the clumpiness parameter to be a function of
both the line of sight and the redshift. Given a source at redshift z in a
specific inhomogeneous cosmological model, for any line of sight to
the observer, the clumpiness parameter α is calculated via equation
(3), where the distance D is given by numerical simulations. As a
consequence, a complete description of the light propagation in a
clumpy Universe needs knowledge of the probability distribution
function (PDF) for values of the clumpiness parameter. We return
to this point in Section 5.

Let us now consider in more detail the effect of inhomogeneities in
observations meant to measure the cosmological constant. The DR
distance r is a strongly decreasing function of α, at fixed redshift
(Schneider et al. 1992): therefore, a larger fraction of matter in
clumps partially masks the effect of a larger cosmological constant

Figure 1. The Dyer–Roeder (DR) distance r(z) for two values of the cos-
mological constant, �� = 0.0 (full curves) and 0.7 (dashed curves), in the
empty beam case (upper curves) and in the filled beam case (lower curves).
Space–time is flat.

Figure 2. The DR distance versus the clumpiness parameter, relative to the
filled beam case at several values of the redshift. Here �� = 0.7 in a flat
space–time.

when evaluating angular diameter and luminosity distances (Fig. 1),
since there is a smaller contribution from the Ricci convergence.
On the other hand, along light beams characterized by α > 1 (i.e.
propagating in overdense regions) angular diameter distances are
lower than in the filled beam case. For this reason, a large amount of
local clumpiness can result in a lower value for � when fitting the
observational data. In Fig. 2 we show the ratio of the DR distance
for the empty beam case relative to the filled beam for a few values
of the source redshift. Up to redshift z ∼ 1, the differences are
not important in the DR distance itself (although they may not be
negligible for several observable astronomical quantities). The role
of the local clumps becomes more and more important at higher z.

Though the assumed cosmological model is not the most satis-
factory to describe inhomogeneities, since it does not have a firm
theoretical basis in the framework of general relativity (i.e. it is not
a solution of the Einstein field equations), it allows a simple and
efficient description of light propagation through a clumpy Uni-
verse. This model has been discussed in detail in Schneider et al.
(1992) and Seitz, Schneider & Ehlers (1994). Ehlers & Schneider
(1986) have introduced a self-consistent formalism to study gravita-
tional lensing in a clumpy Universe. In particular, they stressed the
different roles that the different notions of cosmological distance
have in this model. Namely, when we consider quantities that are
related to the global geometry of the assumed cosmological model
(such as volumes), it is necessary to use the FL angular diameter
distance. Then, the volume element (i.e. the volume of a shell with
proper thickness dl) is

dV = 4π

(
c

H0

)2

r 2
1 dl. (5)

In other words, the volume element dV does not depend on the local
degree of inhomogeneity. This is consistent with the fact that, in the
locally inhomogeneous model, on large angular scales (i.e. larger
than θ ∼ 10 arcsec; see Linder 1988), the distance–redshift relation
is the one computed in the FLRW models, for any source redshift.
This is also in agreement with the results from N-body numerical
simulations in cold dark matter (CDM) scenarios (Tomita 1998),
where it has been shown that the dispersion in values of α along
the different light paths becomes increasingly large as the angle
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776 G. Covone, M. Sereno and R. de Ritis

becomes as small as a few arcseconds. We also note that equation (5)
can be read as the definition of the angular diameter distance in
homogeneous models (Schneider et al. 1992).

On the other hand, there is a simple reason why, when considering
gravitational lensing phenomena, the DR distance has to be used:
light deflection modifies the cross-sectional area of the light bundle,
and the Ricci focusing term is a linear function of the amount of
matter within the ray bundle (see e.g. Schneider et al. 1992, sec-
tion 3.4). As a consequence, all the distance-dependent quantities
that play a role in the description of the lensing phenomena are
functions of the DR distance and, in particular, of the strong lensing
cross-section σ .

Let us consider in more detail the cosmological strong lensing
probability τ . This is defined as the probability that a light source
at redshift zs is multiply imaged by a deflector at z < z s. In the
expression of τ (z s) there are two different physical quantities that
are functions of combinations of distances: the cross-section for
multiple images σ , and the volume element dV .

The cross-section σ is defined as the area in the lens plane for
which multiple imaging occurs for sources behind it. This quantity
depends on the redshift z of the lens and a set χ of astrophysical pa-
rameters that characterize the gravitational lens model. For the most
generally used models (point-like mass distributions and isothermal
spheres), the cross-section depends on a particular combination of
distances:

σ (z, zs, χ ) = f

(
Dds Dd

Ds
, χ

)
, (6)

where D s, Dd and Dds are the DR angular diameter distances be-
tween the observer and the source, the observer and the lens, and
the lens and the source, respectively. We remark that the overall ef-
fect of the clumpy distribution of matter along the light rays on the
lensing probability is not due to any change of the volume element
dV (see equation 5), but is only due to the dependence of the strong
lensing cross-section σ on the clumpiness parameter.

In the following we will consider the projection of the cross-
section on the source plane (located at redshift zs):

σ̂ (z, zs, χ ) =
[

r (zs, α)

r (z, α)

]2

σ (z, zs, χ ), (7)

where the DR distances are considered. This quantity allows a
clearer and more compact definition of the lensing probability, and
it is the natural quantity to consider in the assumed cosmological
model (Ehlers & Schneider 1986). It is important to note that the
quantity σ̂ is not in general a function of the distance combination
Dds Dd/D s: as a consequence, the point-like mass and isothermal
sphere cross-sections are functions of different distance combina-
tions (see Section 4). We now calculate the probability of strong
lensing phenomena and evaluate its dependence on α, and then de-
termine explicitly the distance functions for these two gravitational
lens models.

3 T H E S TAT I S T I C S O F G R AV I TAT I O NA L
L E N S E S

In this section, we derive the formulae for the statistics of gravita-
tional lensing, following mainly the formalism discussed in Ehlers
& Schneider (1986), considering in particular the proper role of the
two types of distance. Let us consider a statistical ensemble of cos-
mological sources at redshift zs and a set of comoving gravitational
lenses with number density n(z). If we neglect gravitational lens
evolution and merging, the comoving number density of lenses is

conserved: n(z) = n0 (1 + z)3, where n0 is the local density. The
number of gravitational lenses in a shell with volume dV is then

N (z) = n(z) dV

= n(z)A(z)
dl

dz
dz, (8)

where A(z) is the area of the sphere located at redshift z.
The probability dτ (z, z s, χ ) that a quasar at zs is multiply imaged

by gravitational lenses in the redshift range (z, z + dz) is defined as
the fraction of the area of the sphere at z = z s (i.e. the fraction of
the sky) covered by the gravitational lens cross-sections σ̂ (z, zs, χ ).
This definition implicitly assumes that the projected cross-sections
do not overlap, which is equivalent to stating that dτ (z, z s, χ ) � 1.
The area covered by the projected cross-sections of the gravitational
lenses in (z, z + dz) is therefore

n(z)σ̂ (z, zs, χ )A(z)
dl

dz
dz. (9)

According to the definition, the differential lensing probability then
reads

dτ (z, zs) = n(z)σ̂ (z, zs, χ )
A(z)

A(zs)

dl

dz
dz

= n(z)σ (z, χ )

[
r (zs, α)

r (z, α)

]2 [
r1(z)

r1(zs)

]2
dl

dz
dz. (10)

In the particular case α = 1, the distance ratios factorize, so that we
obtain the more common expression

dτ (z, zs) = n(z)σ (z, zs, χ )
dl

dz
dz, (11)

i.e. the definition of differential lensing probability in cosmologies
that are homogeneous at all scales. Therefore, in this case, the rel-
evant distance combination is exactly the ratio Dds Dd/D s that ap-
pears in equation (6), and does not depend on the particular choice
of the gravitational lens model.

Let us now evaluate the explicit expressions for the lensing prob-
abilities in equation (11). The quantity dl can be written in the fol-
lowing way:

dl = −c dt = c
1

H (z)

dz

1 + z
, (12)

where we have considered the past light cone, and H (z) ≡ ȧ/a,
with a = 1/(1 + z) being the normalized cosmological scalefactor.
In an FLRW cosmological model,

H (z) = H0

√
�m(1 + z)3 + (1 − �m − ��)(1 + z)2 + ��. (13)

Hereafter we focus our attention on flat cosmological models, i.e.
with �� + �m = 1, as these are preferred by inflationary scenar-
ios and strongly supported by much recent observational evidence
(Wang at al. 2000). Then, the differential lensing probability reads

dτ (z, zs) = n0
c

H0
σ (z, zs, χ )

[
r (zs)

r (z)

]2 [
r1(z)

r1(zs)

]2

× (1 + z)2√
�m(1 + z)3 + ��

dz. (14)

It is evident that the properties of the functions dτ (and τ ) with
respect to α are determined only by the strong lensing cross-section
σ̂ (z, zs). Therefore, it is necessary to consider only those functions
of the DR distances that enter their expressions. In other words, the
functions τ and σ̂ have the same qualitative behaviours with respect
to the clumpiness parameter. Then, our next point is to investigate
the behaviour of the quantity σ̂ (α).
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Gravitational lenses in a clumpy Universe 777

Figure 3. The projected cross-sections of a point-like gravitational lens for
α = 0, 0.5 and 0.8, normalized to the filled beam case (α = 1), versus the
lens redshift. The source is at z s = 5, and the cosmological parameters are
�� = 0.7 and �m = 0.3.

4 P RO P E RT I E S O F D R D I S TA N C E
C O M B I NAT I O N S

In this section we analyse in detail the cross-sections of some general
models of gravitational lenses and the involved combinations of DR
distances, in order to evaluate qualitatively the dependence of the
lensing probability τ on the clumpiness parameter. Asada (1998)
has investigated the analytical properties of several combinations
of DR distances as functions of the clumpiness parameter, and he
also deduced some consequences on the observable quantities: the
deflection angle, the time delay and the lensing probability. Here
we focus on the study of the quantities that directly enter the optical
depth. We consider the following models: a point mass distribution,
singular isothermal sphere, and isothermal sphere with a non-zero
core radius. In this section we only consider the DR distances.

4.1 Point-like gravitational lens

A point-like gravitational lens produces two images, whatever the
source position; so, strictly speaking, the given definition of strong
lensing cross-section does not apply here. Anyway, it is natural to
assume such a cross-section (on the lens plane) to be a disc with
radius equal to the Einstein radius rE. So, the cross-section on the
source plane reads:

σ̂ =
(

Ds

Dd

)2

πr 2
E

= 4πG M

c2

Ds Dds

Dd
, (15)

where M is the mass of the lens. This quantity is a decreasing
function of the clumpiness parameter α, as shown in Fig. 3. Conse-
quently, at smaller values of the clumpiness parameter, the lensing
probability is higher, when considering the lensing cross-section for
a point-like distribution of mass.

Assume that the distance ratio Dd Dds/D s in the expression for
the Einstein radius rE is a decreasing function of the clumpiness
parameter (Asada 1998), but is not the correct function of DR dis-
tances that enters the expression for the lensing probability in a

DR cosmological model, as shown above. In fact, considering this
ratio is not consistent with the assumptions on the cosmological
model (Ehlers & Schneider 1986), and would wrongly lead to the
prediction that the lensing probability decreases for decreasing val-
ues of the clumpiness parameter, as in Asada (1998).

4.2 Isothermal spheres

Let us now consider the gravitational lenses to be isothermal spheres,
and let us study the dependence of the cross-section on α. Many au-
thors have shown that singular isothermal spheres (SIS) allow a
detailed description of the matter distribution in individual gravi-
tational lenses (see e.g. Rusin et al. 2002), and they are therefore
used in statistical analysis of the population of lensing galaxies (e.g.
Chae 2003). SIS are characterized by the surface mass density

	(ξ) = σ 2
v

2G

1

ξ
, (16)

where ξ is the position vector on the lens plane, and σ v is the
line-of-sight velocity dispersion [see e.g. Hinshaw & Krauss (1987)
and Schneider et al. (1992) for a detailed description of its lensing
properties]. The area in the lens plane for multiple lensing is

σ0 = 16π3 σ 4
v

c4

(
Dd Dds

Ds

)2

. (17)

Note that the distance combination that enters equation (17) is the
same as in the Einstein radius for a point-like gravitational lens.
When we consider the projection on the source plane, we get

σ̂0 = 16π3

(
σv

c

)4

D2
ds. (18)

As the angular diameter distance between two points at redshifts z1

and z2 > z1 is a decreasing function of α (Asada 1998), so is the
cross-section σ 0 and, consequently, the optical depth τ . In Fig. 4(a)
we plot the cross-section σ 0(z; α) relative to the filled beam case,
evaluated along different lines of sight characterized by different
values of the clumpiness parameter.

Let us now consider an isothermal sphere with a non-zero core
radius ξ c. The surface mass density is

	(ξ) = σ 2
v

2G

1√
ξ 2 + ξ 2

c

,

which leads to a non-constant deflection angle. The cross-section
on the lens plane is (Hinshaw & Krauss 1987)

σ =
{

σ0

[(
1 + 5β − 1

2 β2
) − 1

2

√
β(β + 4)3/2

]
, β < 1

2 ,

0, β > 1
2 ,

(19)

where β is the core radius ξ c in units of the natural length-scale

ξ0 = 4π

(
σv

c

)2
Dd Dds

Ds
. (20)

The projected cross-section for multiple imaging is, for β < 1
2 ,

σ̂ = 16π3C(β)

(
σv

c

)4

D2
ds, (21)

where we have introduced the quantity C(β) ≡ σ/σ 0. The presence
of a core radius lowers the lensing probability, but does not change
its qualitative properties with respect to the clumpiness parameter
(see Fig. 4b). Note that the function C(β) is not a constant, since β

is not, with respect to the clumpiness parameter. The dimensionless
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778 G. Covone, M. Sereno and R. de Ritis

Figure 4. The projected cross-sections relative to the filled beam case for a singular isothermal sphere (left-hand panel) and an isothermal sphere with core
radius ξ c = 10 pc (right-hand panel), versus the lens redshift. The source is located at z s = 5 and the cosmological parameters are �� = 0.7 and �m = 0.3.
For lens redshift z � 1, the two lens models have the same limit. The same qualitative results hold for any values of zs and ��.

core radius β is a function of the redshifts z, z s, the cosmological
parameters and the clumpiness parameter, via the length unit ξ 0:

β(z, zs, ��, α) = 1

4π

c2

σ 2
v

ξc
Ds

Dd Dds
. (22)

It is interesting to note that, despite the fact that the cross-sections
of the considered gravitational lens models differ in the DR distance
ratio, they are both decreasing functions of α. In other words, the
monotonic properties of the cosmological optical depth with respect
to α are general. Finally, it is evident that neglecting α leads, in
the theoretical predictions, to an underestimate of the probability of
strong lensing, and, in the statistical analysis of high-redshift quasar
catalogues, to an overestimate of the cosmological constant. This is
discussed in the next section.

5 O N T H E E X P E C T E D N U M B E R
O F G R AV I TAT I O NA L L E N S E S

In this section we evaluate numerically the optical depth in a flat
cosmology as a function of the cosmological parameter �� and
of the clumpiness parameter α. In particular, we analyse quantita-
tively the effect of neglecting local inhomogeneity in calculating the
lensing probability in a clumpy Universe, along lines of sight with
α < 1. For this purpose, we consider gravitational lenses to be singu-
lar isothermal spheres, because they allow a very simple and analyt-
ical treatment of the problem. Also, they have been used in a variety
of studies of the statistical properties of gravitational lenses (see
Chae 2003, and references therein), thus allowing a direct compar-
ison of the results. Moreover, this particular choice does not affect
our qualitative results.

As we are mainly interested in the effects of varying α, we com-
pare the optical depth τ (z s, ��, α) with τ 0, the numerical value in
the case of vanishing cosmological constant and light propagation
through filled beams. Thus, our discussion is independent of the
numerical parameter

F ≡ 16π3

(
σv

c

)4 (
c

H0

)3

,

Figure 5. The optical depth as a function of the redshift for different values
of α and �� relative to τ 0, the optical depth, in the case �� = 0 and α =
1. The full and dashed curves are for �� = 0.6 and 0.8, respectively. The
clumpiness parameter is α = 0, 0.5 and 1.0, from the top curve to the bottom
one for each value of ��. The gravitational lenses are SIS, and space–time
is flat.

which controls the lensing probability. In Fig. 5 we plot the rela-
tive optical depth τ/τ 0 as a function of the source redshift, for six
different cosmological models, in which �� = 0.6 and 0.8, consid-
ering lines of sight with α = 0, 0.5 and 1 for each case. As is well
known, the strong lensing probability is very sensitive to the value
of the vacuum energy (e.g. Fukugita et al. 1992). For any value of α,
the probability that a source at given redshift zs is multiply imaged
grows by a factor of ∼2 when �� goes from ∼0.6 to ∼0.8.

In order to disentangle the effect of the clumpy distribution of
matter from that due to the cosmological constant, we consider
�τ/τ 0, i.e. the relative variation of the lensing probability with
respect to the case α = 1, as a function of �� along lines of sight
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Gravitational lenses in a clumpy Universe 779

Figure 6. Relative variation of the optical depth with respect to the filled beam case. The clumpiness parameter is α = {0, 0.5, 0.75}. Sources are at redshifts
z s = 3 (left-hand panel) and 5 (right-hand panel). Here �� = 0.7 in a flat space–time.

characterized by α < 1. We plot this quantity, evaluated at different
source redshifts, in Fig. 6. As shown above, for any zs and ��,
the lensing probability is a decreasing function of the clumpiness
parameter. We also notice that the effect of the clumpiness parameter
increases with the redshift of the sources, if a given direction with
α < 1 is considered.

The most important feature to note is that the variation rapidly
becomes less important at larger values of the cosmological con-
stant. The reason for this effect is two-fold. First, for larger
values of the cosmological constant, the influence of all other astro-
physical and cosmological parameters is expected to be less im-
portant, since at high �� the optical depth is very sensitive to
any small change in the value of the cosmological constant. Sec-
ondly, α enters equation (3) as a coefficient of the matter density
parameter, determined (in flat cosmological models) by the rela-
tion �m = 1 − ��; so it is relatively less important for small
values of the density parameter. In the most commonly accepted
range for the cosmological constant (0.6 � �� � 0.85), the lensing
probability increases (relative to a completely homogeneous matter
distribution) by a factor of about 7 per cent, 17 per cent and 30 per
cent if we consider the clumpiness parameter α = 0.75, 0.5 and 0,
respectively.

As stated above, in order to have a coherent description of the
small-scale clumpiness, we need to consider the PDF for α, since
this is a direction-dependent quantity. The PDF depends on the back-
ground FLRW cosmological model, and can be derived from the
PDF of the lensing magnification µ (z), calculated in numerical sim-
ulations (e.g. Wambsganss et al. 1997; Holz & Wald 1998; Tomita
1998; Mortsell 2002), via the relation

µ(z) =
[

r1(z)

r (z, α)

]2

, (23)

and the DR equation. As shown by Wang (1999), in general the α

PDF is peaked at α < 1 for any z, but it tends to be more symmet-
ric and shows smaller scatter around the peak value as the redshift
increases (see e.g. fig. 3 in Wang 1999). In Fig. 7 we plot, for a flat
space–time with �m = 0.4, both the most likely value and the av-

Figure 7. The peak value (full curve) and the mean value (broken curve)
of the clumpiness parameter in a flat cosmological model with �m = 0.4,
calculated via the analytic approximation given in Wang (1999).

erage value, as calculated via the approximate analytic expressions
of the PDF (α) given in Wang (1999).

The mean value of α is 1 at any redshift in all cosmolog-
ical models (if they are FLRW on average, as assumed here).
This is indeed the same property that is known to hold for the
PDF of the lensing magnification µz, whose basic motivation is
flux conservation (Weinberg 1976). Therefore we expect that the
effect of inhomogeneities on the lensing cross-sections is reduced
in a large ensemble of gravitational lenses, or for very distant
sources.

For a gravitational lens at z ∼ 1, the most likely value is α ∼ 0.85;
this translates into an underestimate of the lensing cross-section for
an SIS (using the filled beam distances and considering a source at
z s � 4) of a factor of ∼1.15 (see Fig. 4). These systematic errors
decrease for more distant gravitational lenses or sources. However,
since the most likely value is always less than 1, and because, in a
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780 G. Covone, M. Sereno and R. de Ritis

Figure 8. Redshift distribution of the 1163 luminous quasars in the cata-
logue used to calculate the effect of a clumpiness parameter α �= 1. See text
for details.

relatively small sample of gravitational lenses, the mean of a non-
symmetric probability distribution is not likely to be the best esti-
mator, such errors may become non-negligible when evaluating the
cosmological parameters.

While a detailed statistical analysis including an accurate deter-
mination for the PDF for any cosmological model is beyond the
scope of the present work, it is none the less important to estimate
an upper limit to the possible errors on the predicted number of
gravitational lenses. We have therefore considered the list of 1163
luminous quasars3 that have been observed in the following optical
surveys: CFHT (Crampton, McClure & Fletcher 1992), CFHT (Yee,
Filippenko & Tang 1993), HST (Maoz et al. 1993), and NOT
(Jaunsen et al. 1995). This catalogue contains seven confirmed grav-
itational lenses, and its redshift distribution is plotted in Fig. 8: the
peak is at redshift z � 2, and only a small fraction of sources are
beyond z = 3. We have calculated the relative variation in the ex-
pected number of multiply imaged quasars considering different
values for the clumpiness parameter, corresponding to peak val-
ues of its PDF for z � 0.5 and 3.0. The lensing galaxies are be-
ing modelled as SIS (note that including a small core makes the
clumpiness effect slightly larger). In Fig. 9, we plot the relative
variation of the expected number of lenses as a function of �� for
the peak values α = 0.75 and 0.95. This figure shows the upper limit
for the systematic errors that can be found for the predicted num-
ber of gravitational lenses when adopting the simple filled beam
hypothesis; given the property ᾱ = 1, this could be further re-
duced in upcoming larger surveys. Note that, since we are con-
sidering a flat space–time and the effect of local inhomogeneities
increases with �m, the variation of the expected number N of mul-
tiply imaged quasars is a decreasing function of the cosmological
constant. However, for very large values of the cosmological con-
stant (�� � 0.8) this variation rapidly becomes small. This makes
clear the point that, if in the evaluation of τ we use angular di-
ameter distances for a perfectly homogeneous cosmological model,

3 This catalogue is available at the web address http://vela.astro.ulg.ac.be/
themes/extragal/gravlens/bibdat

Figure 9. Relative variation of the expected number of strong lensed quasars
in the given sample of high-luminosity quasars with respect to the filled beam
case, as a function of the cosmological constant. The clumpiness parameter
is α = 0.75 (dashed curve) and α = 0.95 (full curve). Lenses are modelled
as SIS.

we can underestimate the lensing probability and, consequently,
overestimate ��.

6 C O N C L U S I O N S

In this work we have investigated whether local departures from a
completely homogeneous cosmological model can have observable
effects in the statistical study of high-z gravitational lenses. Follow-
ing the work by Ehlers & Schneider (1986), we derived expressions
for the cosmological optical depth in the framework of a cosmo-
logical model that is FLRW on very large scales (i.e. whose overall
dynamics is very well described by FLRW models) and whose mat-
ter distribution is locally inhomogeneous. The direction-dependent
clumpiness parameter α quantifies the fraction of matter in compact
objects along a given line of sight, and its peak and mean values
(as a function of the source redshift) are calculated via the ana-
lytical approximation of the PDF given in Wang (1999). We have
paid particular attention to disentangling the various roles played
by the different notions of distance in the definition of the optical
depth τ (α): small-scale inhomogeneities along the line of sight do
not change the volume element dV , but do affect the strong lensing
cross-section (see equation 5 and Fig. 4).

Up to redshift z ∼ 3, the most probable value of the clumpiness
parameter is very different from the average value, which is con-
strained to be 1 in a model homogeneous on a large scale (see Fig. 7),
and the effect may be important in statistical analysis of relatively
small sets of gravitationally lensed sources.

Asada (1998) presented a similar calculation to that in Section 4.
He discussed the influence of the clumpiness parameter on sev-
eral observable gravitational lensing quantities, showing that in a
clumpy Universe deflection angles are smaller and time delays are
longer than in a homogeneous Universe, given the same lens–source
configuration. However, in contradiction to Asada’s result, we have
found that the gravitational lensing rate is a decreasing function
of the clumpiness parameter. We have shown that in the empty
and filled beam cases different angular distance ratios enter the

C© 2005 RAS, MNRAS 357, 773–782

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/357/2/773/1374935 by C
N

R
S - ISTO

 user on 26 January 2021



Gravitational lenses in a clumpy Universe 781

optical depth expression (Section 3), and this leads to a higher num-
ber of expected gravitational lenses when light beams with α < 1
are considered.

While a detailed statistical analysis including the effect of small-
scale inhomogeneities on the determination of the cosmological
constant is beyond the scope of the present work, we can already
draw some important conclusions and compare our findings with
previous works. Since the mean value of α tends to 1 when a suffi-
ciently large number of different lines of sight are considered, the
effect described here tends to be less important in large surveys for
gravitationally lensed sources. Moreover, since the peak value also
tends to 1 for z � 5, statistical study of very high-redshift sources is
less affected by local clumpiness along different lines of sight. On a
small set of lensed sources, since the peak value of the clumpiness
parameter is always less than 1, using the filled beam angular diam-
eter distances leads to an overestimate of the number of expected
gravitational lenses (Fig. 9), and, consequently, to an overestimate
of the cosmological constant.

It is interesting to note that the same qualitative result (on the
determination of the cosmological constant) has been found in pre-
vious works in which the authors have taken into account the ef-
fect on the distance–redshift relation played by inhomogeneities
in the matter distribution. Kantowski (1998) described the effects
of such inhomogeneities on the determination of the cosmological
constant and �m using a ‘Swiss cheese’ model to derive analytic
expressions for the distance–redshift relation. He showed that, when
analysing high-z standard candles, assuming a completely homoge-
neous matter distribution leads to overestimating the cosmological
constant if the filled beam hypothesis is always used (see e.g. fig. 8 in
Kantowski 1998).

In a recent work, Barris et al. (2004) analyse a set of 194
Type Ia supernovae (SNe) at z > 0.01 (including the 23 discov-
ered in the IfA Deep Survey in the range z = 0.34 –1.03) using both
the filled beam and the empty beam assumptions for all the lines of
sight to calculate luminosity distances.4 Although the presence of
small-scale inhomogeneities is far from eliminating the need for a
vacuum energy contribution to explain the new data, they do change
the final estimate of the cosmological parameters �m and ��. In-
deed, when using the angular diameter distances with α = 0, the
confidence contours for the cosmological parameters are shifted to
lower values of �� and higher values of �m

The same effect has been found by authors who investigated
the effect of large-scale inhomogeneity in the matter distribution.
Tomita (2001) considered a local void on scales of 200–300 Mpc
around our Galaxy to interpret the high-z SN data, effectively de-
scribing it with α < 1 in the DR distances. He finds that the data
(available at the time) could be well fitted with �� ∼ 0.4 (the
value estimated in the overdense outer region). It is certainly in-
teresting to test these findings with the more recent and larger set
of data available at the moment. In conclusion, a precise deter-
mination of the cosmological parameters using both the Hubble
diagram of the high-z Type Ia SN and the statistical properties
of gravitational lenses requires an accurate determination of the
effect of local clumpiness in the matter distribution on the light
propagation.

4 Note, however, that using the empty beam approximation for all the lines of
sight is not a coherent description, since in an inhomogeneous Universe not
all the light beams can be devoid of matter, and a more realistic distribution
for α has to be chosen to describe the clumpiness effects using the DR
distances.

AC K N OW L E D G M E N T S

GC wishes to thank N. D. Morgan, N. R. Napolitano and Y. Wang for
stimulating discussions, and the referee for a careful reading and in-
sightful remarks. Special thanks are due to A. Pospieszalska-Surdej
and the Gravitational Lenses group at the Institut d’Astrophysique
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